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Summary 

We give algorithms to decide graph isomorphism in a subclass of graphs which we call 
cone graphs. A cone graph is an undirected graph for which there exists a vertex r which 
uniquely determines a breadth-first search (BFS) tree. Equivalently, all shortest paths 
from r to any other graph vertex are unique. 

Our algorithms may be used either nondeterministically or probabilistically. Used 
as probabilistic algorithms, they return always a correct answer, but with an expected 
running time only. 

I. Introduction 

It is not known whether graph isomorphism can be decided in nondeterministic sub- 

exponential time. A number of classes of graphs are known for which there exist polyno- 

mial time or subexponential time algorithms. These include Steiner graphs [6], planar 

graphs [2,3], interval graphs [5], cubic edge transitive graphs [ 4 ] ,  graphs of bounded 

genus ~9] , and graphs of bounded color multiplicity [I~. 

We give algorithms for a new class of graphs which we call cone graphs. These are 

undirected, connected graphs in which there exists a vertex r such that a breadth-first 

search from r uniquely partitions the graph edges into BFS tree edges and nontree edges. 

Cone graphs do not fall into any of the other graph classes mentioned above. 

The intuition behind this definition is that any automorphism which leaves r fixed 

must preserve the distance from r in the BFS tree, thus must respect the edge partition 
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into tree and nontree edges. We thus can determine all automorphisms by determining the 

automorphisms which leave r fixed, for each of the possible images of r. Note that the 

group of automorphisms which leave r fixed is a subgroup of the automorphism group of the 

BFS tree. 

We use a group theoretic approach which generalizes a technique discovered by Babai 

~], and overcomes one of its limitations. His method counts automorphisms which permute 

vertices only within blocks of a fixed vertex partition. The blocks must be of constant 

size. We overcome this restriction by a recursion which takes advantage of the structure 

of the BFS tree. If h denotes the height of the BFS tree, k the largest number of sons 

of any interior vertex, then we obtain an O((k!-n) h) algorithm. Note that h is O(log n) 

if the BFS tree satisfies minimal regularity conditions. 

Section 3 summarizes the counting technique. We develop the nondeterministic ver- 

sion of our algorithms in Section 4. In Section 5 we prove bounds on the running time 

of the probabilistic version. 

Certain cone graphs have much additional structure leading to stronger properties. 

It seems as if these properties should admit faster algorithms. We discuss this possibi- 

lity briefly in Section 6. 

2. Definitions and Terminology 

We consider undirected graphs G : (V,E), where V denotes the set of vertices of G, 

E the e d~_e~, i.e. unordered pairs (v,w) of vertices. Two graphs G = (V,E) and G'=(V', 

E') are isomorphic if there exists a bijective mapping p: V ~ V' such that (p(v),p(w)) 

is an edge of G' whenever (v,w) is an edge of G. An automorphism of G is a vertex per- 

mutation p such that (p(v),p(w)) is an edge of G whenever (v,w) is. The automorphisms of 

a graph form a group composition. A group A = (S,m) is a set S closed under an associa- 

tive binary operation ~, such that in the equation x~y = z any two elements of S deter- 

mine the third uniquely (in S). 

We study graph automorphisms because of their close relationship to the graph iso- 

morphism problem. We will see that the algorithms developed here for determining the 

automorphism group of a graph, with minor modifications, can also decide presence or ab- 

sence of an isomorphism between two graphs. 

We use elementary facts from group theory, such as can be understood from the first 

few chapters of Hall's book [8~ . 

The order of a group A : (S,w) is the number of elements in S, and is written |A~. 

B = (S',~) is a s ub~rou~ of A, B~A, if B is a group under x, and S' is a subset of S. 

Given a ~ub~u~ B of A, the ~uotient A:B is the set of equivalence classes of elements 

in A, with x equivalent y iff x-l,y is an element of B. It is elementary from group theo- 

ry that all equivalence classes are of equal size, and that B is one of them. For x not 

element of B, the set xmB is a left coset of A:B, and is the equivalence class of x. We 

make use of the following 

Theorem (Lagrange) If B is a subgroup of A, then the order of B divides the order 

of A. 

We solve the isomorphism problem for a specific class of graphs which we call cone 

~_~ph~. 

245 



Definition A graph G : (V,E) is a cone if there exists a vertex r in V such that a 

breadth-first search (BFS), beginning with r, results in a unique and balanced BFS tree. 

Once we have fixed r, we can assign to each vertex of G a rank i, with leaves assigned 

rank O, and assigning to fathers of vertices of rank i the rank i+I. 

Definition A graph G is a resula~ cone if it is a cone and all interior vertices of 

the BFS tree have the same number of sons. It is a semiresulaf cone if it is a cone and 

all interior vertices of the BFS tree of the same rank have the same number of sons. 

It is decidable in polynomial time whether a graph is a cone, a regular cone, or a 

semiregular cone. Note that we do not, with our definitions, constrain the subgraph con- 

sisting of nontree edges in any way. 

Observe that it suffices to solve the isomorphism problem for cone graphs subject to 

mapping roots into each other, for we can separately solve it for each of the root choices. 

3. Babai's Algorithm 

In [I], Babai gave a ~R algorithm for counting the number of automorphisms of a 

graph G = (V,E) subject to the following constraint. Partition the set of vertices V of 

G into blocks Bi, B2, .., Bp, such that each block consists of at most k vertices, where 

k is a constant independent of the size n of V. The automorphisms counted are precisely 

those which permute vertices within each partition only, that is, a vertex v in B i can be 

mapped only into other vertices in B i. 

Let A be the group of all such automorphisms of G. The key idea for determining A 

is this. Beginning with a group H 0 whose structure is known a priori, construct a tower 

of subgroups 

... H I ~ H 0 H m Hm_ I 

such that A = H. for a known value j, H consists of the identity alone, and m is bounded 
j m 

by a polynomial in n (the number of vertices of the graph). Membership in H i must be 

testable in polynomial time, and the size of the quotients Hi:Hi+ I must also be uniformly 

bounded by a polynomial in n. 

This can be done under the restrictions on the block size and the automorphisms. The 

algorithm guesses all (left) coset representatives for each of the Hi:Hi+ I . We verify 

that x and y, guessed as distinct coset representatives for Hi:Hi+l, indeed represent dis- 
-I 

tinct cosets by verifying that x and y are in H i but not in Hi+l, and that x y is not in 

Hi+l, i.e. x and y are not equivalent. 

Since the order of H 0 is known a priori, it follows from Lagrange's Theorem that we 

have found all coset representatives if and only if the sizes for each of the quotients, 

i.e. the number of distinct coset representatives for Hi:Hi+ I , plus I, multiply to the 

size of H O. The size of A will be the product of the sizes of Hi:Hi+ I , i~ j, since H m 

consists of the identity only. 

Note that the group A is generated by the coset representatives for the factors 

Hi:Hi+l, i ~ j. If we have a device for generating elements in H 0 with uniform distribu- 

tion, then the (this far nondeterministic) algorithm can be made a probabilisEic algorithm, 

with the coset representatives guessed randomly. We give the necessary details of this 

in Section 5. 
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4. A Nondeterministic Algorithm 

For the sake of a simple presentation, we develop our algorithms for regular cone 

graphs of degree 2, i.e. graphs for which there is a vertex r such that a BFS from r re- 

suits in a unique full binary tree which is balanced. 

Consider such a cone of height h. Inductively we determine a tower of height h of 

automorphism subgroups. Let A be the group of all automorphisms of G which leave the root 

r fixed. The group Ao(G) consist of the identity automorphism only. For I ~ i ~h, the 

group Ai(G) consists of all those automorphisms of G which permute only nodes within sub- 

trees of the BFS tree of G which are of height i. Observe that 

I : Ao(G) • Ai(G) • ... ~ Ah(G) : A 

Example Consider the graph below 

I 2 3 4 5 6 7 8 

ka/ k b /  k /  ~ /  

The following four leaf permutations (completed appropriately) make up Ai(G) : 

{(12)(34)} , ((12)(34)(56)(78)} , <(56)(78)} , ~}. The permutation {(13)(24)) can also be 

completed to an automorphism, but it requires permuting nodes a and b which are in the 

subtree rooted in c. This subtree is of height 2. Thus this automorphism is in A2(G) , 

but not in At(G). 

We determine A by determining the number of cosets a i of Ai(G) :Ai_i(G) , I ~ i~ h. 

The inductive basis of our recursive algorithm is determining a I. This we do using the 

method of Babai observing that the automorphisms in AI(G) respect a vertex partition in 

which two leaves which have the same (rank I) father are in the same block. Thus, each 

block contains either just two leaves or one interior vertex of G. 

Let U I be the group of all permutations which permute only nodes in subtrees of 

height I (i.e. leaves only), without necessarily respecting nontree edges. Clearly 

U I • Ai(G) , and ~Ui~ : 2 m, where m : (n+I)/4 is the number of vertices of rank I in G. 

Note that we can represent elements of U I as a 0/I assignment to the rank I vertices, I 

meaning that the two sons are to be exchanged, 0 that they stay fixed. 

Define subgraphs W..(G), I ~ i,j ~ m, such that W..(G) consists of the vertices of G 
13 ij 

plus all those nontree edges (v,w) where v is son of the i-th rank I vertex, w son of the 

j-th rank I vertex. Construct a sequence of graphs Xi(G) , 0 ~i ~ q=(~), where Xo(G) con- 

sists of the BF$ tree of G only, Xi(G) = Xo(G) u W11(G) , X2(G) = Xi(G) u W12(G) , ..., 

Xm(G) = Xm_i(G)u Wlm(G), Xm+i(G) = Xm(G) u W22(G) , ..., Xq(G) = Xq_i(G) u Wmm(G). 

Let Hi(G) = Ai(Xi(G)) be the 1-automorphism group of Xi(G). Observe that H i ~ Hi+l, 

and that Hq = Ai(G). Define groups Hq+1, .., Hq+ m by 

Hq+ i = {x in Hq I x does not permute the leaves I ... 2i]. 

Then H = I, i.e. consists of the identity alone. We determine the tower 
q+m 

I = Hq+ m ( ... • Hq=A I • ... < H I • Ho=U I 

From it we obtain a I = AI(G) , and a set of generators for A I . 

Lemma 4.1 ~Hi:Hi+1~ ~ 4. 
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The lemma is proved by analyzing the structure of coset representatives. Let Xi+1= 

X i u Wjp. If b and b' are in different cosets of Hi:Hi+l, they cannot permute the leaves 

numbered 2j, 2j+I, 2p, 2p+I in the same way. The argument for i~ q is similar. 

Theorem 4.2 AI(G) can be determined in O(m~e) nondeterministic steps, where e is 

the number of edges of G, m the number of vertices of rank I. 

The algorithm guesses a table of coset representatives for the quotients in the 

tower Hq+m...H O. Because |Ho| = 2 m, and by Lemma 4.1, we must guess O(m) coset represen- 

tatives in total. Testing that x represents a coset of Hi:Hi+ I means testing x in Hi, 

x not in Hi+ I and costs O(e) steps for applying x and verifying which edges are preserved. 

Similarly we test whether x and y represent different cosets. 

Definition Graphs G and G' are l-isomorphic if G' can be mapped onto G by a permu- 

tation in Ui, and vice versa. 

Note that G and G' must have BFS trees of equal height. Let G+G' denote the cone 

obtained by making G and G' the subtrees of the root of G+G'. Denote with Bi(G+G') those 

automorphisms of G+G' which possibly exchange G and G', but otherwise permute only nodes 

within subtrees of height I. We construct a tower of subgroups to determine B I by an ob- 

vious variant of the above algorithm, by introducing the W..(G) and W. (G') edges simul- z j  z j  
taneously. This effectively doubles the number of vertices in each partition block. Com- 

plete the resulting tower by requiring that the leaves I..2i and 2m+1..2m+2i remain 

fixed, except, possibly, being exchanged as blocks. Finally, the G and G' components 

are to remain fixed, thus arriving at a group consisting of the identity alone. The height 
m 

of this tower is now q+m+1, q=(2 ), and the group H O has the order 22m+I We can bound 

~Hi:Hi+1~ by 32, since we constrain at most four 0/I assignments plus the ability to ex- 

change G and G'. 

Having constructed the tower for Bi, observe that G and G' are l-isomorphic iff at 

least one of the generators of Bi(G+G') exchanges the G and G' components. Thus we obtain 

Corollar z 4.3 l-isomorphism can be tested in O(nEe) nondeterministic steps. 

For determining a2, a3, ... and the groups A2, A3, ... we have to generalize the 

notion of l-isomorphism. Define U i in exact analogy to U I as those permutations which 

are automorphisms of the BFS tree but do not permute nodes of rank i or higher. 

Definition G and G' are k-isomorphic if G' can be mapped onto G by a permutation in 

Uk, and vice versa. 

If G is a cone of height h, then h-isomorphism means isomorphism subject to mapping 

the root of G into the root of G' We wish to determine k-isomorphism from (k-1)-isomor- 

phism. Crucial for this is the following result. 

Theorem 4.4 Ak+i:A k = Ak+iUk:Uk 

It is clear that Ak+iU k is a group. Write Ak+1:Ak in terms of its left cosets 

Ak+ I = A k + biA k + ... + brA k 

Clearly b. must permute some vertices of rank k, but no vertex of rank greater k. Thus 
J 

bj is in Uk+ I but not in U k. We show that the bj are all distinct coset representatives 

Ak+iUk:U k • U k • means • and b. must permute of Assume then that bjTbi is in This that bj z 
the rank k vertices of G in the same way. Since b~Ib. is an automorphism, it must also 

3 z 
be in Ak, contrary to assumption. By a similar argument we can show that the representa- 

tives for distinct cosets of Ak+iUk:Uk also represent distinct cosets of Ak+i:A k. 

2 4 8  



Note that we can factor the coset representatives b. into a permutation of the sub- 
J 

trees rooted in the rank k vertices (in toto), followed by a permutation of vertices w~(~ 

these subtrees: 

b. : c.c: 
J J J 

i.e. cj • Uk+ I and c: GUk'j We can now interpret the c.g geometrically. Consider an assign- 

ment of 0 or I to the rank k+1 vertices of G, I specifying that the two subtrees rooted 

in the sons of the rank k+1 vertex are to be exchanged, 0 that they remain unexchanged. 

Such an assignment x is one of the c. permutations if f, after applying the permutation to 
J 

G, the resulting graph G' is k-isomorphic to G. We exploit this in 

Theorem ~.5 If k-isomorphism of G (regular cone of degree 2) can be tested in T(k,n) 

nondeterministic steps, where n is the number of vertices of G, then (k+1)-isomorphism 

can be tested in c.mNT(k,n) nondeterministic steps, where m is the number of vertices of 

rank k+1, and c is a constant independent of k and n. 

Observe that Uk+i:U k is a group of order 2 m which contains Ak+iUk:U k as subgroup. We 

construct a tower 

I = Hq+ m g ... • Hq=Ak+iUk:U k ~ Nq_ I < ... < H 0 = Uk+i:U k 

In analogy to the graphs X. and W. from above, we define 
J ip 

Wip = ~(v,w) ~ (v,w) a nontree edge, v a vertex in the subtree rooted in 

the i-th rank k+1 vertex, w vertex in the subtree rooted in 

the p-th rank k+1 vertex~. 

Define the graphs Xj now as before, using the new definition for Wip. Let H i be the group 

Ak+1(Xi)Uk:Uk, i gq. For i=q÷j we require that the assignment to the first j vertices of 

rank k+1 is identically O. 

It is clear that Lemma 4.1 holds for this new tower of subgroups, and that we can 

use the approach of guessing O(m) distinct coset representatives using the procedure for 

k-isomorphism to verify that distinct cosets are represented. This establishes the 

theorem. 

Corollary .4.6 (k+1)-isomorphism can be tested in c~m~T(k,n) nondeterministic steps, 

where m, n and T(k,n) are as above, and c is a constant independent of n and k. 

We test (k+1)-isomorphism by the obvious variant of the procedure for determining 

the (k+1)-automorphisms (modulo k-automorphism). Cf. Corollary 4.3. 

Corollary 4._~ If G and G' are two regular cone graphs of degree 2 with n vertices, 

then isomorphism of G and G' can be decided in O(n l°g(n)+c) steps, c some constant. 

We have to test log(n)-isomorphism for at most n choices of r for G' separately. 

The timing of the iog(n)-isomorphism procedure follows from Corollary 4.3 and Corollary 

4.6 by a simple induction. 

We now explain how these results generalize to regular cones of higher degree, semi- 

regular cones and cones in general. For regular cones of degree d, i.e. cones with a BFS 

tree in which every interior vertex ~as d sons the order of Uk+1:Uk is (d~) m , . , since we 

can permute the d descending subtrees of any rank k+1 vertex in d! ways. We must guess 
2 

at most (d!) distinct coset representatives for each quotient in the subgroup tower, ge- 

neralizing Lemma 4.1. The bound of Corollary 4.3 becomes now O(m~(d!)2ue). Since Theo- 

rem 4.4 is true for the general case, we use the same techniques for determining the 
2-h+c 

higher order automorphisms. This results in a procedure requiring O((n~d!) ) 

nondeterministic steps, where h is the height of G which is the logarithm of n base d, 

i.e. O(log(n)). 
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For semiregular cones we observe that Ak+i(G) = Ak(G) if all rank k+1 vertices have 

exactly one son. Thus, such plies can be skipped in the recursion, and the recursive 

depth is still O(log n), as in the case of regular cones. For general cones we can bound 

the recursion depth only with 0(~), arriving at the less attractive running time bound 

of O((n,d!)C''~+c'). 

5- The Probabilistic Variant 

Given a method to generate a set X of uniformly distributed independent random ele- 

ments of the groups HO, we can modify the algorithms of the previous section to be proba- 

bilistic. Since there is a method for verifying whether all coset representatives have 

been found, the modified algorithm always gives a correct answer, but only with an expec- 

ted running time. Note that the algorithm includes coin tossing, which intuitively serves 

to make wasteful computations improbable. The ideas on which the modifications are based 

are due largely to Babai ~I], and we only sketch them here. 

Let ~Xl, •., x~ be a uniformly distributed set of independent random elements of a 

group G which has a subgroup H. If ~bl, .., bs~ is a complete set of coset representatives 

for G:H, i.e. G = biH + ... + bsH , then we can derive a set ~YI' "'' Yr } of uniformly dis- 

tributed, independent random elements. This is done by considering the elements xi: if 

x I belongs to the j-th coset of G:H, i.e. b[Ix. G H, then define Yi = b-lx.. The resulting 
• 3 i j l 

set will have the desired properties. We can use this device to "push" a set ~xi~ of 

uniform random elements of G into a subgroup of G. Of course, this process can be iterated• 

Observe that the groups Uk+1:Uk, for fixed degree d, have an especially nice struc- 

ture, and that x @ Uk+1:Uk can be represented as vector of elements of Sd, the symmetric 

group of d elements. It is not hard to generate elements in S d with a uniform distribu- 

tion, thus we can easily do so for the elements of Uk+1:Uk. These are first used to de- 

termine the coset representatives of Ho:Hi, then pushed down to the H I level and used to 

determine coset representatives of Hi:H2, pushed to the H 2 level, and so on. 

The running time of this procedure must be estimated by determining the cost of ge- 

nerating a random element in HO, the cost for pushing it acrogs a subgroup level, and the 

number of elements to be generated so that the probability for having all coset represen- 

tatives for each of the quotients exceeds I/2. The details of this will be given in the 

full paper. For example, for regular cones of degree 2jO(n 31°g(n)+l°gl°g(n)+e) steps is 

the expected running time for deciding isomorphism. 

6 Further Remarks 

As Gary Miller observed [7], for regular cones of degree 2 the groups Uk+1:Uk form 

a vector space over the field of integers mod 2. It is known that At(G) can be found in 

O(n 2) deterministic steps as linear subspace of U I . The idea is to find, by inspecting 

nontree edges connecting leaves, a set of linear equations constraining the 0/I assign- 

ment to the rank I vertices of the graph. 

The procedure just sketched is of limited value in testing l-isomorphism because the 

converse of the following result is not true. 
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Theorem 6.1 If G is a regular cone of degree 2, x a O/I assignment to its rank I 

vertices specifying a leaf permutation, then AI(G) = Ai(Gx) , G x the graph obtained from 

G by performing x. 

Note also, that the group Bi(G+G')- , formed in Section 4 to test l-isomorphism is not 

a linear subspace of some vector space, for it is not Abelian. But there is a determi- 

nistic algorithm for deciding l-isomorphism of regular cone graphs of degree 2. For this 

we can derive a system of equalities and inequalities for the O/I assignment to the rank 

I vertices establishing an isomorphism from a suitably colored superposition of the two 

graphs. 

Theorem 6.2 l-isomorphism of a regular cone of degree 2 can be tested in O(n 2) de- 

terministic steps. 

Note that this result enables us to test membership in A2Ui:U I deterministically, 

but we were not able to find a basis for this subspace in efficient deterministic time 

bounds. 
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