SOFTWARE—TPRACTICE AND EXPERIENCE, VOL. 15(12), 1185-1204 {(DECEMBER 1935)

Implementation of an Interpreter for Abstract
Equations

CHRISTOFPH M. HOFFMANN
Department of Computer Sciences, Purdue University, West Lafavetre, IN 47907, U.5.A.

AND

MICHAEL J. O'DONNELL AND ROBERT I. STRANDH

Electrical Engineering and Computer Science Department, The Johns Hopkins University,
Baltimare, MD 21218, U.S.A.

SUMMARY

This paper summarizes e project whose goal is the implementation of a useful interpreter for
absiract equations that is absolutely faithful to the logical semantics of equations. The interpreter
was first distributed to Berkeley UNEX VAX sites in May 1983. The main novelties of the
interpreter are strict adherence to semantics based on logical consequences, ‘lazy’ (outermost)
evaluation applied uniformly, an implemenlation based on table-driven pattern malching, wilh
no run-time penalty for large sets of equalions, and sirict separation of syntactic and semantic
processing, so that different syntaxes may be used for different problems.

KEY WORDS ecquation reduction nermal form lazy evaluation pauern-matching lopgic programming
interpreler

INTRODUCTION

To illustrate how to write programs in the form of equations, we start by giving an
example of a program to reverse a list of clements.

Example 1
Symbols
cons:2;
nil:0;
rev:1;
catrev:2.

Foralll h, t;
rev(l] = catrev(l;()1;

catrev([(};l] = I;
catrev[ih . t);l] = catrev [t;(h . I}].

0038-0644/85/121185-208$02.00 Received 6 February 1984
@© 1985 by John Wiley & Sons, Ltd. Revised {7 December 1984 and 26 March 1985

1186 C. M. HOFFMAN, M. J. O'DONNELL AND R. 1. STRANDH

The first part is a declaration of the symbols used in the program, together with their
arities, i.e. the number of parameters they take. The symbol cons is the normal LISP list
constructor, and takes two arguments. Another familiar symbol is nif, with no
arguments. We do not distinguish here between a constant and a function with no
arguments. Notice that neither cons nor nil is explicitly mentioned in the equations.
However, the notation () is another way of writing nil, and (h . t} stands for cons(h;tl.
Starting the second part of the program is a declaration of all the variables used in the
program. Here, we use L,h and t for list, head and tail, respectively. Finally, the actual
equattons are given. The method we use to reverse the list is to call an auxiliary function
(catrev) with two parameters. This new function takes elements from the beginning of
its first argument and conses them to its sccond argument (initially the empty list).
When the first argument is empty, the second is the reversed list.

This program is input to an equation preprocessor. The preprocessor creates an
executable program, the interpreter. For instance, suppose we want to reverse the list
{a b c). We would start the interpreter and give it the input rev({a b c}]. It would print
{c b a) and exit. The input and output are examples of terms. A term is processed by
replacing in it any instance of a left-hand side of an equation by the corresponding
right-hand side. This process is called reduction, and the term (c b &) is said to be in
normal form, since it cannot be further reduced. In reducing the term rev[{a b cjl, we
first find that it matches the left-hand side of the first equation, with I=({a b ¢}, so we
substitute the right-hand side of the term and obtain catrevl{a b ¢];()]. This matches the
third equation, with h=a and t=(b c). We substitute the right-hand side of the third
equation, giving a new term, catrevlib c);{a}l. Again this matches the third equation, this
time with h=b and t=(c). We substitute catrev[(c).{b a)l. Another match with the third
equation occurs and catrevl{};{c b a)] is substituted. This matches the second equation
with I={c b a}, so we substitute {¢ b a). Recall that {c b a) is short for the less readable
conslc;conslb;consta;nillll. Since there is no equation that matches this term, it is in
normal form, and is printed. In the example above, we used LISP syntax. The equation
processor permits other syntaxes as described below.

The prime motivation for the equation interpreter project was to develop a program-
ming language whose semantics can be described completely in terms of simple
mathematical concepts. We chose equations as the notation for the project because E=F
has

(1) an obvious mathematical interpretation — E and F are different names for the

same thing

(2) a natural and simple computational interpretation — replace E by F whenever

possible

(3) well-documented theoretical results on the equivalence of these two interpreta-.

tions — Church—Rosser or confluence theorems.
A program for the equation interpreter is a list of symbols to be used, followed by a list of
equations invoking those symbols and variables. The meaning of a program is
completely described by the following.

Definition 1

A term containing no instance of a left-hand side of an equation is in normal form. The
term {c b a) in the example above is in normal form.
An interpreter for a set of equations is a program that, given an input term E, produces

AN INTERPRETER FOR ABSTRACT EQUATIONS 1187

aterm F, in normal form, such that E=F is a logical consequence of the equations, if such
an F exists. If no such F exists, the interpreter must not produce output. In the example
above rev[(a b c}] = {c b a) is a logical consequence of the equations, and {c b a) is in
normal form. A BNF syntax for the input to the preprocessor is shown in Figure 1. The
structure of the non-terminal symbol (term) depends on the syntax, and is described
below. Symbol descriptions indicate one or more symbols in the language to be defined,
and give their arities. Intuitively, symbols of arity 0 are the constants of the language,
and symbols of higher arity are the operators. Syntactically, symbols and symbol classes

< program > =Symbols < aymbol deacription list>. For all < variable list >>: < equation list>.
< symbol description list > 1= < symbol desenption>; . . . ; <aymbol description>>
< aymbol deacription > = <aymbof lisl >:<anly> | include < aymbol claas list>
< symbol class {it > = Coymbol class™>, ..., <symbol elnsn >
< aymbol class > :—atomic_symbols | integer_numerals |truth_values
<aymbol list > 1= Zaymbol >, . . ., <symbol >
< aymbol > 1= <siring of nonb!‘ai:tk alphanumeric characlers, starting with alphabelic >
< amly > n—<number>>
< varieble fat> = <varighle >, . . ., <varable >
< variable > := < stnng of norblank alphanumeric characiers, starting with alphabelic >
< equation lisi > 1= <egualion >; . . . < cquafion >
< equatton 3> = <lerm > =< lerm > 1
< term > = < term > where < quafificaiion > end where |
inelude < equation class fist>>

< gualification > 1= < qualificetion tem st >
< quolification item list > 1= < gualification flem >, . .., < qualification item >
< qualification item > = <vanable > is < qualified term> | <venable list> are <qualified lerm >
< qunlified term > =in <symbol class> |

<term > |

< guafliffed term > where < gualification > end where |

either < qualified term l5¢> end or

< qualifted term list > := < quelified term >or . . . or < qualified term >

< equation claas list> =< cqualion claas > |
< equalion elass > <equalion claas [l >

< equation clans> ==addint | subint | multint | divint | modint |
leasint | equint | equatom

Figure 1.

1188 C. M. HOFFMAN, M. J. O'DONNELL AND R. I. STRANDH

are identifiers. A symbol class indicates the inclusion of a predefined class of symbols.
The classes available are atomic_symbols, integer_numerals and truth_values.- The
predefined symbol classes correspond to the basic data types in other programming
languages such as Pascal. More complex data types can be built by using constructors, as
in LISP. Symbols that have been explicitly declared in the Symbols section are called
ltteral symbols, 1o distinguish them from members of the predefined classes.

Variables are identifiers, just like symbols: Equation classes are identifiers indicating
the inclusion of a large number of predefined equations. The equation classes include
the defining equations for the standard arithmetic operations. For example, addition is
defined by add[1;1] =2, add[1;2] =3, etc. Of course, such equations are not stored
explicitly, but their effect is produced by efficient machine operations. Note that
equation classes do not provide a mechanism for users to define their own equations for
later inclusion, but a way to include the equational equivalent of library routines.

Quahfications, as defined above, restrict the ranges of variables to terms of given
forms. Normally, variables range over all terms in the language described by the
Symbols section. Different syntaxes for terms may be chosen to suit different problems.
The module that takes a term and translates it to its internal abstract syntax is separate
from the semantic processor, and may be replaced by another, possibly supphied by the
user. The same goes for the unparser, i.e. the module that takes the internal form of a
term and converts it to readable format. In this paper, we use two different term
syntaxes: the standard mathematical notation in which function application is denoted
f{a,b}, and LISP notation, in which such application is f[a;b], and parentheses are used to
abbreviate uses of the special binary operator cons to build lists and trees. A lambda
notation is also available, and it is straightforward to add, for example, yvace and Jex
programs for other syntaxes as needed. The standard syntax modules are written this
way, but the users can also write their own syntax {rom scratch.

The following example illustrates all of the constructs described above, using LISP
notation. A colon initiates a comment line.

Example 2
Symbols

: List constructors
cons: 2; nil: O;

: Standard arithmetic operators
add: 2;

. nonils[x] is the list containing all of the non-nil
elements of the list x

nonils: 1;

: leafcount[x] is the number of leaves in the tree x
leafcount: 1;

include atomic_symbols, integer_numerals.

P

AN INTERPRETER FOR ARSTRACT EQUATIONS 1189

Forall x, y, =, rem:

nonils [()% = {);

nontls [({) . rem)] =nomis|rem];

nonils [{x . rem)] = (x . nowmls[rem])
where x is either (y . 2)
or in atomic_symbols
end or
end where;

leafcount [()] =0;
feafcount [(x . y)] =add[leafcornt[x]; leafcount[v]];
include addint.

Notice that the symbols cons, nil and add must be declared. They appear implicitly in the
equations. include addint is semantically cquivalent to the set of equations defining
addition of integer numerals.

In order for the reduction strategies used by the cquation interpreter to be correct
according to the logical-consequence semantics, some restrictions must be placed on the
equations. At present, 5 restrictions are enforced.

L.

No variable may be repeated on the left side of an equation. For instance

iftx. v. vl =y

is prohibited, because of the 2 instances of y on the left side. The interpreter does
not look at the values of the variables. It just keeps their values in order for the
right-hand side to be able to refer to them. Allowing repeated variable names on
the left-hand side requires tests for equality that would consume large amounts of
time, or even fail to halt.

Every variable appearing on the right side of an equation must also appear on the
left. For instance, Hx} = y is prohibited. The idea is that a variable on the
right-hand side of an equation refers to some part of the term matched by the
lefr-hand side. Note that variables on the left need rot appcear on the right, as in
left{pair(x,y)) =x.

. Two different left sides may not match the same expression. So the pair of

equations

g{0,x) =0; glx,1}=1

is prohibited. If we were to reducc the term g(0,1), which matches both cquations,
the result would be 0 if we decide to match the first equation, and 1 il we match the
sccond.

When two (not necessarily different) left-hand sides match two different parts of
the same expression, the two parts must not overlap. For example, the pair of
cquations

fiestipredi{x)} = predfunc; predisuccix)} =x

is prohibited, since the left-hand sides overlap in first{pred{succ(0)). Again the result
of reducing the term would give different results, depending on which equation we
decide to use.

It must be possible, in a left-to-right preorder traversal of any term, to identify an
instance of a left-hand side without traversing any part of the term below that
instance. [For example, the pair of equations

1190 C. M. HOFFMAN, M. J. O'DONNELL AND R. I. STRANDH

figix,al,y} =0; alb,c} =1

is prohibited, since after scanning f{g is is impossible to decide whether to look at

the first argument to g in hopes of matching the b in the second equation, or to skip

it and try to match the first equation.
Note that in restriction 5, to ‘look at’ means to possibly have to reduce. Suppose we feed
the equations the term f(g(h{a), kib}l.c). In the first equation x would match h(a), so if we
decide to match that one, we procced to try to find a as the second argument to g. We
find kib). We must then reduce k(b}, since it does not match. Suppose kib) reduces to ¢.
Then we do not match the first equation, but possibly the second one. In this case, we
must go back and reduce hia), hoping that it will reduce to b, so that we can match the
second equation. We want to avoid going back in this manner. If we instead decide to
match the second one, we have to reduce hia). Suppose that hia) eventually after a long
computation reduces to d. Then we have done the computation unnecessarily. It may
not even be relevant if kib} reduces to a, given that the first equation matches. Even
worse, h(a) may involve an infinite computation that could have been avoided.

Sets of equations satisfying 1-4 above are called regular. The property described in
(5) is strong left-sequentiality. Violations of strong left-sequentiality may often be
avoided by reordering the arguments to a function. Strong left-sequentiality is treated in
more detail below.

Restrictions 1-4 guarantee that normal forms are unique, and that outermost
evaluation will find all normal forms. Restriction 5, which technically subsumes the
other four, will be removed in a later version with an implementation of parallcl
evaluation, Restriction 3 will also be relaxed to allow different left-hand sides to match
when the corresponding right-hand sides agree, as in or{True,x} =True, or{x,True} =True.

HISTORY OF THE PROJECT

The logical foundations of the project, results concerning uniquenss of normal forms
and correct orders of evaluation, come from Reference 1. From 1978 to 1981, work
focused on theoretical development of algorithms and the building of prototype
systems.? The system was rewritten for distribution in 1982-1983, and an earlier version
was ported to Kiel, Germany,for two projects involving alternative approaches to
pattern-matching in the interpreter, and use of the interpreter to define interpreters and
compilers for Pascal. Current work is directed towards several aspects of equational
processing, such as incremental preprocessing techniques to improve preprocessing time
and allow for modular constructs, compiling equations into efficient machine code, and
table compression techniques to improve preprocessing time and size of the interpreter/
machine program.

Among other non- procedural programmmg languages, the one most similar in flavour
to the equation interpreter is Prolog.’ Prolog accepts Horn clauses in the first-order
predicate calculus as programs. All existing Prolog interpreters and compilers are
incomplete — they sometimes fail to produce output even though an output follows
logically from the program. This is a consequence of Prolog’s computationally very
expensive semantics: a complete 1mplementation of Prolog requires a breadth-first
evaluation of the proof tree, but this would require an unacceptable amount of space.
Prolog implementors have therefore chosen to evaluate the proof tree depth-first, with
backtracking. This evaluation strategy introduces a procedural element absent in the
strict semantics, and 1s responsible for the implementations’ failure to produce logically

s mem e o

AN INTERPRETER FOR ABSTRACT EQUATIONS 1191

entatled output in certain cases. Since equation semantics is computationally stmpler
than Prolog semantics, our equation interpreter can produce all of the logically entailed
outputs without making unacceptable resource demands. Some Prolog programs rely on
the fact that the interpreter backtracks. These programs are of course easier to express in
a backtracking Prolog system, than in equations. To program such a computation with
equations involves programming the backtracking explicitly.

Another language processor similar syntactically to the equation interpreter is
HOPE,* which also uses equations as programs. HOPE has more stringent restrictions
on equations than our interpreter. For example, HOPE distinguishes function and
constructor symbols and prohibits equations in which subexpressions involve function
symbols. This restriction greatly simplifies the pattern matching required to find
instances of equation left-hand sides. We believe that in view of our pattern matching
algorithms such a simplification does not lead to a significant performance improvement.
HOPE uses conventional innermost evaluation, instead of lazy evaluation, for all
operators except the conditional and cons. So, it is possible to write cquations, involving
constructors other than cons, for which HOPE will fail to find a logically entailed normal
form because it follows an irrelevant infinite evaluation of a subterm not included in the
final output.

There have been hybrid approaches to equational programming in which the
equations are assigned a priority, e.g. References 5 and 6. If several reductions are
possible at the same position, then the one whose equation has the highest priority 1s
chosen. Such programming systems do not have a neat, well-understood semantics, but
their proponents consider them easy to use and of practical importance. If one were to
compare this approach to ours, it should be remembered that we wish to obtain ‘a
practically useful programming system witout sacrificing semantic rigour.

SEMANTIC STRICTNESS AND ITS CONSEQUENCES

The first and foremost design decision was to be absolutely faithful to the logical
semantics. The only type of failure tolerated in the process of reducing a term to normal
form is exhaustion of the available space resources. The main consequence of this
decision was the necessity of implementing lazy evaluation uniformly. Lazy, or demand
driven, evaluation means that an expression gets evaluated only if its value is needed.
Suppose we have a list, |, of integers, say 1= (1 2 3 4 5). Suppose [urther that we want
to evaluate the expression head[add1tolist|l]], where head is the function that gives back
the first element of the list given as its argument, and addTtolist is a function that adds
one to every clement of a list. In an ordinary programming language, we would first
evaluate the arguments to the function head, 1.c. we would add 1 to every element of I.
Then we would feed the value, in this case 2 3 4 5 6), to the function head, giving the
value 2. Note how we first added one to all the elements of the list, and then threw away
4 out of 5 of the elements. The cquational program would look something like this:

headl{h . t)] = h;

add1tolist [{})1 = ();
add1tolist {{h . t)] = (add1 {hl . add1tolist [t));

Sl M e

1192 €. M. HOFFMAN, M. J. O'DONNELL AND R. I. STRANDH

The evaluation of the expression head [add1tolist(l]] would proceed as follows

head[additolistl{1 2 3 4 5|
head[(add1{1] . add1tolist{iZ 3 4 5]}
add1[1]

2

Note how the additions to the rest of the list were never performed. The example is a
little artificial, since most programmers would not write code like that; they would write
add1i[head[l]] instead. However, if we want to form a list of the first n elements of
add1tolist[l], where n and | are both unknown at compile time, the example is more realistic.
The difference is even more dramatic if | happens to be infinite. This would not be possible
In most programming languages, but in the equation interpreter it makes sense. For
instance

listof ones[] ={1 . listofones(])

is an infinite list of the number one, repeated over and over. A more useful example
would be a list of all the primes or all the Fibonacci numbers. In a normal programming
language, if you tried to evaluate the expression firstn[3;listofones(]] hoping to get the
first three elements of the infinite list of ones, 1.e. (1 1 1}, the arpuments would be
evaluated first, giving an infinite computation. With lazy evaluation, there is no
problem. The expression listofones[], would be evaluated to (1 1 1 . listofones[]), at
which point firstn has the list it needs in order to take the first three elements and form a
list out of. Firstn would give back the result {1 1 1) as desired.

Nearly all programming languages use lazy evaluation to evaluate conditionals, and
like treatment of the LISP function cons has been proposed in References 4, 7 and 8, but
we know of no previous language processor that implements lazy evaluation in all cases.
Kahn and MacQueen® have a Pascal-like dataflow language in which all communication
between coroutines is performed in a demand-driven fashion equivalent to lazy
evaluation, but expressions inside routines are evaluated conventionally. Recent corres-
pondence indicates that J. Schwartz now has a lazy FIOPE interpreter. Lazy cvaluation
has advantages for the user, allowing straightforward use of a certain type of parallel
programming. References 7 and 8 demonstrate some of these advantages in the case of
LISP. As described below, lazy evaluation automnatically performs one of the design
tasks in dynamic programming that otherwise must be programmed explicitly.

Another important consequence of semantic strictness involves the inclusion of
efficient machine operations as primitives. Take, for example, integer addition. In
principle, addition may be defined from zero and successor by equations such as

add(0,x} =x
add(s{y).x) =sladdly.x))

These cquations produce an addition that is scmantically correct, but unacceptably
inefficient. The conventional course is to invoke the machine’s addition operation to
evaluate add(i,j) whenever i and j are integer numerals. The latter course is efficient, but
cannot be explained very well by logical consequence semantics because of the

AN INTERFRETER FOR ARSTRACT EQUATIONS 1193

possibility of overflow. In the equation interpreter, we may combine the good points of
both approaches. What the machine addition really daes is to implement the large, but
finite, set of equations add(1,1) =2, add(1.2) =3, etc., representing those additions not
causing overflow. Those machine-implemented equations can be augmented by equa-
tions for addition in base maxint, where maxint is the largest integer represented by the
machine. Thus, the user has the benefit of the precise semantics of integer addition on
arbitrarily large numbers, and the efficiency of machine addition in the usual case where
the numbers are not large. Because of lazy evaluation and the pattern-matching
techniques described below, single-precision arithmetic does not have to pay the
overhead of checking whether the inputs are single precision. In fact, only the normal
amount of work — to determine if the expression can be reduced or not — is required.

The current version of the equation interpreter allows use of machine-implemented
single-precision arithmetic, and leaves to the user the definition of multiprecision
arithmetic. Operations that, in conventional programs, would cause overflow, are simply
not performed. This means that even the user who has not written multiprecision
equations sees correct, but possibly less helpful, output. The output of something like
fibonacciln], may be add[a.b}, where the sum of a and b gives the correct [\ibonacci
number, but the addition cannot be performed, since it would cause arithmetic
overflow. Of course, the equations for arithmetic and other natural primitives should be
written once and saved to aveid duplication of effort. The facility to do so seems to be a
special case of the general need for facilities to structure and combine equational
definitions, discussed below. We have chosen to await results in the more general area,
rather than to perform an ad hoc extension for primitive operations.

THE IMPORTANCE OF PATTERN-MATCHING ALGORITHMS

In order for programming with equations to be a real improvement over more
conventional programming styles, it is important to be able to write many cquations,
preferably between small terms, rather than a few huge ones. If all of the information
about a function f is given by a single equation, f(x) =T, then the term T is essentially just
a lazy LISP program for f. In order for equational programming to serve a purpose not
alrcady served by LISP, one must have an interpreter capable of processing many
equations giving different pieces of the defimitions of functions. "I'he implementation
must not penalize programs for using a large number of equations by sequential
checking of the left-hand sides of equations to sce which ones apply. In order to compete
in performance with conventional LISP interpreters, the process of finding the next
subexpression to replace must have a cost comparable to the cost of manipulating the
recursion stack in LISP.

Instead of sequential checking, we preprocess the equations and produce tables to
drive the reduction. These tables describe state transitions during a traversal of the term
that indicate immediately when an instance of an equation left-hand side is found, and
tell which equation is involved. The overhead of each traversal step at run-time is only a
table look-up.

For multiple-pattern string matching, the Aho—Corasick generalization of the Knuth—
Morris—Pratt algorithm'® !! solves a problem closely analogous to ours. Extension of
these string-matching techniques to terms (equivalently, trees) was treated separately in
Reference 12, In the last year of the project, we discovered that the restrictions already

1194 C. M. HOFFMAN, M.]J. O'DONNELL AND R, I. STRANDH

imposed upon equations for other reasons allow for a much simpler extension of string
matching techniques. The following subsection assumes an understanding of the
Aho—Corasick algorithm.

A specialized pattern-matching algorithm

The current version of the equation interpreter is lgft-sequential. That is, a term to be
reduced is traversed to the left first, and any left-hand side that is found is replaced
before the traversal continues. Such a strategy cannot deal with certain equations, such
as the parallel or equations:

or (True, x} = True; orix, True} = True,

The mterpreter preprocessor detects and rejects such equations. For left-sequential
equations, a special and simple pattern-matching algorithm may be used. Left-
sequentiality is a special case of strong sequentiality of Huet and Lévy,'? which has an
algorithm that is theoretically more powerful than ours, but it is more complex, and its
space efficiency is not known.

Tree patterns are flattened into preorvder strings, omitting variables. The Aho—
Corasick algorithm is used to produce a finite automaton recognizing those strings. Each
state in the automaton is annotated with a description of the tree moves needed to get to
the next symbol in the string, or with the pattern that is matched, if the end of the string
has been reached. Such descriptions need only give the number of edges (=0) to travel
upwards toward the root, and the left-right number of the edge to follow downwards.
For example, the patterns (equation left-hand sides) f{f(a,x},g{a,y)) and gib,x), with
corresponding tree representations in Figure 2, generate the strings ffaga and gb, and the
automaton given in Figure 3. Note the directives in the nodes to go up or down in the
tree representing the term. Suppose that we start with the ferm f{f(a,c).g{b.d)). The tree
representation for this term is shown in Figure 4. To see if our input string matches a
pattern we follow the sequence of steps shown in Figure 5. Initially (Figure 5(a)) we
start with the automaton in state 0 and look at the root node of the expression. The root
node is labelled f. We therefore take the f branch in the automaton leading to state
number 1. The directions in state number 1 say ‘d1’ for ‘go down the first branch’. So we
move the pointer in our expression tree down the first (the left) branch. This gives the
new situation of Figure 5(b). Again we see an f in the expression tree. So we take the {
branch of the automaton, leading to state number 2, where we are instructed to go down
the first branch, giving the situation of Figure 5(c). Here we are looking at an a so we
move to state number 3, where we are told to go up 2 steps and then down the second
branch. So we go up to the root and then down the right branch, giving the situation
shown in Figure 5(d). Here we see a g so we move to state number 4 and go down the
first (left) branch of the expression tree. We now have the situation of Figure 5(e). We
are now looking at a b, but there is no arc labelled b from state 4. So we have to follow
the failure arc, leading to state number 6 and retry with our b input. This time there is
an arc labelled b to state number 7, where we find that we have matched pattern number
2 (Figure 5(f}), namely gib.x), with d for the variable x.

If we instead have the slightly different pair of patterns f(f{a.x),gla,y)) and gix,b), we
cannot build an automaton. To sec this possibility, notice that the strings generated are
the same as in the example above, namely ffaga and gb. The automaton would look like

AN INTERPRETER FOR ABSTRACT EQUATIONS 1195

(F) (9)

l’
(£ (@) &
? ?
@ @
Figure 2.
2u
gl ~—~ dI d2 dl ml

———————= forword adge
——————— +« fallure wdge
b failure edges nol shown ¢l lead bo aloke O
lu means mave up one level in the troe
dl means move down 1o child number [
ml meons o malch of palern number |

Figure 3.

(1)
(1] O,
@ © ©®

Figure 4.

Figure 6. The only difference from the example above is the annotation of the states.
Notice how states 4 and 6, which are connected by a failure arc, have conflicting
directions for moving in the expression tree. This conflict cannot be aliowed. Such
conflicts occur precisely when there exist preorder flattened strings of the forms afy and
BB, such that the annotations on the last symbol of B in the two strings are different.
These differences are discovered directly by attempts to reassign state information in the
automaton when « is the empty string, and by comparing states at opposite ends of
failure edges when a is not empty. When v and 3 are not empty, the conflicting
annotations are both tree moves, and indicate a violation of restriction (5) given in the
first section. When one of v, 8 is the empty string, the corresponding annotation reports
a match, and indicates a violation of restriction (3) or (4). In the example above, there is
a conflict witha =f f a, B =g,y =a, 8§ =b. That is, after scanning f f a g, the first
pattern directs the traversal down edge number 1, and the second pattern directs the
traversal down edge number 2. This conflict is discovered because there is a failure arc
between states with these two annotations.

1196 C. M. HOFFMAN, M. J. O'DONNELL AND R. 1. STRANDH

Frguere 5.

AN INTERFRETER FOR ARSTRACT EQUATIONS 1197

Migure 6.

The restrictions imposed on equations by the pattern-matching strategy above may be
justified in a fashion similar to the justification of determininstic parsing strategics. That
18, we show that the algorithm succeeds (generates no conflicts) on every set of equations
that is left-sequential according to a rcasonable abstract definition of sequentiality. 'I'he
details can be found in References 14 and 15.

Interpreting non-sequential sets of equations

In the future, an improved version of the equation interpreter should eliminate the
restriction to strongly left-sequential systems, and allow definitions of construets such as
the parallel or. The pattern-matching algorithm may be extended to handle non-
sequential systems by annotating cach state in the automaton with a non-empty set of
tree moves. When more than one move is specified, parallel processes must be initiated
to follow the different possibilities. This approach keeps the degree of parallelism low
(but not always the lowest possible), which is desirable on sequential hardware. To
maintain acceptable performance, these processes must be able to wait for results
produced by other such processes when two or more of them wander into the same
region (otherwise work will be duplicated), and a process must be killed whenever a
second process creates a potential reduction containing the first one (otherwise wasted
work may be done on a subterm that has been discarded). Solutions to these problems are
well known in principle, but careful study is required to implement them with a small
time and space overhead. Even when such an imglementation 1s accomplished,
sequential algorithms such as ours and Huet and Lévy's'® will be uscful because they can
avoid the overhead of parallel methods.

SEPARATION OF SYNTACTIC PROCESSING FROM SEMAN'T'ICS

One of the main problems in making the equation interpreter useful to a human
programmer is the syntax of terms, whether they occur in equations or as input to the
system. Prefix notation is the standard of reference in mathematics, but is almost never
convenient for a specific application. We discovered this problem with a prototype
interpreter, when we tried to write equations defining LISP. Most of our time was spent
wrestling with complex expressions for simple lists, such as
cons{1.cons(2,cons(3,cons{4.ni)))), for {1 2 3 4), instead of thinking about semantic
issues. Unfortunately, different domains of computation seem to have developed
different notations, and we know of none that is universally acceptable. So, we decided

1198 C. M. HOFFMAN, M.]. O'DONNELL AND R. I. STRANDH

to communiate with the equation interpreter through a number of different front ends,
stored in a standard library. Users may, of course, use their own if the ones provided do
not suffice. It is important to be able to use the same syntactic definitions of terms to
parse terms in equations, and to parse terms before evaluation.

A way to separate syntax and semantics thoroughly is to use an explicit uniform
internal form for the abstract syntax of terms and equations, into which special syntaxes
are translated. This internal syntax is string-based, which greatly simplifies porting the
system to a new machine. These front ends may be written in any programming
language. Structure editors are the ideal front ends in our view, but at present we use lex
and yacc to produce parsers. Of course, for consistency the interpreter also produces its
output in internal form, and the output is then sent to one of a library of pretty-printers
for display. Current parsing technology makes it easy to use the same grammar for terms
in parsing both preprocessor and intepreter input, but the (much easier) pretty-printers
are written separately.

Several advantages result from the discipline of using an explicit intermediate form
between text produced by the user and semantic processing by the system. First is the
complete separation of syntactic and semantic modules. Conventional usc of grammars
to generate parsers requires a complex interface between the parser and the semantic
processor, specialized to the particular parser generator. We require no internal
connection whatsoéver between syntactic and semantic processors. Secondly, once 2
context-free parser has done its task, there may remain issues, such as checking symbol
declarations against use, that are purely syntactic, but are not expressible by a
context-free grammar. By letting the parser produce an explicit syntax tree, we are at
liberty to process that tree further before submitting it to the semantic processor. In
fact, we have implemented the non-context-free parts of syntactic analysis in the
equation interpreter itself by equational programs that transform the abstract syntax
after context-free parsing and before semantic processing. Systematic encodings of
notation, such as Currying (transforming fla.b.c) into apply{apply{apply{f.a},b).c}) may be
implemented at this level.

Last, and perhaps most important in the long run, the use of an explicit abstract
syntax allows applications of the system to develop far beyond the simple context of a
user who types in a program, preprocesses it, types in an input, and awaits the results at
his terminal. Many future applications of our interpreter may involve input terms, and
even equational programs, that are themselves produced automatically by other
programs, and the outputs may often be subject to other processing before, or instead of,
being displayed. The very syntactic sugar that makes program and input entry easier for
a human, makes it harder to produce automatically. Simply by omitting the syntactic
pre- and post-processors when appropriate, we may build useful systems containing
equational programs, and the communication within these systems need not deal with
the inefficiencies and notational problems {especially quoting conventions) of the
humanly readable syntax. We have already taken advantage of this feature, by omitting
the pre- and post-processing steps from the equational programs that do syntactic
analysis of equational programs. A more important use of this feature to extend the
usefulness of equational programming is described below.

Although equational programs require substantial translation to be executed on
conventional machinery, our current language is low level in the sense that no facilities
are provided for organizing or modularizing large programs. The implementation of a
high-level approach to equational programming should include the ability to combine

AN INTERPRETER FOR ABSTRACT EQUATIONS 1199

separately written equational programs into larger ones, in a semantically mcaningful,
rather than purely lexical, way. Combiming {forms such as those described by Burstall
and Goguen”’ should prowde a gaod starting point for development of hlghcr -level
techiniques in equational programming. We expect to implement such combining forms
by equational programs that transform the abstract syntax of other equational programs.
Once we have chosen a pleasant mechanism for resolving name clashes, this capability
will be integrated into the system between the front end and the semantic part of the
equation preprocessor.

The considerations above, along with the separate preprocessing step for pattern-
matching, lead naturally to the systern configuration shown in Figure 7. Communication
between modules is always by UNIX text files.

equational
program

CF
parser

!

';gs ;gf preprocessor

i

semanlics

prefty- output

input q
parser| reaucer|—* printer term

term

interpreter

Fignre 7.

EXPERIENCE

In Reference 2, we reported our cxperiences with an earlier version of the system.
Briefly, we concluded that the bottom-up matching strategy is extrcmcly fast, permlttlng
reductions at very high rates. Since then we have conducted two major experiments in
graduate seminars.

The purpose of the first experiment was to evaluate the practical performance of the
various pattern matching algorithms proposed in Reference 12. We found that the
top-down mecthod with counter co-ordination is inferior to the other two methods,
because it i1s shghtly slower in detecting matches and requires more processing after
reductions to maintain matching information. In particular, the matching time is
proportional to the number of patterns to be matched. Since we wish to encourage
writing many small equations, the large number of resulting patterns is noticeable in the
performance. The top-down method with bit-string co-ordination performed better in

1200 C. M. HOFFMAN, M. J. O'DONNELL AND R. 1. STRANDH

detecting matches and update processing, but its match time also increased in
proportion to the number of patterns matched. The perccived performance differential
is probably due to the smaller locality in which update processing has to be performed.

Top-down matching with bit-string co-ordination did not offer a clear advantage over
the bottom-up method, despite its inexpensive preprocessing. Bottom-up matching has
more expensive preprocessing and requires tables, which can be fairly large, to direct the
matching algorithms. However, it affords better diagnostics and is fastest in locating
matches and update processing. This comparative appraisal of the bottom-up technique
is corroborated by the work of Wilhelm,” who has used this matching method
extensively in his equational approach to compiler writing. In Wilhelm's experience (as
in ours), the patterns that give rise to poor preprocessing times do not normally arise in
applications. Moreover, there are heuristics to reduce space demands and compress the
tables needed by the matching algorithm, resulting in acceptable sizes.

In the case of left-scquential equations, the new method derived from string matching
is, in our opinion, the best choice, since it is as fast as the bottom-up approach at
run-time and usually as space efficient as the top-down methods.

A second experiment investigated the suitability of equational programs for writing
compilers for procedural languages. We chose Pascal as a compromise between source
language complexity and the time constraints in a class-room situation. Results indicate
both pros and cons of writing compilers with equations: on the one hand, for attribute
maintenance, equations are not especially convenient, but on the other, the equational
compiler was concise and the students felt that their programming cffort was less
error-prone. The project also pointed out a need for a structured specification technique
similar to the ones advocated in Reference 16, e.g. ‘derive’, which allow a single,
common specification of subtasks whose equations differ only in incssential ways.

AVOIDING REPEATED EVALUATION OF SUBTERMS

Qutermost evaluation, although avoiding evaluation of subterms that are irrelcvant to
the final rcsult, allows unnecessary duplication of relevant subterms. Whenever a
variable appears more than once on the right-hand side of an equation, innermost
evaluation would evaluate the term substituted for that variable once, before applying
the equation in question. Qutermost evaluation appears Lo create multiple copics of such
a term, which apparently will be evaluated separately. It is easy to avoid this particular
duplication of effort by implementing multiple instances of the same variable by
multiple pointers to the same subterm. Such collapsing, of course, makes future
implementation of parallel reductions more dilficult, because several processes may
simultaneously occupy the same subterm.

We have gone further in avoiding repetition. Whenever an instance of a right-hand
side is created, the newly created nodes are hashed, and coalesced with any existing
identical nodes. This innovation was introduced as an optimization in a prototype
version of the interpreter. As a result, if a subterm T is created repeatedly, it is still
evaluated only once. Further improvements are possible. If, as a result of reduction of
one of its proper subterms, T becomes identical with an existing subterm, we do not
detect such an identity. To do so would require restructuring of the hash table, and a
noticeable extra overhead. Such a dynamic detection of identical subterms would lead to
an implementation of the directed congruence closure algorithm of Chew,'” and is left to
future work. The current level of identity detection aiready has interesting consequences
for programming.

AN INTERPRETER FOR ABSTRACT EQUATIONS 1201

Automatic dynamic programming

Dynamic programming may be viewed as a general technique for transforming an
inefficient recursive program into a more efficient, iterative onc that stores some portion
of the graph of the recursively defined function in a data structure, in order to avoid
recomputation of function values. In a typical application of dynamic programming, the
programmer must specify how the graph of the function is to be stored, as well as the
order in which the graph is to be computed. The latter task may be handled
automatically by the equation interpreter.

We illustrate this autormation on equations to solve the optimal matrix muluplication
problem.'® The input to the problem is a list of integers (dy. . .,,),m=1, representing a
sequence M, . . .M, of matrices of dimensions dyXd,d | Xd3,. . .d,,— 1 Xd,, respective-
ly. The problem is to find the cost of the cheapest order for multiplying such matrices,
assuming that multiplication of an /Xj by a j X% matrix costs i¥*&. 'I'here 15 an obvious
recursive solution given by

costl{do. . .d,)) = min {cost[{do. . .d}} + costlid;. . .dn)]+de*di*da|0<i<n}
costlidgd,)]=0

This recursive solution, implemented directly, requires exponential time, because it
recomputes the same values of the cost function many times. Dynamic programming
achieves a polynomial solution by producing the graph of the cost function as a static
data structure, into which each value is stored only once, but inspected repeatedly.
Instcad of the conventional approach of defining only a small finite part of the graph of
the cost function, we define the infinite graph, and the outermost evaluation strategy of
the equation interpreter guarantees that only the relevant part of the graph is actually
computed, and in the right order. The more conventional solution of this problem
requires the programmer to specify Just the right finite portion of the graph of cost to
compute, and the precise order of its computation. The infinite graph, called costgraph,
has the following structure:

costgraphl[{}] =
(0
{cost[{1)]
{cost[{1 1}
fcostl{1 1 1). Jcost[{1 1 2)]...}...}
{cost[{1 2}]
(costl{1 2 1}..Mcost[{1 2 2}]...)...
o)
{cost[(2)]
fcost[{2 1}]
costl(Z 1 1}..)...}
)

o

That is, costl{dy. . .dm}] is the first element of the list which is element d,,, + 1 of element
dy,—1 + 1 of ... element dy + 1 of costgraph[(}].cost[(i]] is always 0, but inclusion of
these Os simplifies the structure of costgraph . costgraphlal, for @ # () is the fragment of

costgraphl[(}] whose indexes are all prefixed by a.
The following equational program solves the optimal matrix multiplication problem,

1202 C. M. HOFFMAN, M.]J. O'DONNELL AND R. I. STRANDH

using LISP notation:

Symbols
:operators directly related to the computation of cost
cost:1; costgraph: 1; costrow: 2; reccost: 1; subcosts:2;

:list-manipulation, logical and arithmetic operators
cons: Z; nil: Q;
min: 1; index: 2; length: 1, element: 2; firstn: 2;
first: 1; tail: 1; last: 1;
aftern: 2;
addend: 2;
cond: 3;
equ: 2; less: 2;
add: 2; subtract: 2; multiply: 2;
include integer_numerals, truth_values.

Foralla, b, i, j k x. y:

costlal =index [a; costgraphl(}]];
: costgraph [a] is the infinite graph of the cost function for
. arguments starting with the prefix a.

costgraphlal =(reccostla] . costrowla: 1))

: costrowla; i] is the infinite list
: {costgraph(ail costgraph[ai+1] ...}
: where ai is a with | added on at the end,
costrow [a; i] =(costgraphladdend(a; i]] . costrowl[a; addli: 1}]);

: reccostla] has the same value as costlal, but is defined
: by the recursive equations from the discussion preceding the program
reccost({i j{l =0; reccost [(i}] =0; reccost[{}] =0:
reccost[(i j . a)] =min[subcosts({i | . a); lengthlall]
where a is (k . b} end where;

: subcostsla; il is a finite list of the recursively computed
: costs of ([dO ... dmy), fixing the last index removed at
4 PO O PR I
subcosts [a; 1] =condlequ [i; 0]; {);
(addladd[
cost[firstn[addli; 11; a]];
costlaftern[i; alll;
rmultiply [muitiply
first [a];
elementladd(i; 1]; all;
last [a]])
subcosts[a; add[i; —1]):

: Definitions of list-manipulation operators,
: logical and arithmetical operators.
min[{i)] =i;

AN INTERFRETER FOR ABSTRACT EQUATIONS 1203

min[{i . a)] =cond less(i; minlall; i; min[a]]
where a is (k . b) end where;
index[{); {x . b}l =x;
index[{i . a); x] =index[a; elementladd][i; 1): x]l:
length [{}] =0;
lengthlix . a}l =addllength[a]; 1];
elementli; (x . a)] =condlequifi; 1]; x; element[subtractii; 1]); a)]:
firstnli; a] =condlequli; 0);(); {firstla] . firstn[subtractli; 11; tailla]])];
firstl{x . a)] =x; taill{x . a}] =a;
aftern(i; al =cond(equli; OI; a; aftern|subtractlt; 1]; tailla]]]:
last]{x}] =x;
last{x y . a)] =last[ly . a)l;
addend((); yl =ly);
addend{(x . a); yl =(x . addend|a; vI);
cond(true; x; yl =x; cond[false; x; yl =v;
include addint, equint, subint, multint.

While understanding the mapping of the graph of the function cost onto the structure
costgraphl] 1s somewhat tedious, such tediousness might be ameliorated by a specialized
notation for such problems, without losing the advantage of automatic discovery of the
correct order of computation.

The efficiency (but not the correctness) of the program above depends on the fact that
all instances of costgraph((}] will be detected and coalesced by the interpreter. A future
implementation of the dynamic identity detection embodied in the directed congruence
closure algorithm'” would allow the same efficiency to be achieved by the straight{or-
ward recursive program.

ACKNOWLEDGEMENTS

‘This research was supported in part by the National Science Foundation under grants
MCS 78-01812, and MCS 82-17996, and by the National Sccurity Agency under
contract 84H0006.

REFERENCES

1. M. J. O'Dannell, Computing in svstems Deseribed by Eguations, Lecture Notes in € ‘vmpriter Science,
58, Springer-Verlag, 1977.
2. C. Hoflmann and M, |. O'Donnell, ‘Programming with equations’, ACAH TOFLAS, January, 83-112
{1982).
3. R. Kowalski, *Algorithm = logic + control’, CACM, 22, (7), 424—436 (1979).
4. R. Burstall, D. MacQueen and 13, Sannella, ‘HOPLE: an experimental applicative langruage’, {nternal
Report (SR-62-80, University of Edinburgh, 1980.
5. L. Glasner, U. Méncke and R. Wilhelm, '‘OPTRAN, a language for the specification of program
transformaltions', fnformatik-Fachberichie, Springer-Verlag, 1980, pp. 125-142.
6. U. Méncke, "An incremental and decremental gencratar for trec anaysers’, Beriche Nr, A 8043, Fachber.
Informatik Univ. des Saarlandes, Saarbricken, April 1980,
- P. Henderson and J. H. Morris, ‘A lazy evaluator’, Ird ACM Syamposium on Principles of | ‘rugrannning
Langnages, 1976, pp. 95-103.

]

1204 C. M. HOFFMAN, M.]. O'DONNELL AND R. I. STRANDH

8.
9.
10.
11.

12.
13,

14.

15,

16.

D. Friedman and D. Wise, *Cons should not evaluate its arguments’, Jrd Dternational Collogquitn on
Awtomata, Langiiages and Progranuning, Edinburgh, Edinburgh University Press, 1976, pp. 257-284.
G. Khan and D. B. MacQueen, ‘Coroutines and netwarks of parallel processes’, in B, Gilehrist {ed.),
Infornation Pracessing 77, North-Holland, 1977, pp. 993-998,

A, Abo and M. Corasick, ‘Efficient siring matehing: an aid te bibliographic search’, (X111, 18, (6),
J33-343 (1975).

D. Knuth, J. Morris and V. Prat, 'Fast pattern matching in strings’, 8L 7. Comp., 6, 2, 323-350
(1977).

C. Hoflfmann and AL]J. O'Donnell, *‘Pattern matehing in wrees’, J 10V, January, 6895 (1982).

G. lluet and]..J. Lévy, ‘Computations in non-ambiguous lincar term rewriting systems’, fREL
Technical Report #359, 1979.

C. Hoflmann and M. J. O'Donnell, ‘Interpreter generation using tree pattern malching', 60h Amiiat
Symposiunr on Principies of Programming Languages, 1979, pp. 169-179.

M.). O'Donnell, Eyuational Logic as a Programming Language, M.1LT. Press, Cambridge, Mass.,
1985.

R. M. Burstall and J. A, Geguen, ‘Putting theories together o make specifications', Sth International

Joint Conference on Artificial Intelfigence, Cambridge, Mass., 1965,
. L. P. Chew, ‘An improved algorithm for computing with equations’, 275t Annual Svinposium on

Foundarions of Computer Science, 1980, pp. 108-117,

. A, Aho, J. E. Hoperoft and |, DD, Ullman, The Design and Analvsis of Computer Algorithons,

Addison-Wesley, 1974,

