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Equations provide a convenient notation for defining many computations, for example, for program-
ming language interpreters. This paper illustrates the usefulness of equational programs, describes
the problems involved in implementing equational programs, and investigates practical solutions to
those problems. The goal of the study is a system to automatically transform a set of equations into
an efficient program which exactly implements the logical meaning of the equations, This logical
meaning may be defined in terms of the traditional mathematical interpretation of equations, without
using advanced computing concepts.

Categories and Subject Descriptors: D.3.2 [Programming Languages): Language Classifications—
nonprocedural languages; D.3.4 [Programming Languages]: Processors—interpreters; F.3.1 [Log-
ics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs
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1. INTRODUCTION

- Computer scientists have spent a large amount of research effort developing the

semantics of programming languages. Although we understand how to implement
ALGOL-style programming languages efficiently, it seems to be very difficult to
say what the programs mean. The problem may come from choosing an imple-
mentation of a language before giving the semantics which define correctness of
the implementation. We wish to reverse the process by taking clean, simple,
intuitive semantics and then looking for correct, efficient implementations.

We suggest the following scenario as a good setting for the intuitive semantics
of computation. Qur scenario covers many but not all applications of computing
(e.g., real-time applications are not included).

A person is communicating with a machine. The person gives a sequence of
assertions followed by a question. The machine responds with an answer or
by never answering.

The problem of semantics is to define in a rigorous and understandable way what
it means for the machine’s response to be correct. A natural informal definition
of correctness is that any answer which the machine gives must be a logical
consequence of the person’s assertions, and that failure to give an answer must
mean that there is no answer which follows logically from the assertions. If the
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34 . C. M. Hoffmann and M. J. O'Donnell

language for giving assertions is capable of describing all the computable func-
tions, the undecidability of the halting problem prevents the machine from always
detecting those cases where there is no answer. In such cases the machine never
halts. The style of semantics based on logical consequences seems most appro-
priate to descriptive or applicative languages such as LISP, Lucid, PROLOG, and
the Red languages, although ALGOL.-like languages may aiso be defined in such
a way.

Semantics based on logical consequence is much simpler than many other
styles of programming language semantics. For example, the popular style of
denotational semantics based on work by Scott and Strachey requires that each
program be associated with a unique function from input values to output values
which is deemed to be the meaning of the program. But programs typically give
only partial information about the objects in the programmer’s mind which
inspired him to write the program. As a result, the mathematical objects used as
the meanings of programs in Scott-Strachey-style semantics are built within a :
fairly sophisticated kind of lattice theory and may bear little resemblance to the :
intuition. If a program is given as a set of assertions, then the logical consequences
of the program are all those additional assertions which must be true whenever
the assertions of the program are true. To be more precise, an equation A = B is
a logical consequence of a set E of equations iff, in every algebraic interpretation
for which every equation in E is true, A = B is also true (see [30, chap. 2] for a
more technical treatment). There is no need to determine which one of the many
models of the program assertions was really intended by the programmer; we
simply compute for him all the information we possibly can from what we are
given.

Theoretically, any logical language with a complete proof system could be used
to describe programs. The PROLOG language [26] uses the first-order predicate
calculus as a programming language. The implementation of PROLOG is based
on backtracking, a potentially costly strategy. The implementations which have
been published so far [9, 31, 36] violate the predicate calculus semantics in order
to gain efficiency in some cases. We use the more restricted language of equational
logic in order to achieve higher efficiency and avoid backtracking while satisfying
exactly the logical semantics. Goguen [16, p. 500] claims that “any reasonable
computational process can be specified purely equationally.” Whether or not this
thesis holds, equations are sufficiently powerful to describe a large number of
important computations. Theoretically, equations may be used to program all of
the computable functions. Section 3 gives several examples of practically useful
equational programs.

We specialize our computing scenario to equational languages:

The person gives a sequence of equations followed by a question, “What is
E?" for some expression E. The machine responds with an equation
“E = F,” where F is a simple expression.

technical definition of “simple expression.”

Our goal is a useful system which accepts equations as input and automatically
produces a program to perform the computations described by the equations.
This goal is analogous to the goal of formal parsing research, which tries to

Section 2 discusses the correctness of equational computations and gives a I
i
|
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Programming with Equations - 85

produce parsers automatically from context-free grammars. In order to achieve
reasonable efficiency, we must accept some restrictions on the form of equations
that may be given. Section 2 describes these restrictions.

Once such an equation processor is achieved, several natural applications
follow:

(1) We may write programs as sets of equations.

(2) We may define programming languages by equations, and the equation
processor will produce interpreters. For instance, the equations from [27],
with some corrections, define LISP. An equation processor would automati-
cally produce a LISP interpreter which exactly obeys those equations (existing
LISP interpreters usually do not). References {15, 19] discuss some advan-
tages of being faithful to the LISP equations.

(3} Equations describing data types may be used to automatically produce correct
implementations as suggested by [18, 35]. '

(4) Theorems of the form A = B may sometimes be proved by receiving the same
answer to the questions “What is A?” and “What is B?” Reference [25]
discusses such theorem provers.

2. TECHNICAL PRELIMINARIES

The theoretical foundations for computing with equations are treated in detail in
[30]. This section summarizes the crucial results. Equations containing variables
are intended as an abbreviation for the infinite set of equations obtained by all
possible substitutions of terms for variables. In some cases the substitutions are

 restricted to terms satisfying some syntactic condition, for example,

mult(div(X, Y), Y) = X where Y is a numeral other than 0.

Given an equational program D and a question “What is Eq?”, a computer
could merely enumerate proofs using D as a set of postulates until a theorem
Eo = Er appeared with Er sufficiently simple. Such a strategy is unacceptably
inefficient. In order to do better, we assume that each equation in IJ is ordered as

left-hand side = right-hand side

in such a way that the simple expressions which may be output are exactly those
containing no instances of left-hand sides of equations.

In such cases, a better interpreter might produce a sequence Eq, E,, E,, ... of
expressions by repeatedly replacing instances of left-hand sides by the correspond-
ing right-hand sides until an E; containing no left-hand sides is found. Sequences
produced by replacing left-hand sides of equations by right-hand sides are called
reduction sequences and are studied in {7, 10, 13, 23, 30, 32-34]. An instance of a
left-hand side is called a redex, and an expression with no redices is in normal
form. The crucial theoretical problem in computing reduction sequences is to
choose the next redex to replace. Bad choices might lead to an infinite sequence
even though a normal form exists, causing a failure to produce a logically entailed
answer. Worse, for some equation systems, there may be normal forms which
cannot be obtained by a sequence of reductions. If multiple normal forms exist
for the same input expression, we might worry about which one to choose.
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Reduction sequences are not the only way to approach computation from
equations. Nelson and Oppen [28, 29] use a congruence closure algorithm to find
the consequences of a set of equations without actually performing replacements.
Congruence closure was designed to test two given expressions for equality, rather
than to reduce a single expression to a simpler form. Also, congruence closure
handles only a finite set of equations without variables. In order to apply
congruence closure ideas to programming, we need a way to identify normal
forms within the algorithm and also a way to choose from a set of equations with
variables the finite set of instances of those equations which are actually needed.
Chew [12] has recently solved these problems at a theoretical level. The practical
impact of the solutions has not yet been considered; so we only discuss reduction
methods in this paper. .

In order to achieve well-behaved reduction sequences, we need some reasonable
additional restrictions on equations. These restrictions are significantly more
liberal than those of [7, 10, 13] and are essentially the same as those of [23, 32].

1. No variable may be repeated on the left-hand side of an equation. For
instance,

ifXthenYelse Y=Y

is prohibifed.
2. If two different left-hand sides match the same expression, then the corre-
sponding right-hand sides must be the same. So the pair of equations

g0, X)=0, gX1)=1

is prohibited, since g(0, 1) could be replaced by either 0 or 1.

3. When two (not necessarily different) left-hand sides match two different
parts of the same expression, the two parts must not overlap. For example, the
pair of equations

first(pred(X)) = pred, pred(suce(X)) = X
is prohibited, since the left-hand sides overlap in first(pred(succ(0})).
Reference [3¢] shows that, with these three restrictions,

(1) For each expression Eq there is at most one normal form E;, and E; may be
obtained by reducing E,.

(2) Any strategy for choosing which redex to reduce that guarantees that each
outermost redex in an expression is eventually reduced produces a normal
form E; whenever such a normal form exists.

We can use (2) above to prove that a machine is computing correctly from a set
of equations.

In all cases satisfying restrictions 1-3, we can generate correct computations by
reducing at each step all of the outermost redices in an expression. Such a
strategy may be wasteful. For example, in an expression of the form

if A then B else C

(with the usual equations for conditional), we should reduce A to either T or F
before investing any effort in B or C, one of which must be irrelevant. In many
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cases the sequential nature of sets of equations allows a single redex to be chosen
at each step so that no work is wasted. References [22, 23, 30, 34] treat the
theoretical issues involved in sequentiality. Reference [30] claims an optimality
result for some cases, but the proof has an error. Reference [23] has a slightly
weaker, but correct, result that no unnecessary reductions are performed. Refer-
ence [22, sec. 6] presents, without proof, an algorithm for detecting and exploiting
sequentiality. Certain systems of equations, such as those involving the parallel
OR equations

OR(T, X} =T, ORX, T)=T

cannot be made sequential in any reasonable sense, and optimality is practically
impossible to achieve. -

3. EXAMPLES OF EQUATIONAL PROGRAMS

With the examples developed in this section, we wish to give an intuitive feeling
for the flavor of equational programming and illustrate the computational process
entailed by equations. In Section 2 we claimed that a set of equations may specify
a computation. There may be many different strategies for computing with the
same set of equations. Using the approach of repeatedly replacing left-hand sides
of equations by corresponding right-hand sides, the step-by-step behavior of a
computation, as well as the result, is apparent from the equations. This transpar-
ency of the computation allows a user to think abstractly about the meanings of
equations or more concretely about the derivations which they imply.

QOur examples are drawn from several areas: list processing, abstract data types,
search tree insertion, and interpreters of programming languages. In Section 4 we
fix a precise notation for communicating an equational program to the machine.

3.1 List Processing
As a first example, consider list processing. Lists are objects defined as follows:

Definition 3.1

1. nrilis the empty list.
2. If X is an atomic object or a list and Y is a list, then cons(X, Y) is also a list
that contains X followed by everything in Y.

Lists are built using the single constructor cons and the special object nil over
some fixed domain of atomic objects.
It is customary to abbreviate lists. For example, the list

cons(A, cons(B, cons(C, nil)))

is often written (A, B, C) [27]. For our purposes it is useful to visualize lists as
trees of a certain shape. The list (A, B, C) is shown as a tree in Figure 1.

The head of a list is its first element; the fail is the list obtained by dropping
the head from the list. The function car returns the head of a list, and the
function cdr its tail. Head and tail are undefined for the empty list. The equational
program is

car{cons(X, Y)) = X; (L1}
cedr(cons(X, Y)) = Y. (1.2}
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cons

cor
A cons '
cons -
/cons / \
C nil X Y
Figure 1 Figure 2

Recall that, by 2 of Definition 3.1, a nonempty list is of the form cons(X, Y). So,
for example, by eq. (L1),

car{cons(A, cons(B, cons(C, nil)))) = A,

the head of the list (A, B, C). The computation entailed by eq. (L.1) may be
visualized as a tree transformation, as shown in Figure 2.
Two lists can be concatenated. Concatenating the empty list with any list Z

should result in the list Z:
concat(nil, Z} = Z. (L3)

Also, concatenating a nonempty list cons(X, Y), with head X and tail Y, with a
list Z should result in a new list whose head is X and whose tail is the
concatenation of Y and Z:

concat(cons(X, Y), Z) = cons(X, concat(Y, Z)). (1L4)

In our scenario, a user wishing to concatenate a list (A, B, C) and a list (D, E)
would first type, as assertions, eqs. (L3} and (L4) and then type the expression

concat{cons(A, cons(B, cons{C, nil))), cons(D, cons(E, nil))).

Note that the equational program can be used directly to specify the evaluation
of the defined function. For example, by using eqs. (1.3) and {L4), the machine
would transform the expression as follows:

concat{cons(A, cons(B, cons(C, nil}}}, cons(D, cons(E, nil)))
= cons(A, concat{cons(B, cons(C, nil)), cons(D, cons(E, nil))}))
= cons{A, cons(B, concat(cons(C, nil), cons(D, cons(E, nil)))))
= cons{A, cons(B, cons(C, concat(nil, cons(D, cons(E, ni)}))))
= cons{A, cons(B, cons(C, cons(D, cons(E, nil))))).

The first expression is input by the user. The subsequent expressions, except the
last, are derived by applying eq. (L4}, and the last line follows from the previous
one using eq. {L3). Note that the last expresston would be output as the final
answer, since no further transformations are entailed by egs. (L3} and (L4).

We observe that concatenation can be programmed by equations in a very
natural and clear manner, and that the computation unfolds through a recursive
use of the equations as term transformations.
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Finally, consider the operation of reversing a list. The reversal of the empty list
is again the empty list. Reversal of a list with head X and tail Y is a list resulting
from concatenating the reversal of Y with the single-element list (X):

reverse(nil) = nil; (L5)
reverse(cons(X, ‘.{)) = concat(reverse(Y), cons(X, nil)). (L6)

It should now be apparent that equations express list processing operations in
a very intuitive and clear way. The programming language LISP [27], which
permits a very restricted form of equational programs, derives its popularity from
this fact.-

3.2 Abstract Data T¥pes

Many authors have proposed the use of equations to specify abstract data types
and operations on them [16, 18]. They argue that equations are an especially
clear form for the presentation of abstract data types and allow for analysis by
rigorous mathematical techniques.

For an example of such an equational specification, consider a type set, with
union, member, and set operations. The operation “set” constructs a singleton
set containing its argument; “member” tests set membership; and “union” is as
expected. We assume further that set elements can be compared by a function eg
for which we do not give equations here, since further assumptions about the
nature of set elements would be required. T and F denote truth values, and the
function OR of truth values is needed. The equations are now

OR(T, X) =T,
OR(X, T} = T;
OR(F, F) = F;

member{X, empty) = F,
member(X, set(Y}) = eq(X, Y);
member(X, union(Y, Z)) = OR(member(X, Y), member(X, 7)).

Note that the functions set and union are not specified by any equation. Thus
they become constructors for abstractly representing sets. Sets thus could be
visualized as binary trees whose leaves, the set elements, descend from the
function symbol set.

It is straightforward to give equations for further operations such as intersection
and set difference.

3.3 Search Tree Insertion

Our next example is search tree insertion. Sperifically, we develop a program for
insertion into 2-3 trees, a special case of B-frees. We include this example to
iltustrate two important points:

1. Fairly large equational programs can be developed and understood with
relative ease.

2. The 2-3 tree example illuminates the need for the nonoverlapping restriction
on equations. Overlapping equations for 2-3 tree insertion cause interference
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X1 Xz X3 X4 X1 X2 X3 X4
(a) (b)

Figure 4

when several insertions are attempted in parallel. Nonoverlapping equations may
be used freely in parallel. Thus, our syntactic restrictions on equations are not
arbitrary but are connected with practical problems of parallel computation.

We believe that this example is an important application of equational program-
ming and not just a toy problem.

Informally, a 2-3 tree is a data structure with the following properties. In a 2-
3 tree, there are 2-nodes, with two descending subtrees, and 3-nodes, with three
descending subtrees. A 2-node is labeled with a single key “a,” such that the keys
labeling nodes in the left subtree are all smaller than a and the keys labeling
nodes in the right subtree are larger than a. A 3-node is labeled with two keys a
and b, where a < b, such that the keys in the left subtree are all smaller than a,
the keys in the middle subtree are greater than a and smaller than b, and the
keys in the right subtree are larger than b. A leaf is a node whose subtrees are
empty. A 2-3 tree is perfectly balanced; that is, the path lengths from the root to
the leaves of the tree are all equal. Figure 3 shows an example of a 2-3 tree.

Because the tree is maintained in balanced shape, a key lookup operation
requires at most O(log N} comparisons, where N is the number of keys stored in
the tree. In contrast, a different shape of tree could sharply increase this bound.

When inserting a new key K into a 2-3 tree, there are two cases to consider. If
the proper place for inserting K is a 2-node leaf, then we simply convert the leaf
to a 3-node. If the insertion should be made into a 3-node leaf, then we must
somehow restructure parts of the tree to make space for K. The restructuring
proceeds as follows. First, form a 4-node, that is, a node with three keys a, b, and
¢, and four subtrees, as shown in Figure 4a. Of course, if we begin with a leaf, then
the subtrees are all empty. Now split the 4-node into three 2-nodes as shown in
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Figure 4b. The key of the middle 2-node must be inserted into the node that is
the former parent of the 4-node, since, through the sphitting, we have increased -
the number of descendants. If the parent node is a 2-node, then it now becomes
a 3-node; otherwise, the splitting process is repeated on the parent level. If there
is no parent, that is, if we have just split the tree root, then no further work is
required. Note that without the insertion of the middle node into the parent we
would have destroyed the balance of the tree. '

First, we must choose a representation for 2-3 trees. Since there is a natural
correspondence between expressions and trees, we denote a 2-3 tree by an
expression

tree(X)

where X reflects the labeling and structure of the tree. A nonempty subtree with
a 2-node root is written .

t2(X1, L1, X2)

where X1 and X2 represent its left and right subtree and L1 is the label of the
node. Similarly,

t3(X1, L1, X2, L2, X3)

denotes a 3-node with labels L1 and L2 and subtrees X1, X2, and X3. The
constant e denotes the empty subtree.

Example 3.1 The 2-3 tree of Figure 3 is represented by

tree(t2(t2(t2(e, 1, e), 2, t3(e, 3, e, 4, e)), 5,
t3(t3(e, 11, ¢, 12, ¢), 14,
t2(e, 15, e), 18, t2(e, 20, e)))).

Now we program the insertion of a key K into a 2-3 tree tree(X). Insertion of
a key K proceeds by first locating the leaf in which to insert K. For this purpose,
we must compare K to the labels of a node. If the comparison detects equality,
then K is already in the tree and the insertion is done. Otherwise, the result of
the comparison determines a subtree into which K is inserted.

ms(K, tree(X)) = tree{ins(K, X)). (B1)
ins(K, t2(X, L, Y))
=if(K < L, t2(ins(K, X), L, Y),

if(K > L, t2(X, L, ins(K, Y)),
t2(X, L, Y))). (B2)

ins(K, t3(X1, L1, X2, L2, X3))
=if(OR(K = L1, K = L2), t3(X1, L1, X2, L2, X3),
if(K < L1, t3(ins(K, X1), L1, X2, L2, X3),
(K < L2, t3(X1, L1, ins(K, X2, L2, X3),

t3(X1, L1, x2, L2, ins(K, X3))))). (B3)
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 1, January 1982,
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Note that we have accounted for the possibility of K already occurring in the
tree.

If K does not occur in the tree, then we eventually obtain a subexpression
ins(K, e). At that point we have found the proper place of insertion. We handle
the actual key insertion into nodes with the expression put(X, X, Y}, which
denotes the 2-node which has to be inserted into the parent node.

ins(K, e) = put(e, K, e). (B4)

The key insertion into a 2-node is simple:
t2(put(X, K, Y}, L1, X2} = t3(X, K, Y, L1, X2); (B5)
t2(X1, L1, put(X, K, Y)) = t3(X1, L1, X, K, Y). (B6)

There are two equations because we must account for the relative order of keys.
Node splitting, which is necessary in case we insert into a 3-node, requires three
equations. A fourth equation accounts for having split the root node of the tree.

t3(put(X, K, Y), L1, X2, L.2, X3}

= put(t2(X, K, Y), L1, t2(X2, L2, X3)); (B7)
t3(X1, L1, put(X, K, Y}, L2, X3)

= put(t2(X1, L1, X), K, t2(Y, L2, X3)}; (B8)
t3(X1, L1, X2, L2, put(X, K, Y})

= put{t2(X1, L1, X2}, L2, t2(X, K, Y)); (B9)
tree{put(X, K, Y)) = tree(t2(X, K, Y)). (B10}

The ten equations (B1) through (B10) now constitute a program for inserting
a key into a 2-3 tree. Although the equations are very intuitive, they do not obey
the restrictions of Section 2. For example, eqs. (B2) and (B5) overlap in the
expression

tree(ins(3, t2(put(e, 2, e), 4, e})).

The problem arises conceptually because the described insertion proceeds in two
phases: a traversal from the tree root to the insertion point, followed by a reverse
traversal restructuring the nodes encountered up to the nearest 2-node {or up to
the root if no 2-node is found). The overlap in the above expression corresponds
to the competition between two insertions, one of which is in the restructuring
phase, when eq. (B5) applies, while the other is in the initial traversal stage, when
eq. (B2) applies. Since we may have several redices to choose from, we are dealing
essentially with a parallel environment. Thus overlapping equations may indicate
operations which may not be carried out in parallel.

The problem can be solved in the traditional manner of setting locks to prevent
the progress of subsequent insertions where they may interfere with previous
updates which are not completed. This is easily done by indicating a locked node
as t2'(...) instead of t2(...), and t3'(...) instead of t3(...). The equations for this
solution are given in Appendix A. Note that we force complete sequentiality of
insertions, because the root is locked in this solution.
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A different solution, which eliminates the need for locking the traversal path
altogether, has been proposed in [17]. The trick is to split the nodes encountered
on the downward traversal if they do not permit the insertion of another key
without splitting. Since a 3-node at the root of a 2-3 tree cannot be split on the
way down without destroying the tree’s balance {there is no third key available),
we must now deal with 2-3—4 trees, which also permit 4-nodes with three keys
L1, 1.2, and L3, represented by

(X1, L1, X2, 1.2, X3, L3, X4).

The equational program now becomes a little more complex, since we have an
additional node type. Nonetheless, 14 equations suffice. The transformations
required to eliminate a 4-node as the point of insertion are given by Figure 5.
Mirror-image cases have been omitted.

We give the equations based on the above representation in Appendix B. The
elegant representation of binary trees, with nodes colored either red or black,
proposed in [17] does not really simplify the equational program, since there still
are the same number of basic transformations to account for. Note that with this
program we may insert keys in parallel without interference problems.
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3.4 Interpreters for Programming Languages

Last, we program three interpreters using equations. In [22] we explored this
aspect of equational programming exclusively.

3.4.1 A Small Procedural Language. Consider an ALGOL-like language with
a null statement, an assignment statement, while loops, compounding of state-
ments, and statement sequencing. Programs contain the usual identifiers, which
may be assigned simple integer and Boolean values. The Boolean values are true
or false. We have a standard set of arithmetic and logical operators.

Because of the equational setting, programs in this language have to be
transcribed into program expressions. Informally, the null statement is repre-
sented by the constant empty, sequencing of statements is expressed by a list of
statements using as constructor a function next, while loops are written as
expressions of the form

while(boolean expression, program expression),

and assignments are
set(identifier name, expression}.

Statement compounding is implicit from the structure of the program expression.
Note that if statements can be simulated by while statements. Identifiers have
to be transcribed into nullary operations, which we uniformly denote by italicizing
the identifier name. Thus, the identifier “A” in the program corresponds to the
constant “A” in the corresponding program expression.

Example 3.2 The program fragment

while A > B do begin
A:=A-B;
while B > A do begin
T = A;
A=D5B;
B:=T,
end;
end;

would be transcribed into

next(while(gtr(4, B),
next(set{A, minus(A4, B}},
next{while(gtr(B, 4),

next(set(T, A),
next(set{A, B),
next(set(B, T,
empty)))),
empty))),

According to our scenario, the machine is first presented the equations defining
an interpreter for this language, and then it is given a program expression to be
interpreted.
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For simplicity, we assume that all data to be input are presented as part of the
program expression, in the form of initial assignments, and that, at the end of
“running” the program, all assigned values are printed. Because of assignment
statements, identifier values are recorded in a store. For efficiency, the store
could be organized as a search tree. Since we want to exclude unnecessary detail,
we omit the equations for looking up an identifier value and the equations for
updating (or newly inserting) an identifier name-value pair into the store.

The interpreter consists of three functions. The function

run{program expression, store)

interprets entire programs and is concerned with statement sequencing. The
function

do(statement, program expression, store)

is charged with interpreting an individual statement, in the context of a store.
The remaining program expression to be interpreted thereafter is the second
parameter of this function. There is a function

value(expression, store)

which evaluates an expreésion {arithmetic or Boolean) using a store to find out
identifier values. For the sake of brevity, we omit equations such as

value(plus(X, Y), T) = +(value(X, T), value(Y, T))

which make straightforward use of predefined functions, in this case +.
A program expression P to be interpreted is initially evaluated using an empty
store:

interpret(P) = run(P, tree(e)). (A1)

Statements are done one by one in sequence. If none remains, then we should
print the store from which the final identifier valuations are apparent:

run(next(S, P), T) = do(S, P, T); (A2)
run{empty, T) = T. (A3)

The empty statement has no effect:
do(empty, P, T) = run(P, T). (A4)

For an assignment, the appropriate identifier has to be updated with the expres-
sion value in the store:

do{set(V, E), P, T) = run(P, update(V, value(E, T), T)). (A5)

And, for a while loop, the controlling expression must be evaluated. If false, the
body is ignored; if true, it is executed followed by the same while loop (which, in
turn, is followed by the remaining program).

do(while(B, P), P1, T)
= if(value(B, T),
run{next(P, next(while(B, P}, P1)), T}, run(P1, T)). (A8B)
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Finally, because of compounding, the first argument of the do function is possibly
a program expression:

do(next(S, P), P1, T) = run(P], run(next(S, P), T)). {AT)

Note that, after interpreting the program expression “next(S, P),” the updated
store T1 is returned as the correct store for interpreting the remaining program
expression P1.

Expressions are evaluated by the function value(E, T). The value function is
computed by equations of the form

value(op(E1, E2), T) = systemop(value(E1, T},
value(E2, T))

and of the form

value(V, T) = lookup(V, T) where V is an identifier hame
value(C, T} = C where C is a constant.

These equations are straightforward and have been omitted. Their precise form
is clear from the syntax specifications in Section 4.

The two main operations on the store are lookup and update. They are
programmed by variants of the search tree equations developed in Section 3.3.
The variation comes from the fact that the store has to maintain name-value
pairs as node labels, with the name serving as the key for lookups. Note that only
the function “update” may result in new leaves being added to the store. Lookup
of a nonexistent identifier name would eventually result in a subexpression
lookup(V, €} occurring in the store. It is not necessary to add an equation for this
case. That way, the presence of the subexpression effectively blocks further
computation depending on its value. In such a case, the resulting output is a
partially interpreted program expression, along with a store containing subexpres-
sions which inform exactly which identifier(s) were referenced before first assign-
ing them. Because of the notational choices, this constitutes a meaningful error
message.

3.49 Pure LISP. Next, we sketch the development of an equational program
for a LISP interpreter. Our equations are very similar to the ones of [27].
Employing the function apply, however, enables us to do static scoping instead of
the dynamic scoping implicit in McCarthy’s equations. Static scoping agrees with
the lambda-calculus origins of LISP. Implementers of LISP have usually viewed
McCarthy’s dynamic scoping as an error and have achieved static scoping by the
FUNARG device.

Since LISP has been around for many years, it may seem pointless to provide
yet another LISP interpreter. There are several reasons why LISP is an important
example:

1. Past implementations of LISP have required special programming efforts,
often in assembly language. When we gain the ability to compute directly from
equations, it becomes possible to experiment with a wide variety of descriptive
programming languages merely by modifying the equations specifying such
languages. This ability is analogous to the ability of a compiler writer to experi-
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ment with different syntaxes by modifying a context-free grammar, rather than
by rewriting a hand-coded parser.

2. Ad hoc approaches to the implementation of languages such as LISP have
raised serious questions about the exact relationship of the resulting interpreters
to the original language specifications. LISP interpreters are generally not exact
realizations of McCarthy’s equations, and it is often difficult to discover exactly
what they do. An interpreter that is generated automatically from equations is
guaranteed to be exactly faithful to those equations, so that we always have an
accurate specification of the language. In particular, a LISP interpreter generated
by our methods must have the behavior of the lazy interpreters of [15, 19, 30],
unless the equations for car and cdr are specifically restricted to hold only when
both the left and right parts of an S-expression have been completely evaluated.

3. Although the main advantage of automatic interpreter generation from
equations is the ability to work with specifications rather than code, we believe
that a carefully polished equational interpreter can compete in efficiency with
hand-coded LISP interpreters. We have used an experimental equation processor
to generate a LISP interpreter; the results are reported in Section 6.

" The LISP language is based on S-expressions, built from an unlimited supply
of zeroary atomic symbols, including NIL, and a single binary symbol cons.
The familiar parenthesis notation (A; A; --- A,) is merely an abbreviation for
cons(Ai, cons(Az, --. cons(A,, NIL) -..)). Additional function symbols, such as
car, cdr, cond, and eval, are used to build M-expressions, a superset of the S-
expressions. Inputs to a LISP interpreter are M-expressions of the form eval(S,,
NIL) where S, is an S-expression (LISP program) to be evaluated and the second
argument provides an initially empty environment for the evaluation. Actual
LISP interpreters leave the eval implicit and accept S; alone. Qutputs from a
LISP interpreter are simply S-expressions.

We need to program the functions car, cdr, and cond (conditional). The
equations for car and cdr are as in Section 3.1. The equations for cond are

cond(T, X, Y) = X;
cond(F, X, Y) =Y.

Furthermore, we need a function peir in charge of pairing two lists, element by
element, used to match actual and formal parameters in function calls. For
efficiency, we have combined pair and append, saving an additional pass over the
parameter list. We call the combined pair and append function exiend.

extend(NIL, NIL, E) = E;
extend(cons(V, W), cons(X, Y), E)
= cons(cons(V, cons(X, NIL})}, extend(W, Y, E)).

Variable substitutions are recorded in an environment, traditionally a list of
variable-value pairs. As in [27], the pair containing X and Y is implemented as
list(X, Y}, that is, cons(X, cons(Y, NIL)). The paired parameter list is used to
extend the environment during the evaluation of the function body. Looking up
a variable binding is done by assoe, essentially a sequential lookup of the
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environment list:

assoc(X, Y) = cond{eq(car{car{Y}}, X),
car{cdr{car(Y))), assoc(X, cdr(Y))).

The function eq tests equality of atomic symbols and is predefined. There is a
function atorm which tests whether its argument is an atomic symbol. Its equa-
tional form is deferred until Section 4, where we explain the conventions necessary
to express when a function symbol is atomic.

The interpreter has to reduce expressions of the form

eval{S-expression, environment).

The evaluation of an S-expression which is a variable is just a lookup of its bound -
value in the environment.

eval(X, Z) = assoc(X, Z) where X is an atomic symbol.
All other S-expressions as the first argument of eval are of the form
(operator, operandlist)

and are evaluated by first evaluating the operator using a nested eval and then
applying it to the argument list. Note that, because of QUOTE, we must delay
the evaluation of the argument list.

eval(cons(X, Y), Z) = apply(eval(X, Z), Y, Z).
Application is much as in [27]. For example,
apply{eval(CAR, Z), cons(X, Y), Z1) = car(eval(X, Z1)),
where we must evaluate the argument X in its environment, and
apply(eval(QUOTE, Z), cons(X, Y), Z1) = X,

where no evaluation of X takes place because of QUOTE. Function definitions
are applied by

apply(eval(cons(LAMBDA, cons(V, cons(W, X)), 2), Y, Z1)
= eval(W, append(pair{V, evlis(Y, Z1)}, Z}).

V is the list of formal parameters, which are to be bound to the evaluated actual
parameters Y. Z1 is the calling environment. So the function body W must be
evaluated in an environment Z, resulting from Z1 by evaluation of the operator
part of the LAMBDA expression, which is augmented by the argument pairing.
A complete set of equations for LISP can be found in Section 4, along with all the
paraphernalia needed to transform the equations into a LISP interpreter.

3.4.3 Lucid. Lucidisa programming language designed by Ashcroft and Wadge
[2, 3] to mimic procedural computation with nonprocedural semantics. The
primitive operations involved are quite different in character from the LISP
primitives, and the first implementers of interpreters [11] and compilers [20]
encountered serious difficulties.

The basic objects in Lucid are intended to be infinite sequences representing
the histories of all values computed by a program. Traditional operations, such
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as OR and +, operate componentwise on sequences. The additional operations
first, next, asa (as soon as), latest, latestinv, and fby (followed by) are used to
manipulate the structure of sequences.

The following set of equations, adapted from [30], could be used to produce a
Lucid interpreter directly.
~(T)=F
~(F)=T
~{fby(W, X}) = fby(~ (first(W), ~ (X))
~ (latest{X)} = latest(~ (X})

OR(T,X) =T
ORX,T)=T
OR(F,F)=F

OR({fby(W, X), foy(Y, Z))

= fby(OR(first(W), first(Y)), OR(X, Z))
OR(fby(W, X), latest(Y})

= fby(OR(first(W), latest(Y)), OR(X, latest(Y}))
OR (latest(X), fby(Y, 7))

= fby(OR{latest({X), first{Y}}, OR(latest(X), Z))
OR(fby(W, X), F) = fby(W, X)
OR(F, fby(Y, Z)) = foy(Y, Z}
OR(latest(X), latest(Y)) = latest{(OR({X, Y})
OR(latest(X), F) = latest(X)
OR(F, latest(Y)) = latest(Y)

ifiT, Y, Z)=Y

if(F, Y,Z) =2 )

if(fby(W, X), Y, Z) = foy(if(first(W), Y, Z), if(X, Y, Z))
if(latest(X), Y, Z) = latest(if{X, Y, Z})

first(X)} = X where X in {T, F} U integer
first(fby(X, Y)) = first(X)
first{latest(X)) = latest(X)

next(¥X} = X where X in {T, F} U integer
next{fby(X, Y)) =Y
next{latest{X)} = iatest{X)

asa(X, Y) = if(first(Y), first(X), asa(next(X), next(Y)))

latestinv(X) = X where X in {T, F} U inieger
latestinv(fby(X, Y)) = latestinv(X)
latestinv(latest(X)) = X

+{fby(W, X), fby(Y, Z))
= fhy{+(first(W), first(Y}), +(X, Z)}
+{fby(W, X}, latest{Y))
= fby(+({first(W), latest(Y)), +(X, latest(Y))}
+{latest(X), fby(Y, Z))
= fby(+(latest(X), first(Y)), +{latest(X}, Z))
+(fby(W, X), Y} = fby(+{first(W), Y}, +(X, ¥)) where Y in integer
+(X, foy(Y, Z)) = thy(+(X, first(Y)), +(X, Z)) where X in integer
+(latest(X), latest(Y)) = latest(+(X, Y))
+(latest(X}, Y) = latest(+(X, Y)) where Y in integer
+(X, latest(Y)) = latest(+(X, Y)} where X in integer

The equations shown for addition extend the addition operation to act com-
ponentwise on complex structures. The usual equations for adding integer con-
stants, such as +(2, 3) = 5, are included implicitly. Any other standard binary
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operations on integers could be added just by repeating the above equations for
addition with the new operation symbol instead of the symbol +.

A Lucid program is itself a set of equations, with a special symbol OUTPUT
representing the result of the computation. To interpret a Lucid program, we
would merely concatenate the program with the equations above, then reduce
the expression OUTPUT to normal form.

4. AN EQUATIONAL PROGRAMMING LANGUAGE

Having illustrated the kinds of equational programs we wish to write, we now
give a specific syntax for equations and input expressions to be simplified. With
this syntax, we can fully implement our computing scenario of Section 1. It is not
our aim to suggest the neatest form of syntax we can invent. Rather, we wish to
identify the essential information which has to be communicated to the machine,
and to provide a means for doing so which has the degree of convenience
necessary to make it a practically useful programming language.

We need to define for the machine the set of allowable input expressions and
give the equational program. To specify the input expressions, it suffices to list
all meaningful function symbols along with the number of arguments they require,
that is, their arities. Often, large sets of standard symbols need to be included, for
example, integers, and we provide standard sets of symbols which may be
specified by a single name. For our purposés here we use the set integer of all
integer constants, the set boolean of the truth constants T and F, and the set
unspecified containing, as zeroary symbols, all alphanumeric strings not other-
wise accounted for. These sets are called primitive domains.

It is also useful to allow the specification of certain function symbols, called
standard functions, which have predefined meanings. These are the operation
symbols +, —, , div, and mod and the relational symbols eg, ne, i, gt, le, and ge.
These symbols have meaning on the primitive domain integer, and the relational
symbols are also defined on the domain unspecified.

The set of all allowed input expressions is then the set of terms composed in
the usual way from the specified symbols.

From a theoretical point of view, it is sufficient to give all equations directly,
for example,

car{cons(X, Y)) = X.
For practical purposes, however, standard functions, such as +, defined on

primitive domains should be computed by a program. Thus the set of equations
containing

+{0,00=0
+({0, 1} =
+({1,0) =
+{1,1)=2
etc.

is implicitly specified by a program which, given that a subexpression “+(X, Y)"
where X and Y are integer constants is to be reduced, replaces it with an integer
Z such that +(X, Y) = Z. In order to fit these pragmatics into the framework of
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term rewriting, one may wish to visualize the effect of these programs as specified
by schemata such as

+(X,Y) =Z where X, Y, Z in integer and Z is the sum of X and Y.

The predicate “Z is the sum of X and Y” is realized by a subroutine, whereas the
recognition of an instance of “+(X, Y) where X, Y in integer” is done by the
matching mechanism which also implements directly given equations. This view
would suggest the possibility of allowing the user to associate subroutines written
in some other programming language with equation schemata in order to imple-
ment more complicated predicates. This would be in analogy to the way in which
semantic routines are associated with the reduction steps of a parser as prescribed
by a context-free grammar. We wish to limit our device, however, to standard
functions alone in order to ensure simple semantics and to avoid tedious separate
correctness proofs of user-supplied subroutines.

Which ones of the predefined operation symbols should be included is com-
municated by

Primitives (list of operation symbols whose schemaia
should be included).

Sometimes a large number of equations must mention each expression in a
large class. For example, in LISP the equations for the function atom would have
to include a separate equation

atom(C) =T

for each integer constant and for each unspecified symbol C. Such sets of
equations are condensed by using a variable restricted to range over a union of
primitive domains and explicitly listed sets of zeroary symbols. Thus, we could
program the function “atom” of LISP by the following equations:

atom(cons(X, Y})) = F;
atom(X) =T where X in integer U boolean U unspecified
U {CONS, CAR, CDR, ATOM, EQ, QUOTE,
LABEL, LAMBDA, COND, NIL]}.

Equations are then presented using the notational conventions above by writing
them out and prefixing the set with the clause

For All {list of variable names).

Example 4.1 To illustrate the form of our programming language, we give
below the equational program for a LISP interpreter similar to that of [27]:

Symbols
QUOTE, LABEL, LAMBDA, ATOM, COND, CONS, CAR, CDR, EQ,

NIL: 0; boolean; unspecified;
cond, apply: 3; cons, eval, evlis, append, pair,
assoc, evcon: 2;
atorn, car, cdr: 1.
Primitives
eq.
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For ALV, W X, Y, Z 21
car{cons(X, Y)) = X;
cdr{cons(X, Y}} =7,
cond(T, X, ¥} = X;
cond(F, X, Y) =7,
atom({cons{X, Y)) = F;
atom(X) = T where X in boolean U unspecified
U {(QUOTE, EQ, LABEL, LAMBDA, NIL, ATOM, COND,
CONS, CAR, CDR, NIL};
eval(X, Z) = assoc{X, Z) where X in unspecified,
eval{cons(X, Y), Z) = apply(eval(X, Z), Y, Z);
apply(eval(COND, Z}), X, Z1) = eveon(evlis(X, Z1)};
apply(eval(CAR, Z), cons(X, Y}, Z1) = car(eval(X, Z1)};
apply(eval(CDR, Z), cons(X, Y), Z1} = cdr{eval(X, Z1)};
apply(eval(ATOM, Z), cons(X, Y), Z1) = atom(eval(X, Z1)};
apply(eval(QUOTE, Z), cons(X, Y), 21} = X;
apply(eval(EQ, Z), cons(W, cons(X, Y)}, 21)
= eqleval{W, Z1), eval(X, Z1));
apply(eval(CONS, Z}, cons(W, cons(X, Y]}, Z1)
= cons(eval{W, Z1), eval(X, Z1));
apply(apply(eval(LABEL, Z), cons(V, cons(W, XN, Z1), Y, 22)
= apply{eval(W, cons(cons(V, cons(cons(LABEL,
cons(V, cons(W, X})), NIL)), Z)), Y, Z1);
apply(apply(eval(LAMBDA, Z}, cons(V, cons(W, X}}, Z1}, Y, Z22)
= eval(W, append{pair(V, evlis(Y, Z1)}, Z)};
evlis{(NIL, Z) = NIL;
evlis(cons(X, Y), Z) = cons(eval(X, Z), evlis(Y, Z});
evcon(cons(cons(T, cons(X, Y)), Z)) = X,
evcon(cons(cons(F, cons(X, Y)), Z)) = evcon(Y);
append(NIL, Y} = Y;
append{cons(W, X), Y) = cons(W, append(X, Y));
pair(NIL, NIL) = NIL;
pair(cons(V, W}, cons{(X, Y}) = cons{cons(V, cons(X, NIL)), pair(W, Y));
assoc{X, Y) = cond(eq(car{car(Y}), X},
car(cdr{car(Y})),
assoc(X, edr(Y})).

From the point of view of human engineering, a graphical programming
language in which, for example, expressions are drawn as trees would be very
nice. This would be especially useful to those who, like us, have occasionally
unbalanced parentheses. We find trees representing expressions easier to com-
prehend than prefix notation. Besides the problem of parsing such drawings, the
same information has to be given as is given by the programming language
defined above.

Another possibility is to present expressions in a syntactic guise. For example,
we could write

ifTthen Xelse Y =X
instead of
if(T, X, Y) =X,

This is easily accomplished by employing known parsing techniques; see, for
example, [1].
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equations input expression
preprocessocr run-time program
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normafk form

Figure 6

Finally, we might wish to impose a type structure on expressions, so that
certain obviously meaningless expressions would be disallowed. Addition of type
checking to the initial parsing of expressions and/or to the computation of
reduction sequences is straightforward and involves no new techniques. We do
not pursue these issues here, since they do not involve questions essential for
implementing our computing scenario.

5. IMPLEMENTATION

In this section we describe how the equational programming language we have
defined in Section 4 can be implemented. Specifically, we describe an implemen-
tation in which the equations are used as reduction rules. A related implemen-
tation approach has been taken by Bjorner’s interpreter [8)] for Backus’ Red
languages [5]. Bjorner's interpreter implements reduction rules which are simpler
than our rules in that left-hand sides are always marked with special metasymbols
(as indicated in private correspondence with Bjorner). Thus, there is no need for
a sophisticated pattern matcher. Furthermore, Backus intends that an equation
f(X,Y,Z,...)=Eshould hold onily when all the arguments to f can be completely
reduced. Thus, Red language interpreters do innermost replacements first, while
we do outermost replacements in order to satisfy equations even when certain
subexpressions of the left-hand sides have no normal form.

The key technical problems in implementing equational computations as
reduction sequences are

(1) representing expressions,

(2) finding redices,

(3) choosing which redex to reduce at each step,
(4) performing a single reduction.

Since the same set of equations is likely to be used repeatedly with different
input expressions, it is worthwhile to divide the implementation into a pre-
processor, which does as much work as possible on the equations before seeing an
input expression, and a run-time program, which performs the actual reductions
of expressions to normal form. Figure 6 illustrates this organization.

The solutions to problems (2) and (4) affect both the preprocessor and the run-
time program, while those to (1) and (3} affect only the run-time program.
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5.1 Representing Expressions

Expressions are normally implemented as trees, using pointers to indicate the
parent—child relationship. Figure 7a shows the expression

h(f(g(a, b), g(a, b)), g(a, b))

represented by pointers in the usual way. By allowing equivalent subexpressions
{(such as the three instances of g(a, b) above) to be shared in a directed acyclic
graph, we save space. We save time as well if reductions are made in the shared
subexpression. These reductions would be applied once only, instead of being
applied to each of the many possible copies of the subexpression. Figure 7b shows
the same expression represented with sharing.

For some sets of equations we know how fo solve problems {2)-(4) with the
shared representations of expressions given above. For our most general redex
finding methods we need pointers from child to parent as well as parent to child.
So we link each child with all its parents (with sharing there could be many) in
a circular list. At most, this representation doubles the space used for pointers,
but with sharing the increase in space may be much less. Figure 7c shows

h{f{g(a, b}, gla, b)), gla, b))

again, with the g(a, b} subexpressions shared, represented with circular parent-
child pointers.

5.2 Finding Redices

The problem of finding redices in an expression is a critical one for efficient
implementation of equational computations. Essentially, the problem is one of
pattern matching in trees, with two special considerations. First, the patterns are
the left-hand sides of equations, which are known in advance by the preprocessor,
while the subject trees are the expressions to be reduced, which are known only
at run time. So, we want pattern matching techniques which do as much work as
possible with the patterns before seeing a subject. Second, each time a redex is
replaced, the subject tree changes slightly. Our pattern matching technique
should adapt incrementally to such local changes rather than rescanning the
whole subject tree.

The problem of tree pattern matching is treated in detail in [21]. We summarize
here Algorithm M of that paper, which seems to be the best available method for
most equational computations.

We associate with each node p of an expression a match state, which codes the
set of all patterns which match the subtree rooted at p. The match state for p can
be assigned from precomputed tables which are indexed by the symbol at p and
the match states of p’s children.

Initially, upon reading the expression Eq to be reduced to normal form, the
nodes representing Eo can be assigned proper match states in a preconditioning
step. Note that the match states now identify all redices in E;. A replacement
step changes the expression locally, and we now discuss how the match state
assignment is affected.

When a redex occurrence r is replaced with its corresponding right-hand side
r, the nodes representing the function symbols of r’ are new, and their match
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states have to be computed. Note that these nodes are either (1) leaves (thus the
match state can be computed immediately from the function symbol) or (2)
interior nodes whose children are either other nodes labeled with function
symbols of r’ or roots of subtrees instantiating the variable symbols of r’. Since
the match state assignments of the latter subtree nodes cannot be invalid—those
subtrees have not changed in any way—we can therefore compute the match
states of the new tree nodes proceeding from the leaves of ' to the root of r’.
Now observe that, because of the sets represented by match states, the only
nodes whose match states may have become invalid (through the replacement
step) are nodes on the path(s) from the root of r' to the root of the whole
expression. We find the nodes on these ancestor paths using the backpointers.
The algorithm therefore traverses the ancestor paths, breadth first, recomputing
the match state assignments. Note that a path does not have to be traversed
farther upward when the recomputed match state equals the previously assigned
one. Note also that, because of the sets represented, equality must occur after
traversing an ancestor path beyond the length of a longest path in any of the
patterns. Thus the update process is confined to a local area in the expression

graph.

5.3 Choosing Redices and Performing Reductions

In sequential systems, we may choose the next redex to replace by searching an
expression in the appropriate sequential order and choosing the first redex
encountered. For example, leftmost-outermost reductions may be found by a
depth-first search from left to right: a preorder traversal. Reference [22, app. C]
outlines an algorithm for detecting and exploiting sequentiality.

In inherently parallel systems of equations we keep a queue of all redices. At
each step the first redex in the queue is reduced, and any newly created redices
are added to the end of the queue. Some redices in the queue might be removed
from the expression before reaching the head. By keeping reference counts we
may detect and eliminate such redices. This queuing strategy may waste steps
reducing redices which are not outermost. We have not yet found a way to keep
track of only the outermost redices efficiently enough to justify such a technique.

Having chosen a redex to reduce, performing the reduction is straightforward.
The preprocessor provides for each equation a pointer representation of the right-
hand side and a list of the positions of variables. Another copy of this represen-
tation is made and linked into the expression in place of the chosen redex.
Variable positions are replaced by pointers to the appropriate expressions. If a
variable occurs more than once in a right-hand side, sharing occurs.

=

6. FIRST IMPLEMENTATION EXPERIENCE

We have implemented the equational programming language with the syntax
described in Section 4. This implementation was written by Giovanni Sacco in
PASCAL and contains 2700 lines of code for the preprocessor and 1200 lines for
the run-time system. The implementation is presently running on two machines,
the CDC 6600 at Purdue University and the Siemens 7.760 at the University of
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Kiel, West Germany. We measured the following speeds of the implementation:

Machine Reductions/second
CDC 6600 350
Siemens 7.760 780

This measurement was taken from the LISP interpreter of Example 4.2 (with
minor modifications) interpreting a LISP program for reversal of a list.

As a first experiment, we compared the standard LISP program for list reversal
with the equational program for list reversal of eqs. (L3)-(L6). For such a
program, the standard LISP interpreter goes through the same abstract steps as
the equation interpreter; so any difference in speed is the result of the respective
overheads of the manipulation of the recursion stack in the LISP interpreter and
the pattern matching and replacement steps in the equational interpreter. The
interpretation of the equational program was about six times as slow as the LISP
program compiled by the LISP compiler written at the University of Texas at
Austin. This is an encouraging result, considering that we compare the interpre-
tation of equations by a PASCAL program with compiled machine code.

As a second experiment, we compared the running time of the equational
program for LISP interpreting the list reversal program with the compiled version
of the same program. Here the results were disappointing, for the slowdown was
by a factor of 120.

The second experiment raises the question whether the reduction approach to
implementing equational programs can attain production-level efficiency. In light
of the first experiment, we have hope. The problem seems to be, not that
reduction is inefficient, but that the particular equations used to describe LISP
cause too many reductions. The following table shows the number of reductions
required by this interpreter to reverse lists of increasing length:

List length No. of reductions
2 283
4 788
8 2,578
16 9,278
32 35,158

We have begun to vary the LISP equations to see if a slightly different set of
LISP equations might yield a more efficient interpreter. By altering the environ-
ment structure we have already achieved an improvement of better than 20
percent. We estimate that with a more liberal pattern-matching algorithm a
further reduction of 25 percent is possible, but this requires modifications in the
run-time system which are not yet implemented. It is also likely that a relaxation
of the restrictions of Section 2 to allow certain harmless cases of overlap would
increase the efficiency of an equational LISP interpreter enough to make it
competitive with hand-coded implementations. This last possibility requires
further theoretical work to identify the harmless types of overlap.
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7. CONCLUSIONS

Equational programs can serve as a useful programming language in a diversity
of applications. The great strength of this approach to programming lies in the
simplicity of its semantics, which is accessible even to the nonspecialist. As our
examples show, equational programs are easy to develop and very intuitive.

We perceive certain limitations also. In particular, the nonoverlapping require-
ment seems overly restrictive. Results are needed to classify benign cases of
overlap which do not destroy uniqueness and termination properties of reduction
sequences. Such results would improve flexibility and reduce the number of
equations needed to define a particular computation. Presently there are straight-
forward methods to detect whether a set of equations satisfies the restrictions of
Section 2. It would be helpful to find algorithms to massage equations into the
correct form automatically. Reference [25] presents a partial algorithm which
sometimes succeeds in modifying equations to have the Church~Rosser property,
but this technique only applies when all reduction sequences are finite.

The possibility of compiling rather than interpreting equations is intriguing.
Given that equations are used as reduction rules, we might compile them into
routines for matching the specific left-hand sides involved and for making the
particular replacements given by the right-hand sides. This is the approach of
the PROLOG compiler [36]. We do not believe that this approach will lead to a
significant improvement in the speed with which reductions can be made. Con-
sidering the nature of the matching algorithms employed [21], and considering
the reduction speed achieved by the present system, it would be unlikely.

A more radical approach to compiling would attempt to implement an equa-
tional program in such a way that only the input-output behavior is preserved,
but the individual reduction steps are not followed. It is usually argued that the
increased flexibility can result in a significant increase in efficiency. We believe
that such an approach must heavily exploit semantic properties of the particular
language constructs involved, as in Hoffmann’s Lucid compiler [20]. In the case
of equational programming in general, the question of how to compile equations
without using replacements is entirely open.

APPENDIX A. SEQUENTIAL 2-3 TREE INSERTION
ins{K, tree(X)) = tree’(ins(¥, X)) {(SB1)

ins{K, t2(X1, 1.1, X2})

if(K < L1, t2'(ins(K, X1), L1, X2}

if(K > 1.1, t2'(X1, L1, ins(K, X2)},

unlock(t2(X1, L1, X2)}) (SB2)
lns(K t3(X1 L1, X2, L2, X3))
=if(OR(K = L1, K = L2), unleck(t3(X1, L1, X2, 1.2, X3)),
(K < L1, t3(ins(K, X1), L1, X2, L2, X3),
lf(K < L2, t3'(X1, L1, ins(K, X2) L2, X3),

t3'(X1, L1, X2, 1.2, ins(K, X3))))) (5B3)
ns(K, e) = put{e, K, e) {SB4)
t2'(put(X, K, Y), L1, X2) = unlock(t3(X, K, Y, L1, X2)) {SB5)
t2/(X1, L1, put(X, K, Y)) = unlock(t3(X1, L1, X, K, Y)) (SB6)
t3'(put(X, K, Y), L1, X2, L2, X3) = put{t2(X, K, Y), L1, t2(X2, 1.2, X3)) (SB7)
t3({X1, L1, put(X, K, Y), 1.2, X3) = put(t2(X1, L1, X}, K, t2(Y, L2, X3)) (SB8)
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t¥(X1, L1, X2, 1.2, put(X, K, Y)) = put(t2(X1, L1, X2), L2, t2(X, K, Y)}
tree’(put(X)) = tree(X)

t2'(unlock(X1), L1, X2) = unlock(t2(X1, L1, X2)}

t2°(X1, L1, unlock(X2}} = unlock(t2(X1, L1, X2})

t3"(unlock(X1), L1, X2, L2, X3) = unlock(t3(X1, L1, X2, L2, X3))
t3'(X1, L1, unlock(X2), 1.2, X3) = unlock({t3(X1, L1, X2, L2, X3))
t3'(X1, L1, X2, L2, unlock(X3}) = unlock(t3(X1, L1, X2, L2, X3)}
tree’(unlock(X)} = tree(X)

APPENDIX B. PARALLEL 2-3 TREE INSERTION

ins(K, tree(e)) = tree(t2(e, X, ¢e))
ins(K, tree(t2(X1, L1, X2))) = tree(ins(K, t2(X1, L1, X2}))
ins(K, tree(t3(X1, L1, X2, L2, X3))) = tree(ins(K, £3(X1, L], X2, X3)))
ins(K, tree(t4(X1, L1, X2, L2, X3, L3, X4)))
= tree{ins{K, t2(t2(X1, L1, X2),1.2, t2(X3, L3, X4))}
ins(K, t2(X1, L1, X2))
= if(K < LI, chk2(K, X1, X2, 11, 1),
if(K > L1, chk2(K, X2, X1, L1, 2},
t2(X1, L1, X2)))
chk2(K,e, Y, L, I) = if(f = 1, t3(e, K, e, L, €), t3(e, L, e, K, @))
chlk2(K, t2(X1, 11, X2), Y, L, I)
=if(I = 1, t2(ins{K, £2(X1, L1, X2)), L, Y},
t2(Y, L, ins(K, t2(X1, L1, X2)))
chk2(K, t3(X1, L1, X2, L2, X3), Y,L, I
= if(I = 1, t2(ins(K, t3(X1, L1, X2, L2, X3)}, L, Y),
t2(Y, L, ins(K, t3(X1, L1, X2, L2, X3})))
chkZ(K, t4(X1, L1, X2, 1.2, X3, L3, X4), Y, L, I}
=if(K = 1.2,
if(I = 1, t2{t4(X1, L1, X2, L2, X3, L3, X4), 1, Y),
t2(Y, L, t4(X1, L1, X2, L2, X3, L3, X4))),
if{K < L2,
if(T = 1, t3(ins(K, t2(X1, L1, X2}}, L2,
t2(X3, L3, X4), L, Y)
t3(Y, L, ins(K, t2(X1, L1, X2)), L2,
t2(X3, L3, X4))),
if(I = 1,t3(t2(X1, L1, X2}, LZ,
ins(K,t2(X3, L3, X4)}, L, Y)
t3(Y, L, t2(X1, L1, X2), L2,
ins(K, t2(X3, L3, X4)hH})

ins(K, t3(X1, L1, X2, L2, X3}
=if(OR(K = L1, K = L2), t3(X1, L1, X2, L2, X3),
if(K < L1, chk3(K, X1, X2, X3, L1, L2, 1),
if{K < 1.2, chk3(K, X2, X1, X3, L1, L2, 2),
chk3(K, X3, X1, X2, 11, L2, 3))))
chk3(K,e, X, Y, L, M, I}
=if{l =1, td(e, K, e, L., e, M, &),
if(I=2 td(e, L, e, K, e, M, e),
td(e, L, e, M, e, K, e)))
chk3(K, t2(X1, L1, X2), X, Y, L, M, I}
=if{I = 1, t3(ins(K, t2(X1, L1, X2)), L, X, M, Y),
if{f = 2, t3(X, L, ins(K, t2(X1, L1, X2}), M, Y),
t3(X, L, Y, M, ins(K, t2(X1, L1, X2)))))
chk3(K, t3(X1, L1, X2, L2, X3), X, Y, L, M, I)
=if(I = 1, t3(ins(K, t3(X1, L1, X2, L2, X3)), L, X, M, Y),
ifI = 2, t3(X, L, ins(K, t3(X1, L1, X2, L2, X3)), M, Y),
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(SB9)
(SB10)

(8B11)
(SB12)
(SB13)
(SB14)
(SB15)
(SB16)

(PB1)
(PB2}
(PB3)

(PB4)

(PBb)

(PB6)

(PB7)

(PB8)

(PBY)

(PB10)

(PB11)

(PB12)
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t3(X, L, Y, M, ins(K, t3(X1, L1, X2, L2, X3)))
I} {PB13}
chk3(K, t4(X1, L1, X2, L2, X3, L3, X4), X, Y, LM, I)
=if(K = L2,
if(I = 1,t3(t4(X1, L1, X2, L2, X3, L3, X4),
L X, MY)
ifl = 2,t3(X, L, t4(X1, L1, X2, L2, X3, L3, X4}, M, Y),
t3(X, L, Y, M,
#4(X1, L1, X2, 1.2, X3, L3, X4))
0
if(K < 1.2,
if(I = 1,t4Gns(K, t2(X1, L1, X2)), L2,
t2(X3, L3, X4), L, X, M, Y),
if(I = 2, t4(X, L, ins(K, t2(X1, L1, X2)),
L2, t2(X3, L3, X4), M, Y),
t4(X, L, Y, M, ins(K, t2(X1, L1, X2)),
L2, t2(X3, L3, X4))
B, :
(I = 1, t4(t2(X1, 1.1, X2), L2,
ins(K, t2(X3, L3, X4)),
L X MY),
if(I = 2, t4(X, L, t2(X1, L1, X2}, L2,
ins(K, t2(X3, L3, X4}), M, Y),
t4(X, L, Y, M, t2(X1, L1, X2), L2,
ins(K, t2(X3, L3, X4)))
S ) (PB14)

Computation using egs. (PB5)-(PB14) proceeds as follows. Upon encounter of
a 2-node or a 3-node, the node is locked (via chk2 or chk3), and the proper subtree
in which the insertion has to be made is located. The subtree becomes the second
parameter of the function chk2 or chk3. If the root of that subtree is a 4-node,
then this node plus the locked parent is restructured according to the transfor-
mations of Figure 5. After restructuring, the parent node is released. If the root
of the subtree is a 3-node or a 2-node, then no restructuring is needed, and the
parent node is released. If the subtree is empty, then the locked parent node is a
leaf, and we insert the key. The equations also account for the possibility that the
key to be inserted is in the tree already. Using these equations, we can only
attempt inserting a key into a 2-node or a 3-node; thus no upward traversal is
needed, and insertions can be done in parallel.
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