
Acta Informatica 9, 217-241 (1978)

�9 by Springer-Verlag 1978

Design and Correctness of a Compiler
for a Non-Procedural Language*

Christoph M. Hoffmann

Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

Summary. Design and correctness proof of a compiler for Lucid, a non-
procedural proof-oriented programming language, are given. Starting with
the denotational semantics of Lucid, an equivalent operational semantics is
derived, and from it the design of compiling algorithms. The algorithms are
proved to compile correctly a subset of the language. A discussion of the
design choices and of the subset restrictions gives insight into the nature of
Lucid as well as into the problem of compiling related non-procedural
languages.

1. Introduction

Proving the correctness of a compiler is an important and non-trivial problem.
Without a correct compiler, no program compiled can be fully trusted, even
though the program was proved correct. Furthermore, as compilers for all but
very small languages are of substantial size, a correctness proof lends credibility
to program proving as a viable discipline applicable to practical work.

This paper is concerned with the design and correctness proof of an efficient
compiler for a very high-level non-procedural programming language, and
combines techniques from various disciplines of Computer Science to shape a
reliable piece of software. As the syntax of the source language is almost trivial,
syntax directed methods for compiling were of little help. New techniques had to
be developed which are reasonably general in nature and should be applicable to
a broad class of non-procedural languages.

A first version of the compiler has been operational now for over two years.
The subsequent work on a proof for it in turn affected the design of the
algorithms. This development illustrates the maxim that programming and
program proving are complementary efforts which best are done in parallel.

* Work supported by the National Research Council of Canada

0001- 5903/78/0009/0217/$ 05.00

218 C.M. Hoffmann

Proving correctness of a compiler is difficult for several reasons. To begin
with, it requires a formal model of the semantics of the source language as well
as the object language, which, moreover, has to be convenient for both proof
purposes and implementation strategies. Without such models a proof cannot be
stated. If the models are difficult to analyze mathematically, a proof will be
awkward and difficult. Therefore, it is understandable that much of the previous
work in this area was done for compilers of languages based on the Lambda
Calculus 1-14, 17] or for small languages isolating a few of the constructs present
in imperative languages [7, 15, 18]. Present trends in the work on data
structures and programming language design [10, 11] seem to indicate an
awareness of the necessity of a formal model of semantics.

Another difficulty in proving compilers correct, as recognized by Morris
[18], is to find a compiler design structured in such a way that a proof can be
modularized, thereby reducing the complexity of the task. Not surprisingly, this
maxim has analogous formulations which have long since been principles of
software design.

The language to be compiled is Lucid, and was developed by Ashcroft and
Wadge [3, 5]. Its motivation is to bridge the gap felt to exist between practical
demands on language constructs, as vehicles for expressing algorithms, and
constructs amenable to rigorous mathematical analysis. Unlike other ap-
proaches, e.g. [203, Lucid uses the same denotation for writing and proving
properties of programs, thus it is, at the same time, a formal proof system and a
programming language. Previously published work has emphasized this point
strongly [2, 4].

From a programming point of view it is interesting to note that the flavor of
this language is not unlike that of recently proposed data-flow languages, e.g. [8,
133, in which, as the name suggests, the flow of values through a network of
processing nodes is specified, and an explicit notion of flow of control is absent.
The reason for this similarity may be deduced from the fact that the meaning of
a variable in Lucid does not depend on its context in the program. This property
is shared by data-flow languages [8] and, at the same time, simplifies the notion
of environment on which proofs of program properties depend crucially.

A Lucid program is a set of assertions about sequences of data objects.
Understanding these (infinite) sequences as streams, it is the task of the compiler
to analyze implied data dependencies and to deduce from this information a
strategy for a coordinated evaluation of the various streams. The language and a
compilable subset are defined in Section 2, both formally and informally.

Perhaps the first difficulty encountered in compiling Lucid stems from the
fact that the semantics of the language is defined denotationally. Since a direct
implementation of the fix-point operator is far from being efficient, an equiva-
lent operational understanding had to be sought. This is derived in Section 3.

The compilation algorithms are developed first for very simple programs and
analyzed for correctness. The correctness proof of the object code employs
Floyd's method [9] which was found to be very well-suited because of the
simple control structure of the generated code. Because of the modularity of the
source language constructs, easy extensions of the algorithms are possible which

Design and Correctness of a Compiler for a Non-Procedural Language 219

enable a compilation of the full subset. These are described subsequently. A
discussion of the language restrictions for compilability concludes the paper,
and sheds further light on the design choices.

2. Lucid and a Compilable Subset

We define the source language Lucid and a subset acceptable to the compiler.
Reasons for these subset restrictions are discussed in Section 6. Not included in
this presentation is the definition of nested blocks. As explained in detail in [-12],
this somewhat complicated construct can be handled quite easily by a recursive
extension of our algorithms.

A program in Lucid can be thought of as a set of commands describing an
algorithm in terms of assignments and loops, and, at the same time, as a set of
equations which are assertions about the results and effects of the program. A
major problem in achieving this is to find a way in which an assignment
statement can be viewed as a mathematical equation. While this is always
possible for the first assignment to a variable, reassignments such as C ~ C + 1
cannot be viewed as equations. Clearly any reassignment can be eliminated by
introducing new variables in the absence of iteration; in loops, however, it has
to be accomplished differently. To this effect, Lucid distinguishes between the
initial value of a variable in a loop (first C), the value of a variable during the
current iteration (C), and the value during the next iteration (next C). Then the
pair of equations

first C =0,

n e x t C = C + l

would imply a loop in which C has initially the value 0 and is to be incremented
by 1 each time the loop is repeated. The fby operator (pronounced "followed
by") is used to abbreviate such two part definitions, e.g.

C=O fby C + I .

Abstracting, we can view C as the (infinite) sequence (0, 1, 2, 3). Of course,
the definition of a variable may involve others. So, e.g.,

first C=O next C = C + I ,

first Y = I next Y = Y + 2 , C + 3

or, equivalently,

C = 0 fby C + l,

Y = I fby Y + 2 . C + 3

defines the next value of Y in terms of the current values of Y and C. Here it is
verified that Y is the sequence of perfect squares (1, 4, 9, 16,. . .) .

220 C.M. Hoffmann

In addition, there is a binary operator asa (pronounced "as soon as") which
extracts values from a loop:

C = 0 f b y C + I ,

Y = I fby Y + 2 . C + 3 ,

R = C a s a Y>10.

The equation for R 'extracts' the value of C of the loop iteration during which
the value of Y is greater than 10 for the first time (i.e. 3), thus R is the (constant)
sequence (3, 3, 3). In a sense, then, an asa expression is a control expression
for a loop.

More formally, a variable X is interpreted as a mapping a from the natural
numbers N into a set of values V which includes the special value J_ (pro-
nounced "undefined"). Instead of writing a(t) we write a t.

There are four special operators, first, next, fby, asa. They are interpreted as
follows.

Definition. Let a and fl be mappings from N into V, then

(first a), = %,

(next cot = at+ 1,

(a fby fi)t =-t "a~
.J~t- 1

if t = 0

otherwise,

if f l~=true, f l~=false for all r<s

otherwise

Besides the four special operators, there are a number of standard operators
which work 'point-wise', i.e., for the r-ary standard operator co and mappings
a (1), a (2), ..., a (r) from N into V, then

(~o, a ~1' a~r') ,= (~o, a } " al").

In the following, we fix the set of standard operators to consist of the operators
�9 , / , +, - , eq, ne, It, gt, le, ge, not , and , or, i f - t h e n - e l s e - ; and the set V
of values to contain all integers and the logical values t r u e and fa l se . It should
be clear that both sets can be enriched by adding other point-wise operators and
data values. Such additions do not greatly affect our algorithms and are
therefore excluded from consideration.

Expressions are written in the familiar way. Precedence among standard
operators is as in ALGOL; the fby and asa operators have lower precedence
than any standard operator, with asa taking precedence over fby. Once the
interpretation of all variables in an expression E has been fixed, the in-
terpretation of E is given by the above definitions, and is also a mapping from N
into V.

A formula is an expression formed only from variable names, standard
operators, and the operators first and next.

Design and Correctness of a Compiler for a Non-Procedural Language 221

A variable X may be defined in a Lucid program by an equation which is of
one of the three forms below

(1) X = E ,

(.2) X = E fby F,

(3) X = E a s a F

where E and F are formulae. Restricting the complexity of expressions in this
way is no loss of generality, as more complicated expressions can be put into
this form using additional variable definitions.

As an analogy, observe that first and next are reminiscent of car and cdr in
LISP, the fby provides a two-part definition in a potentially recursive way, and
the a sa is analogous to the # operator in Recursive Function Theory.

We can now give a definition of Lucid programs:

{program)

{block body)

{assertion)

{sequence def)

{result def)

{expression)

:: = c o m p u t e output where {block body)

:: ={asser t ion) {; {assertion)}* end
:: = {sequence def)

[{result def)

: : = {name) = {expression)

: : = result = {expression)

: : = {formula)

I {formula) fby {formula)

[{formula) asa {formula)

Semantically, a program is an assertion about the sequence output. Other
assertions can be made as part of the program defining computational re-
lationships among the variables mentioned. The expression in the result de-
finition defines the name in the compute clause, i.e. output.

Any assignment of interpretations to the variables of a program consistent
with the program is a solution of it. The meaning of a program is its minimal
(least defined) solution which was shown to exist in [4]. For a more detailed
formal definition the reader is referred to that paper.

Example 2.1. As Example of a Lucid program consider

compute output where

C=Ofby C+I;
Y =1 fby Y + 2 , C + 3 ;

N = f i r s t input;

result=Casa YgtN

end

The program reads the first input as value of N, and iterates a loop which
evaluates Y and C until Y is greater than N for the first time. Then the current

222 C.M. Hoffmann

value of C is assigned to output, i.e. printed. In effect, since Y is a sequence of
square numbers enumerated by C, the program computes the integer square
root of its first input.

The compiler performs several source transformations. Among these is the
introduction of new variables to simplify expressions to conform with the syntax
as given above, and deducing syntactically which sequences are constant. While
methods for the former are evident, the latter rests on the following definition of
(syntactic) quiescence.

Definition. An expression E is quiescent if
(a) E is a constant, or
(b) E is a name defined by a quiescent expression, or
(c) E =(co, F 1 F~) where o~ is a standard operator and the expressions F~

are all quiescent, or
(d) E = f i r s t F , where F is any expression, or
(e) E = nextF, where F is a quiescent expression, or
(fl E=F asa G, where F and G are expressions.
Nothing else is quiescent.
It is not difficult to see that for a quiescent expression E the equation E =

first E is valid.

Definition. A Lucid program is compilable if the following requirements are met:
(1) Every variable name referenced is defined exactly once except for the

name input which may not be defined.
(2) There is exactly one result definition.
(3) Each name is either of type integer or boolean and its definition and

usage are consistent with its type.
(4) Construct for the program a labelled directed graph as described below.

Then the sum of the edge labels of all edges forming a cycle must be negative for
every cycle in the graph.

Restrictions (1) to (3) are straight-forward. The construction of the graph for
restriction (4) is presented next. As explained in Section 7 of [12], however, the
graph is never constructed by the compiler, rather equivalent criteria are used.
Nonetheless, the graph construction is useful for visualizing the essence of that
restriction which could be put intuitively by requiring that the current value of a
variable should not depend on some future value of itself.

In constructing the graph, assume that additional variables have been
defined such that all expressions have been simplified to be in one of the
following five forms, where X and Y denote variable names:

(a) first X,
(b) next X,
(c) X asa Y,
(d) X fby Y,
(e) formula not containing any f irst or next.

The nodes of the graph are now the variables occurring in the new program.
If a variable A is defined by

Design and Correctness of a Compiler for a Non-Procedural Language 223

(a) first X, draw an arc from A to X labelled 0;
(b) next X, draw an arc from A to X labelled 1;
(c) X fby Y, draw an arc from A to X labelled 0, and an arc from A to Y

labelled - 1 ;
(d) X a s a Y, draw an arc from A to X and from A to Yboth labelled oo;
(e) formula without first and next,

draw an arc from A to every variable name occurring in the
formula labelled 0.

Example 2.2. The graph for the program of Example 2.1 is as follows after
variables T1, T2 and T3 have been introduced in order to simplify all ex-
pressions:

oO oO

Observe that the edge labels for every closed cycle sum up to - 1 .
The graph constructed in this manner is referred to as (program) dependency

graph.

3. Derivation of an Operational Semantics

Recall that the meaning of a Lucid program is defined by a fix-point semantics.
Since, for computational purposes, it must be related to an operational seman-
tics, expressions are to be manipulated into a different representation, which
makes more apparent the connection between the fixpoint interpretation and an
equivalent operational understanding of the constructs. To this end two map-
pings, q~, and z,, where n > 0, are introduced. At the same time, 4~, and z, effect a
removal of the operators next and first.

Two operators, :i and (i) , where i> 0, are needed which, applied to variables
as suffix operations, have the following interpretation.

Definition. Let X be a variable, c~ = IX] an interpretation of X, i.e. a mapping from
N into V. Then, for all t in N,

(1) (IX:il), =~i,

(2) (IX(i>l),=~,+i.

Note the analogy to first and next.

224 C.M. Hoffmann

Definition. An expression formed from constants, paretheses, s tandard operators
and variable names to each of which exactly one suffix opera tor :i or (i) is
applied is called a term. Expressions formed as above but also admitt ing a s a
and fby are called extended terms.

Example 3.1. The following are terms:

5, X : O , (r (1) + r(o)) , X (3) .

The following is an extended term

X (0) a s a (Y:0 fby X (2 ~) e q 405.

The mappings ~b, and ~,, n > 0, mapping expressions into extended terms are
defined as follows.

Definition.

(a) If X is a variable name, then

4~,(x)= x :n,

~.(x) =X(n>.

(b) If co is an r-ary s tandard operator , F(1)... F (r) expressions, then

~n (CO, V(1), "'" , F(r)) = (co, ~n (V(1)), "'" , (gn(F(r))),

z, (co, F (I) , F (')) --- (co, z, (F (1)), ..., z, (F('))).

(c) If F is an expression, then

q~.(first F) = q~o(F) z.(first F) = q~o(F),

(a.(nextF)=(a.+t(F) z.(nextF)=z.+l(F).

(d) If F and G are expressions, then

q~o(Vfby G) =q~o(V),

~o(E fby G) = q~o(F) fby zo(G),

~.+l (Vfby G) =q~.(G),

~.+ ~ (F fby G) = T.(G).

(e) If F and G are expressions, then

~ , (F a s a G)= zo(F) a s a Zo(G),

v,(F a s a G) = % (F) a s a ~o(G).

Observe that if expressions are restricted to formulae, then the range of ~b, and
z, is the set of terms.

Example 3.2. Consider the expression

E = f i r s t (X + n e x t X) fby next(next Y+f i rs t Z+3).

Design and Correctness of a Compiler for a Non-Procedural Language 225

Then

to(E)= q~o(first (X + next X)) fby to(next (next Y+ first Z + 3))

=q~o(X+ next X) fby t l (next Y+fi rs t Z + 3)

= X : 0 + ~b1(X) fby t2(Y)+ ~bo(Z) + 3

= X : 0 + X : I fby Y (2 > + Z : 0 + 3 .

The following theorem formally states the effect of q~, and t , on the
interpretation of expressions.

Theorem 3.1. Let E be an expression, [[an interpretation, and t in N. Then

(14~.(E)l)t =(IEI).,

([tn(E)l)t = ([EI), +,.

Proof (by induction on the structure of E).
(a) If E is a variable name, the theorem is obvious.
(b) Let o be an r-ary standard operator, F ~1) ... F ~r) expressions, and assume
E =(co, F~I), ..., F~r)). Then

(l~b,(E)t)t = (l(o, q~n (V (1)) , . . . , 4~,(P')))I),

=(]@, ([Fr ([Vr (ind. hyp.)

=([(~,V (1) V('))l).

and analogously for t . .

(c) Let E = f i r s t F, F some expression, then

(r~.(E)l), =(Iq~o(F) l),
= (]Fl)o (ind. hyp.)

=([E]). (def. of first)

and analogously for t . . With E = n e x t F the argument is equally straight-
forward.

(d) Let E = F f b y G, F and G expressions, then

(lOo(E)l),=(14~o(F)l), =(IFI)o=(IEI)o,

(I%(E)I), =(l~bo(F) fby %(6)1),.

Two cases arise,

(1) t=O, then

(14,o(f) fby to(G)l), = (tq~o (f)l), = ([fl)o = (IEI),+ o,

(2) t >0, then

(]q~o(V) fby to(G)J)t =([ro(G)l)t_ a (def. of fby)

=([G[)t- 1 (ind. hyp.)

= (IEr)t (def. of fby).

226 C.M. Hoffmann

The argument for q5 m and z,,, m > 0, is easy and left to the reader.

(e) Let E = F a s a G, finally, F and G expressions. Then the theorem is a
simple consequence of the definition of the a s a operator.

Intuitively, 0 , and z, have the same effect on expressions as :n and <n) have
on variables. Yet they are not mere extensions as they, at the same time, effect a
removal of all operators first and next.

The notion of transformed program is introduced. The transformed program
of a given Lucid program P is an infinite equivalent one containing only
extended terms.

Definition. Let P be a Lucid program. Then the transformed program P' of P is
as follows:

(i) For every statement X = E in P where E is a formula or is F a s a G, F and
G formulae, P' contains statements

x: i=r X<Z>=~i(E);

for all i _> 0.

(ii) For every statement X=E fby F, E and F formulae, in P, P' contains

x:o =Co(E); X<0> =~o(E)fbyX<1>;

X:i+l=~i(F); X(i+l>=Oi(F);

for all i _> 0.

(iii) P ' contains no other statemnts.

Theorem 3.2. P and P' have the same solutions, and therefore the same minimal
solution.

Proof. Immediate from the construction of P' and Theorem 3.1.

Since only the result value is of ultimate interest, usually a subprogram of P '
is sufficient to define it. The modified program Po of P is the smallest set of
statements in P' containing the definition of result:O and being closed with
respect to the reference structure, i.e. such that each name referenced in Po is
also defined in it.

It should be evident that since P0 is closed with respect to the reference
structure, all solutions to P0 are restrictions of corresponding solutions of P',
hence also of P.

The dependency graph restrictions can be shown to imply that the modified
program is finite. Intuitively speaking, this ensures that, at compile time, the
total amount of storage necessary to evaluate P0 iteratively can be predicted.

It is convenient to consider X:i and X <i> as new variables neglecting that :i
and (i> have been interpreted as operators. When doing so, in order to avoid
confusion, we shall denote these new variables by X.i and X[i], respectively.

Definition. Given a variable name X, X . i and X[i], i>O, are qualified names
derived from X. Furthermore, X . i and X[i] name the terms X:i and X<i),
respectively.

Design and Correctness of a Compiler for a Non-Procedural Language 227

Definition. Let X = G be a definition of X in the program P, E and F some
formulae. The defining term of a qualified name derived from X is as follows. If
G=E, or G = E a s a F, then

def(X, i) = q~z (G), def(X [i]) = ~.(G),

and if G = E f b y F , then

def(X �9 0) = q~o (E), def(X [0]) = ~o(E),

def (X. i + 1) = qSz(F), def (X [i + 1]) = ~-~ (f),

for all i>0, and where the q~ and ~ differ from ~b~ and ~ only in that 4~(Y)= Y.i
and ~i(Y)= Y[i], for variable names Y..

Observe the close correspondence between defining terms and the statement
transformation defined earlier. The only deviation, the defining term of X[0]
where X = E I b y F , is for a technical reason which will become clear sub-
sequently.

Definition. A qualified name ~ directly depends on another qualified name/3 if/3
is an operand of def(e). The transitive closure of "directly depends" is the
relation depends, and is denoted by e .> ft.

The following relates the edgelabelling conventions of the dependency graph
of Section 2 to dependencies among qualified names. The theorem is used in
Section 4 to show termination of the algorithms.

Theorem 3.3. Let c~ be X [i] or X. i, and fl be Y[j] or Y.j. If ~ .> fl, then there is a
path from X to Y in the dependency graph with a sum s of edge labels such that
s > j - i .

Proof That there is a path from X to Y is obvious from the construction of the
graph. The proof of s > j - i proceeds by induction on the path length k:

Basis. k = 1: ~ directly depends on ft.

(a) X = f i r s t Y, hence s=0. Obviously j = 0 and i>0.

(b) X = n e x t Y, hence s = l a n d j = i + l .

(c) X =f(Y), where f stands for a pointwise expression with Y as operand.

Therefore, s = 0 and i=j . The other cases are verified as easily.

Step. k to k + l :
Assume the theorem holds for a path of length k or less, and that ~.> fl with

a path of length k + 1. There must be some Z on the path from X to Y, so there
is some 7 = Z [r] or Z . r such that c~ .> 7 and 7 ">/~. By hypothesis, r - i<s 1 and j
- r < s 2 for the edge label sums sl and s z of the paths from X to Z and from Z
to Y, and since s=s~ +s 2, the theorem follows.

Corollary 3.4. If the program P is in the subset, then its modified program P0 is
finite.

Proof Straight-forward.

228 C.M. Hoffmann

We will now derive a basic approach to compiling Lucid programs. Given a
program, subsets of defined variables may be isolated which are self-contained
with respect to their dependency structure, i.e. each variable definition in the
subset is made in terms of other variables also defined in the subset. Such subsets
are called nests.

If R is defined by R = E a s a F, then we may evaluate it as follows: Evaluate
in a loop IE[0, tFIo; tEll, IFI1; ... until IF[s is true for the first time. Then break
out of the loop with IEIs as value of IRlt, for all t. For the evaluation of E and F
exactly those varibles forming the smallest nest containing R have to be
evaluated.

Because of the subset constraints, the dependencies among all names defined
by an a sa expression can be recorded by a directed acyclic graph. Those
variables which are the leaves of this graph are called simple goals, and we
consider their compilation first.

In evaluating a simple goal, only variables defined by formulae and fby
expressions need to be evaluated. Let p be any solution of the program P, and
denote by]XJp,]X:iJp and IX(i)] o the values of X, X:i and X (i) , respectively.
([...[p)t is to denote the t-component of the value [...I;,t in N. Let h be the
homomorphism which maps expressions over qualified names into extended
terms by replacing each qualified name by the term it names. Interpret ex-
pressions over qualified names not containing fby and asa as ordinary scalar
expressions. We show that then an assignment to a qualified name c~ of the form

~ def(e) is consistent with the solution p in the following sense.

Theorem 3.5. Let c~ be a qualified name derived from X in P where X = E or X
= E f b y F , E and F formulae. Let p be a solution of P and t in N. Then the
following is true: If the value of every qualified name]3 in def(c 0 is v(fl)
---(lh(/~)lo)t, then v(def(~))=(lh(~)l;)t, except when ~ = X [0] and X = E I b y F , in
which case the theorem holds only for t = 0.

Proof. Follows directly from the definition of :i and (i) and def(e) in con-
junction with Theorem 3.1 and 3.2. The exception for X[0] has to be made
because of the definition of its defining term. �9

This suggests the following approach to the compilation of simple goals.
Collect all qualified names on which R . 0 depends. Try to sort them in
accordance with their dependencies. If they can be linearized, a straight-line
program with statements e ~ d e f (e) should compute initial components of the
minimal solution a of P.

Definition. Let Q be a list of qualified names c~. Q is admissible if, for every e in
Q, the defining term of e is a term (i.e. does not contain any fby or asa), and
whenever e .>/~, then/~ is in Q and precedes e.

Corollary 3.6. Let Q = (a t er) be an admissible list of qualified names, a the
minimal solution of the program P. After the straight-line program

el ~ def(cq)

er +-- def(e,)

Design and Correctness of a Compiler for a Non-Procedural Language 229

has been executed, the values of the al are

vt~i)=(Ih(~i)l~)o.

Proof (by induction on r).

Basis. r = l : Since Q is admissible, there is no qualified name on which ~1
depends, hence, by Theorem 3.5, v(def(~l))=(Ih(~OJp) o, for any solution p of P,
hence, in particular, for p = a.

Step. r to r + l : Straight-forward from Theorem 3.5 and the induction hy-
pothesis.

In order to obtain subsequent components of the solution a observe the
following: For every quiescent sequence X, any qualified name derived from X
must be constant-valued as t varies, so it does not have to be recomputed.
Names of the form X[0] with X = E f b y F obtain new values by computing
X[1] and assigning X[0] ~X[I] .

On basis of these observations, we should like to find an admissible list S of
all qualified names on which R. 0 depends and which can be split into lists S'
and S" with the following properties. S' contans all qualified names X [-0] where
X = E f b y F , and all constant-valued qualified names. In order to iterate the
evaluation of qualified names in S", we append to the code for S" statements of
the form X[i]~X [i + l] , where X[i] is a name not in S" but such that

�9 > X [i] for some ~ in S", and X[i + 1] occurs in S". The program

code for S'

loop: code for S"

appended statements

goto loop

should then correctly evaluate subsequent components of the minimal solution.
Section 4 will make these remarks precise.

4. Compilation Algorithms

We now develop algorithms for handling simple goals. A running example
illustrates the compilation. As target language a bastard A L G O L was chosen
for readability. The algorithms must be considered central, since only small
modifications extend them to handle the full subset.

The code to be compiled is structured to consist of a prelude, essentially a
straight-line program containing computations which have to be performed just
once, e.g., of names of the form X. i, followed by a loop which iterates the
evaluation of nonquiescent expressions.

Since fby expressions are evaluated by computing a special case once, i.e.
def(X[0]), and then iterating a general case, i.e. def((X[l]) , and because of their
possible interaction, the loop may have to be 'unrolled' a number of times,

230 C.M. Hoffmann

thereby accomodating all special case computations in the enlarged prelude. This
is done as follows.

Given a simple goal R = E asa F, Algorithm A 4.1 constructs an operand list
containing all qualified names needed to evaluate E [0] and F [0]. If any name
in this list is initially to be computed from the first part of a fby expression, the
loop is unrolled, and a new list constructed for E[1] and F I l l . This process is
repeated until, in the last list L,, all qualified names defined by a fby expression
are computed from the general case. Also, all existing dependencies are re-
corded.

Algorithm A4.2 linearizes the dependency graph constructed by A4.1,
subject to additional constraints, thereby determining a sequence in which to do
the various computations. Subset restrictions imply that this is always possible.
Algorithm A 4.3 determines the exact loop limits, and Algorithm A4.4 generates
actual (unoptimized) code.

Definition. A set of variables X~)... X ~r) is a nest, if the definition of each X ~i~
references only variables X u'~ in the set.

Definition. A variable X is a goal, if X is defined by an asa expression. X is a
simple goal, if it is a goal and the smallest nest containing X does not reference
any goal.

Example 4.1. Consider the following segment of a Lucid program:

R=EasaF;
E = X ;

F = Y g t 2 5 ;

X = 0 f b y X + l ;
Y = I fby Y+Z;
Z = 2 f b y Z + Z ;

In it, R is a simple goal, and {R, E, F, X, Y, Z} is the smallest nest containing R.
The compilation of R illustrates the algorithms of this section.

Algorithm A4.1.
Input: A simple goal R = E asa F
Output: Operand lists L o L, containing qualified names needed to eva-

luate R correctly. Also, for each name, a dependency list is con-
structed.

1. [Initialize]
Set n to 0.

2. [Initialize next operand list]
Set L, to be the list (E[n],F[n]).

3. [Process and extend L,. Construct dependency lists]
Take next item ~ in L, and initialize its dependency list D to be empty.

For each qualified name B in def(c 0 do the following:
(i) If/~ is not in L 0 , L,, then append it to L,.

(ii) If/? is not in D, then append / / to D.

Design and Correctness of a Compiler for a Non-Procedural Language 231

4. [Check if L, is complete]
If some items in L, have not yet been processed by the previous step, then
go to Step 3.

5. [Check if another list becomes necessary]
If there is an item X [0] in L, where X is defined by a Iby expression, then
increment n by 1 and go to Step 2.
Otherwise stop.

[]

Example 4.2. Given the simple goal R of Example 4.1, A4.1 has the following
output:

Lo: LI: L2:
items items items

E[0]
F[0]
X[0]
Y[0]

dependencies

x [0] E [1]
Y[0] FI l l
- X [1]

- Y [1]

Z[0]

dependencies

X[1] E[23
Y[1] F[2]
X [03 X [23
Y[0], Z[0] rE2]
- z [1]

dependencies

X[2]
r[2]
XD]
Y[1], Z[1]
Z[0]

Note that L 2 does not contain any name P[0], where P = G fby H.

Theorem 4.1. For simple goals in subset programs Algorithm A4.1 halts.

Proof Observe first, that a new list Lr+ 1 is constructed only when L r contains a
name X[0] where X is defined by a fby expression. Hence the n of A4.1 cannot
exceed k + 1, where k is the total number of fby expressions occurring in the
smallest nest containing R.

Assume next that a list L, grows infinitely. Then, since there are only finitely
many sequence names, there will be qualified names c~ and fl such that a .> fl, c~
= X [i] or X.i, fl=X[_j] or X .j, a n d j > i . By Theorem 3.3 there is a cycle in the
dependency graph with edge label sum s>j-i>O, contrary to subset syntax.
Hence each list L, is finite.

Algorithm A4.2 (sort operand lists).

Input: Operand lists Lo, ..., L, from Algorithm A4.1.
Output: Sorted operand lists S o , S,

1. [Initialize]
Set m to 0.

2. [Termination Condition]
If m > n then stop;
otherwise set S m to be the empty list.

3. [Determine Admissible Items]
Scan L m marking all items as "admissible" if their dependency lists are
empty.

232 C.M. Hoffmann

4. [-Selection]
Of all admissible item select one by applying the following criteria in
sequence. As soon as one is applicable go to Step 5.
(4.1) If some X .j is admissible, select the first such X .j.
(4.2) Select the first admissible X[j] such that there is no X [i] in L,,
where i <j.

5. [Sort]
Remove the selected item from L,, and from all dependency lists and
append it to S,,.

6. [Sort Completion Condition]
If L,, is empty, increment m by 1 and go to Step 2;
otherwise go to Step 3.

[]

Example 4.3. The sorted lists for input Lo, . . . , L 2 of Example 4.2 are:

S 0 = X [0], e [0], Y [0], f [0],

S, =X[-1], EEl], Z[0] , YE1], F I l l ,

$ 2 = X [2], E[2], ZE1], Y[2], FEZ].

Note that the concatenation S~ o S 2 o S 3 forms an admissible list.
Before proving that A4.2 halts, the notion of close dependency is introduced.

A qualified name ~ closely depends on/3 (c~ .>/3), if c~ depends on /3 and in the
direct dependency chain c~=~ 1 .> (x 2 .~ "'" ' ~ ~ k = / 3 each name cq is derived from a
sequence X which is defined by a formula or a fby expression.

Lemma 4.2. If X [i] *> Y[j], then X[i + 1] . > Y[j + 1].

Proof. (By induction on the length of the dependency chain.)

Basis. X [i] directly depends on Y[j]: The lemma is clear except when i = 0 and
X = E f b y F. In this case, observe that X[0] depends directly only on names of
the form Y.j, hence this case does not arise.

Step. Split the dependency chain such that XEi] * > Z [r] * > Y[j]. The lemma
then follows from the induction hypothesis.

We use this lemma for proving that Algorithm A4.2 halts for subset
programs. Despite Theorem 3.3 this is not obvious, as it is conceivable that the
additional sort criteria may fail to select any qualified name from a set of
admissible ones.

Theorem 4.3. Algorithm A4.2 halts for subset programs.

Proof. Observe that none of the lists Li is empty, and that no item in L i can
depend on an item in L j, j > i. Thus it suffices to show that the sort succeeds for
any list Lr, after lists L o ... L r_ ~ have been sorted. Two cases arise.

(1) No items were found admissible. There must be a circular dependency
and, using Theorem 3.3, we see that the subset syntax is violated.

Design and Correctness of a Compiler for a Non-Procedural Language 233

(2) No admissible items qualified for selection in Step 4. Since items of the
form X .j depend only on items of the same form, this situation must be due to a
violation of (4.2) in the algorithm. Let ~1, ..-, c~m be all admissible items,
therefore, and assume none can be selected. Without loss of generality, assume
that c~p+ 1 , c~,, cannot be selected because of some items cq, ..., c~p. Since the
first p items do not block each other's selection, they are derived from p different
names and there exist inadmissible items fll , tip, where

fl~ = X (j) [it] , ~j = X (j) [ij + tj], 1 <=j <= p, tj > O.

Furthermore, since the c~p+ 1 , c~,, cannot be selected because of ~a ... ~p,

O~j - ~ - X (j) [i k + tj], p < j <= m,

where k is such that x (J) = x (k), t j > t k, and k<p . Since the fll ... tip are in-
admissible, they depend on some cq ... a,,. Let f(j) be the smallest k such that
fii "> ~k, 1 < j < p , 1 < k < m , and observe that flj closely depends on ~k. Define g
by

g(j) = {f(/') if f(j)=<p
if f (j)>p , with k such that x (k) = x tf~j)) and k<=p.

Because of the ordering of admissible items, g is well-defined. Consider the
sequence 1, g(1), g2(1) gP(1). Since g(t)<p, at least one value j<=p occurs
twice, hence there is a k such that gk(j)=j. Using this construction, we obtain, by
repeated application of Lemma 4.2,

X(~)[ij] *> X(3)[ij+t- 1 + ... + i-k], where tii=tf(gti-,)(j)).

In conjunction with Theorem 3.3 we have then a violation of the subset syntax.

The following Algorithm combines the sorted lists from A4.2 into an
admissible list (schedule) for code generation. This involves marking places at
which to test for loop termination, and determining the exact loop boundaries.
A4.4 generates code from this schedule.

Algorithm A4.3 (construct schedule).

Input: Sorted lists L o , L, from A4.2
Output: Schedule S

1. [Construct first part of S]
Let T~ be a list containing only the symbol #~. Set S to be the con-
catenation of L o, T o , L,_ 1, T,_ 1.

2. [Determine loop]
Let L , = (c q ,~,,}. Scan L, marking an item X[l] as " in- loop" if
X [i + I] is not in L,. Let p be the smallest j such that ~j. is marked
"in-loop". Split L, into the lists

E ~---(0~1, " ' ' , ~p--1} (empty i f p = l)
/~' = (% , . . . , ~ , ,)

234 C.M. Hoffmann

3. [Complete schedule]
Append to S the lists/2, T',/2', T,, where T' is the list < ~>. Then stop.

[]

Algorithm A4.4 (code generation).

Input: Schedule S from A4.3
Output: Code evaluating the simple goal R =E asa F

1. [Initialize iteration counter and code S]
Emit "begin t,--0;"
Scan S and code each item e as prescribed by Step 2. Then goto Step 3.

2. [Code item ~ in S]
If e is a qualified name, then emit " ~ d e f (e) ; " ,
If ~ is ~, then emit "repeat forever begin",
I f ~ is ~ i , then emit "if F[i] then begin R.O,-E[i]; goto L end;".

3. [Code iteration counter increment and window shifts]
Emit "t *--t + 1;"
Scan all qualified names e following ~ in S and do the following:

If a name X[i] occurs in def(e) but is not in S following ~, then
generate instructions

X[i] ~-X[i+ 1];

X [j - 13 ~ X [j] ;

where j is the smallest k >i such that X [k] follows the G in S.
Collect all instructions so generated, delete duplications, and emit them
sorted by the index of their left part.

4. [Code loop end]
Emit "end; L: end;", then stop.

[]

Theorem 4.7 below justifies Step 3 of A4.4.

Example 4.4. Algorithm A4.3 generates the following schedule for the lists of
Example 4.3: <X[0], E[0], Y[0], F[0], 4~o, X[1], E[1], Z[0], Y[1], F[1], # 1,
G, X[2], E[2], Z[1], Y[2], F[2], #Ca>, from which the following code is
generated:

begin toO;
X[0] ~ 0 ;
e [0] ~- X [0];

Y[O] ~ 1;
F[0] ~Y[0] gt 25;
if F[0] then begin R.0+-E[0]; goto L end;
x [1] ~ - x [o] + I ;
E[1] ~ X [1] ;
Z [0] ~ 2;

Design and Correctness of a Compiler for a Non-Procedural Language 235

YD] ~- r[0] +z[0];
F[1] ~ Y[1] gt 25;

if FIl l then begin R.0,-E[1]; goto L end;
repeat forever begin

xE2]~-x[1]+1;
E[2] ~ X [2] ;

z [U ~z[03 +z[0];
Y[23 ~ Y [1] + Z [1] ;

V[2] ~ Y[23 gt 25;

if F[2] then begin R.0,-E[1]; goto L end;
t ~ - t + l ;

z[o3 ~-z03;
X [I] ~ X [2] ;

r i l l ~ Y[2];
end;

L: end;

Note that the code is well-suited for conventional code optimization.
[]

Because of Corollary 3.6, a correctness proof of the compiled code amounts
to showing that the generated schedule is an admissible list of qualified names,
and has certain additional properties which make it possible to correctly iterate
the evaluation of sequences. These results are stated in Theorem 4.7 and are
proved with aid of the following observations.

Lemma 4.4. Let Lo, ..., L, be the operand lists constructed by A4.1. If X[i] is in
Lr, then X[i+ 1] is in one of the lists L o Lr+ 1.

Proof If X [i] is in L,, then El-r] or F [r] closely depend on it. �9

Corollary 4.5. Let L o , L, be the lists constructed by A4.1. If X[i] is in L, for
some r, then there is an index i o such that X [io] is in L,, and for every X [j] in
Lo, ..., L,_ 1 we have i o >j.

Proof Evident.

The following lemma summarizes the effect of Algorithm A4.2.

Lemma 4.6. Let Sr be the r-th sorted list output by Algorithm A4.2. Then the
following is true.

(1) Any name X . i in S, precedes every name Y[j] in S r.
(2) If X [i] and X [j], j > i, are in S r, then X [i] precedes X [j].
(3) Either E[r] or Fir] is the last element in St.

Proof A name of the form X . i depends only on names of the same form. Hence,
(l) and (2) are a consequence of Step 4 of the algorithm. (3) follows from the
construction of the corresponding operand list L~ by A4.1.

236 C.M. Hoffmann

Theorem 4.7. Let S be the schedule constructed by Algorithm A4.3 from the
sorted lists S O , S,, and denote by S" that part of S which follows the symbol
~. Then the following is true.

(1) If c~ is a qualified name in S and c~ .> fl, then fi is in S and precedes cc
(2) If fl is a qualified name in S other than E [r] and F Jr], r < n, then there is

a qualified name e in S such that e .> ft. Furthermore, if fl is in S r, then so is e.
(3) If ~ is a qualified name in S" and X [i3 is in def(c 0 but not in S", then

there are qualified names X [i + 1] X[j] in S such that X[j] is in S" and the
X [i + 1] X [3' - 1] all precede X [j].

Proof. (1) and (2) are immediate from the construction of operand lists by A4.1
and because A4.2 is a topological sort. For (3), if X[i] is not in S., then, by
repeated application of Lemma 4.4r there are names X [i + I] , . . . ,X [k] in
S o, ..., S,, such that X[k] is in S,, but the other names are not, and therefore
precede X [k] in S. Furthermore, there are names X [k] X [j] in S, (possibly
k =j) such that X [j + 1] is not in S,. Then X [j] must be in S". By Lemma 4.6
the X[k] X [j - 1] all precede X[j] in S. and hence in S. If, on the other
hand, X [i] is in S,, then the second part of the above argument completes the
proof.

The first two parts of Theorem 4.7 show that the schedule S contains exactly
those names on which the E[0], F[0] , ..., E[n], F[n] depend as well as those
names themselves. The sequence of these names is admissible in the sense of
Section 3. Furthermore, there are no " look-ahead" computations in the sense
that a name ~ is computed unless the current iteration has become necessary
and requires it. It is possible to design simpler algorithms which do a certain
amount of look-ahead computations, but then the domain of correctly trans-
lated source programs would be more restricted.

The third part of the theorem is used to prove that subsequent loop
iterations correctly evaluate subsequent components of the solution to the
source program.

Recall that the schedule S is the concatenation of the lists So, T O , S,_ ~,
T,_ 1, S', (%) , S", T,, where the T~ = ~ ~ i) and S. =S 'o S". Consequently, the
generated code is of the following structure:

begin t*-- 0;

Po; Re; . . . P n - 1 ; Rn-1; P';

repeat forever begin
P"; R,;

t< - - t+ l ;
Q;

end;
L: end;

where P~, R i P' and P" are the translations of S i, T~, S' and S", respectively. Note
that only P' and S' can be empty, and that the only transfers of control apart

Design and Correctness of a Compiler for a Non-Procedural Language 237

from the loop are in the Ri, all of which are " g o t o L" instructions. In the
following, the above symbols are used to denote the various parts of the object
program and the schedule.

We prove that, after executing an assignment to a qualified name ~ in the
compiled code, the new value v(~) of c~ is precisely ([h(~)[~)~, where r is the
current value of the variable t in the object code, a is the minimal solution of the
original program, and h is the homomorphism of Section 3.

Theorem 4.8. Let r be the value of t before executing the j-th assignment
statement ot the qualified name ~ in the object program. Then the new value of
c~ after the assignment is v(e)=(Jh(e)l~),.

Proof

Part I. The j-th assignment statement (to ~) is executed for the first time. By
Corollary 3.6, the theorem is true for all assignments except those in part Q of
the object code. For assignments in Q observe that they are of the form
X [i] ~ X [i + l] , that t has the value 1, and that there has been exactly one
assignment to X [i + I] which, furthermore, is not in Q, hence was performed
when t = 0.

Part 2. The j-th assignment is executed for the n-th time, n > 1. Because of the
control structure of the program, the assignment is in parts P", Q, or R,.

Case a. The assignment is in P", hence of the form ~*-def(e). It is verified that
the assignment satisfies the hypotheses of Theorem 3.5: Any name c~ in def(c~) is
either of the form Y. j , in which case it names a constant-valued term and has
the correct value because of Part 1 of the proof, or it of the form YD'] in which
case it was assigned last in Q or in P" preceding this statement, and, by
induction hypothesis, has the value ([h(fl)[~)r.

Case b. The assignment is in R,. This case is evident.

Case c. The assignment is in Q. This case is argued as in Part 1 of the proof.

Corollary 4.9. The code compiled by Algorithms A4.1 through A4.4 correctly
evaluates the simple goal R = E asa F which was input to A4.1.

Proof If there is no t such that ([Fl~)t is true and (]FJ~) is false for all s<t, then
(/Rio) r is undefined for all r, and the compiled code will loop forever.

If there is some such t, on the other hand, then the compiled code must
terminate and correctness follows from the previous theorem.

Note that because of the if ... t h e n ... e l s e ... it is possible that some
sequence components have been evaluated, which are not used in some particu-
lar iteration. Although this does not affect the correctness proof for simple goals,
it may introduce partial correctness in the presence of several goals, as worked
out next.

238 C.M. Hoffmann

5. Compilation of Programs

In general, programs may contain more than one variable defined by an a sa
expression. A suitable modification of the algorithms is in order, so that they
can be used to compile the more general case. We describe informally how this
may be done.

From the dependency graph G of a program a goal graph G' is constructed as
follows:

The nodes of G' are all those nodes X of G such that X is a goal and/or the
name result. If X and Y are names of nodes in G' and there is a path from X to
Y in G, then draw an edge from X to Y in G'.

The graph G' derived as above is the goal graph of the program. It is easy
to see that, because of the labelling conventions of the dependency graph, the
goal graph is acyclic.

The algorithm modifications are now as follows. Each goal not named result
is compiled into a procedure evaluating it. This procedure is to be called when
the value of the goal is referenced by some other computation. Because of
quiescence, each such procedure needs to be evaluated at most once, since the
computed value cannot change subsequently. Efficient code taking advantage of
this property is easily generated. The code for evaluating result then acts as main
program. Note, that procedures may call each other but that, because of the
acyclicity of the goal graph, there is no recursion.

In the construction of the operand lists by Algorithm A4.1 this involves the
following. Upon discovery of a dependency on a qualified name derived from a
goal X, the name is changed to X . 0, its dependencies are not analyzed any
further; code generation will generate a call to the appropriate procedure when
coding X-0 , and X is recorded as a goal to be compiled. Beginning with the
compilation of the name result, this method, in a top-down fashion, eventually
compiles all goals which are needed to evaluate result. In this way, the
compilation of programs can be reduced to the compilation of goals, one at a
time, using the methods of Section 4.

Theorem 5.1. The code n compiled for a goal R = E asa F in a subset program
evaluates R correctly, provided the correct values of each goal Y referenced in n
is available in Y. 0.

Proof (informal). Since the goal graph is acyclic, n cannot reference R. 0. If R is
a simple goal, the theorem follows from Corollary 4.9. For arbitrary goals, an
induction completes the proof.

Corollary 5.2 (partial compiler correctness). Let n be the program compiled for
the source program P in the subset, and let a be the solution of P. Then, if P
halts, it prints

((outputl~)o

and if (]output[~)0 =_L, then n does not halt.

Design and Correctness of a Compiler for a Non-Procedural Language 239

Proof If 7z halts, the corollary follows from the previous theorem. If the value of
output is undefined, then there is at least one goal which has this value, and the
corresponding loop in zc will not terminate.

Thus only partial correctness has been accomplished in the presence of more
than one a sa expression. Recall that in the dependency analysis of Algorithm
A4.l no distinction is made between dependencies due to strict operators, such
as, for example, the arithmetic operators, and dependencies due to the non-strict
operator i f - t h e n - e l s e - . As a consequence, this operator is strict in this
implementation. So it is possible, that a component of a sequence is evaluated
which, due to a particular value configuration of the particular iteration would
not be required. When such a component happens to reference a goal whose
value otherwise would not be needed, then partial correctness may result.

There are many situations in which this problem can be overcome by
suitable modifications of our approach. Unfortunately, there is no easy syntactic
definition of those situations, and a general solution appears intricate and
difficult. On the object code level it would involve, roughly speaking, a demand-
driven set of recursive co-routines.

6. Conclusions

As already indicated, the fundamental choice of this implementation has been to
view sequences as streams to be evaluated iteratively. This choice also estab-
lishes the analogy between Lucid and data-flow languages. The subset re-
striction expressed by the constraints on the dependency graph of Section 2
ensures that, in effect, no value component of a given stream requires the value
of a future component of the same stream. Thus it is possible to predict at
compile time the total amount of storage needed to evaluate each stream, which
is given by the number of qualified names generated. In light of this, and since a
relaxation of this constraint appears to force an implementation to become
more interpretive, the subset choice seems to be appropriate. It has not been
proved whether the expressive power of the subset is strictly smaller than that of
the full language, but such a proposition seems unlikely to hold.

Several other points emerge from this work. Primarily it is seen that i t is
possible to prove compilers correct for larger languages. Tools for this are
available, and, in many cases, the complexity of the task is not prohibitive.
Essential for this, however, is a formalized semantics of the source language
which for many procedural languages is not available. Also, and this was one of
the initial difficulties in compiling Lucid, for non-procedural languages it is
often difficult to factor the language into orthogonal constructs given presently
available machine architectures, so that both design and correctness proof of a
compiler can be modularized. In this paper, the problem was solved to some
extent once the key r61e of the asa operator was recognized.

Furthermore, it is felt that the style of the analysis performed by the compiler
is applicable to a broader class of languages. The influence which different

240 C.M. Hoffmann

m a c h i n e e n v i r o n m e n t s , e.g. n e t w o r k mach ines , m igh t have o n this analysis , a n d
h o w it c an be b r o a d e n e d to effect o p t i m i z i n g source t r a n s f o r m a t i o n s , seems
pa r t i cu l a r ly p r o m i s i n g for fu ture research.

The features of the source l anguage , finally, deserve a t t e n t i o n also. Since
Luc id is a fo rmal p ro o f system, the p r o o f of a Luc id p r o g r a m is essent ia l ly a
s equence of source t r a n s f o r m a t i o n s , which m a k e inc reas ing ly m o r e a p p a r e n t the
va r ious p roper t i e s imp l i ed by the o r ig ina l p r o g r a m . It is i n t e res t ing also, tha t a
l a n g u a g e m o t i v a t e d by p r o g r a m p r o v i n g shares essent ia l p roper t i e s wi th da ta -
flow l anguages which are m o t i v a t e d by the s tudy of para l le l i sm. T h u s the w o r k
shou ld s t imu la t e deeper insights .

Acknowledgements. Many stimulating discussions with E. Ashcroft, A. Blikle, and T. Maibaum
greatly helped shape this paper. A number of unusual Lucid programs which T. Cargill wrote
contributed to the original designs on which the experimental compiler is based. Thanks are also
due to the referees whose suggestions were valuable for improving this work.

References

1. Allen, F.E.: Program optimization. In: Annl. review of autom, programming (Halpern, Shaw,
eds.), Vol. 5, pp. 239-308. New York: Pergamon 1969

2. Ashcroft, E.A.: Program proving without tears. Proc, of the Intl. Symp. on Proving and
Improving Programs, pp. 99 111, Senans, France, July 1975

3. Ashcroft, E.A., Wadge, W.: Lucid, a non-procedural language with iteration. Comm. ACM 20,
7, 519-526 (1977)

4. Ashcroft, E.A., Wadge, W.: Lucid, a formal system for writing and proving programs. SIAM J.
Comput. 5, 336-354 (1976)

5. Ashcroft, E.A., Wadge, W.: Lucid, scope structures and defined functions. Tech. Rept. CS-76-22,
Dept. of Comp. Sci., University of Waterloo, Nov. 1976, 28 pp.

6. Cargill, T.A.: Deterministic operational semantics for Lucid. Tech. Rept. CS-76-19, Dept. of
Comp. Sci., University of Waterloo, June 1976, 35 pp.

7. Chirica, LM., Martin, D.F.: An approach to compiler correctness. Intl. Conf. on Reliable
Software, June 1976, pp. 96-103

8. Dennis, J.B.: First version of a data-flow language. Proj. MAC Memo 61, MIT, May 1975
9. Floyd, R.W.: Assigning meaning to programs, In: Math. aspects of comp. sci., Vol. 19, pp. 19-32.

Providence, R.I.:
10. Guttag, J.: Abstract data types and the development of data structures. Suppl, of Proc. of ACM

Conf. on Data, Salt Lake City, Utah, Mar. 1976, pp. 37-46
11. Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming language PASCAL. Acta

Informat. 2, 335-355 (1973)
12. Hoffmann, C.M.: Design and correctness proof of a compiler for Lucid. Tech. Rept. CS-76-20,

Dept. of Comp. Sci., Univ. of Waterloo, May 1976, 85 pp.
13. Kosinski, P.R.: A data-flow programming language. IBM Res. Rept. RC-4264, Mar. 1973,

134 pp.
14. London, R.L.: Correctness of two compilers for a LISP subset. A.I.Memo 151, Stanford Univ.,

1971
15. McCarthy, J., Painter, J.A.: Correctness of a compiler for arithmetic expressions. In: Math.

aspects of comp. sci., Vol. 19. Providence, R.I.: 1967
16. Miller, R.E., Cocke, J.: Configurable computers: A new class of general purpose machines. IBM

Res. Rept. RC-3897, June 1972, 14 pp.

Design and Correctness of a Compiler for a Non-Procedural Language 241

17. Milner, R., Weyrauch, R.: Proving compiler correctness in a mechanized logic. Machine
Intelligence, Vol. 7, pp. 51 71, Univ. of Edinburgh, 1973

18. Morris, F.L.: Advice on strucuring compilers and proving them correct. ACM Symp. on
Principles of Progr. Lang. Boston, 1973, pp. 144 152

19. Rumbaugh, J.E.: A parallel asynchronous architecture for data-flow languages. MIT Proj. MAC
Rept. TR-150, May 1975, 319 pp.

20. VanEmden, M.: Verification conditions as representation for programs. Res. Rept. CS-76-03,
Dept. of Comp. Sci., Univ. of Waterloo, Jan. 1976, 21 pp.

Received May 12, 1976

