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Abstract:

Equations provide g rich, intuitively under-
standable notation for describing nonprocedu=al
computing languages such as LISP and Lucid. In
this paper, we present techniques for automatically
genernting lnterproters from equations, analagous
to wall-khown techniques for generating parsers
from context-free grammars. The interpreters so
generated are exactly falthful to the simple
tradizional mathemazical meaning of the equations-
no lattice-theorstic or fixpoinr ideas are needed
to explain the correspondence. The main techrical
prablem involved is the eaxtonsion of efficient
practical string oatching algorithms to trees.
lic present some new efficient table-driven match-
ing techniques for 3 large clasa of trees, and
point out unselved probleps in extending this
class, We believe that the techniques of this
paper form the beginnings of a useful discipline
of Interpreting, comparable to the existing dis-
cipline of parsing.

1. Introduction

Languages for computation may be classified
inte {a) procedural languages, e.g. ALGOL, PASCAL,
which directly describe sequences of actions to be
performed, and (b) descriptive languages, e.g.

LISP, Lucid, which allow deflniclons of mathepot-
ical objects, funcrions and relations without diract
reference te computetional techniques. Slnce pro-
cedural languages have the advantage of allowing a
programner to ensurc efficiency by specifying a
gomputation in detail, they have received pueh ae-
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tenticn, end thelr implementazion zay he besed an
well-understood scandard techniques for parsing,
table naintenance, shd code generation. The de-
slgner of an interpretsr for a dascriptive lan-
guage cannat draw on & comparable body of uniform
techniques.

Descriptive languages have the potential for
extrenely simple semanties, based on the tradi-
tionnl sepantics of nathematical expressions.
Carefully exploited such langueges could, for many
applications, meke up in ¢larity and ense of veri-
fication what they lose in efficiency. John Backus:
recent Turing Lecture {Ba78} makes a strong case
for descriptive languages. In the past, standard
interpreters of descriptive languages have often
dograded this semantic simplicity both by aug-
menting such languages with procedural constructs
(e.g., assignnent and goto) and by somecimes fail-
ing to pruduce results cven when the language
semantics entail an answer. For Instance, car
(con5(X,%)) = X, necording to [McC60], but stan-
dard LISP interpreters fail to discover this when
Y is ill-defined.

We believe that a rigorous approach to de-
scriptive lenguages may yield efficient inter-
preters which precisaly sarlsfy the lanpuage
specification. Moreover, the difficulty of de-
signing such interpreters can be significantly
less than that of designing compilers; in facc,
most, and in seme cpses all, of the process may be
nutomated,

For the purpeses of this paper, the specifica-
tlon of a descriptive language consists of o set [
of expressions allowed a5 inputs, o subset O of I
containing these cxpressions which are "sizple”
enough to be given as output, and a sec A of axiows
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which mey be used to deduce the equivalance of cer-
tain expressions in I. We restrict attention to
axions which may be written s equations. Goguen
[Go77] claims that "any reasonsble computational
process can be specified pursly equetionally.”
Khether or not this thesis holds, equatlons provide
a plausible starting point, which night be extended
by further wozk, and which 1s alteady capable of
expressing genernl purpess lenguages such as LISP
and Lucid.

An interpreter satiafles a specification of
the form I, O, A above whenever, given any expres-
sian E0 in I for which there exiats an equivalent
expression Ep in 0, cthe intarpreter produces such
an Ef. For instance, LISP night be spocified by
letting I include all M-expressions, 1.¢. expres-
siens formed fronm atomic symbols, cons, car, <dr,
atom, eq, cond, and eval. O would contein exactly
the S-expressions: thoss using only atomic symbols
and cons. A would contain the defining equatiens
from [McC60]. An interpreter based on those spec-
ifications would take an M-expressicn, especially
one of the form eval(exp, eny), and retum an
cquivalent S-expression if such exists.

Previous work on interpreters for purely de-
dcrintive languages includes two types of work:
theoretical studies of cquational definitions
{BL77,Cad72,D576,Ra73,5ta77,Vu74,0'077], all of
which lack important implementation details; and
specific studies of individual languages [AW76,
bM76,F76,17 including actual implementations

faithful to the precise semanties [Car?6,Fa77,J077].

This paper attempts to raintain the generality of
the theoretieal studies while providing some of the
deteils needed co build practical implementations.

Using the subtree Teplacerent systeos of
[0'D77 and Ro73] as theoretical basis, we outllna
the steps necessary to apply that theory to spe-
cific languages, end develop algorithms for inter-
preters. Part 2 explains briefly how the theory
of subtree replacezent systems applies, and what
restrictions are required by the present theory.
Part 3 sketches a specification language feor inter-
preters vwhich inclydes interfacing tree replace-
sents with sicple (e.g. arithoetic) operatiens.
Parts 4 and 5 creat the structure of the data and
algorithms to be vsed in an interpreter.

We have epplied the techniques of this paper
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to implement on interpreter generator, and hove
generated interpreters for several leanguages in-
cluding LISP and Lucld., Because of the faithful-
ness to the mathemtical =emantics, the generator
can be used to provide lmmediare implementations
of defined dats types fronm thelr specificarions,
a5 suggested by [GHM76} and [Wa76].

The central issue in machanizing interpreter
generatien is how to extend efficient pattemn
matching 2lgorithms £rom strings to trees. We
outline briefly the technique eoployed in our
present implemencation. We believe that cur ap-
proach provides techniques which may form the basis
for n disclipline of interpreter construction com-
parable to the present discipline of compliler con-

stTuction.

2. Reduction Seouences Applied to Interpreting

Given I, €, A as in the inrroduction, a theo-
retical interpreter might work as follows: take
an expression Eg and snumerate expressions Ef such
that Eo - Ef, umntil an Ef in 0 is found. Such a
scheme is obviously lnefficlent, unleds the e-
nmeration is done in a partieularly clever manner.
In many cases, equations may be ordered so thaet

(*) the righthand side of each equarion is in
some sense siopler or clearer than the lefthand
side, and so that expressions in O do oot concain
lefrthand sides as subexpressions.

In such cases, o better interpreter might
produce B sequence EO' El‘ Ez. ... of progreas-
ively simpler expressions by replacing lefthand
sides of equations which appear as subexpression
in some Ei by the corresponding righthand sides,
umti! Chopefully) an Ef in 0 is Eound. Such re-
duction sequences are studied In [BL77, Cad72, DS
76, Ro73, Stai?7, Va7, 0'077]).

In a reduction sequence, sach occurrence of a
lefthand side of an equztion is called a redex.

An expresslon whlch contains no redices 1s in
norzal form, and must be the last expressien in
the sequence. Under the (") asswmprions, every
expression in 0 15 in normal form. Since a single
expresslon may contain saveral different redices,
there may be pany different reducticn sequences

starting with the same E Iz order to use ra-

0
duction sequences for interpreters, we must know

how to choose an appropriate reduction sequence:
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one that terminates with an EE in normal form when-
ever A entails E‘:| = EE' end one thae is not too
long. To guerantes such behavior, we need a few
reasonable rescrictians on equations.

(1) No variable may be repeated on che left-
hand side of an equatien. For instance,
if X then ¥ else ¥ = Y is prohibited.

{2] If two differsnt lefthand sides mtch
the same expression, then the corresponding right-
hond sides must be the sams. 5o the pair of equa-
tions g(0,X) = 0 and g(X,1) = I is prohibited,
since g(0,1) could be replaced by 0 or I.

(3) When two (not necessarily diffsrent)
lefthand sides match two different parts of the
same expressigon, the two parts must not overlap.
E.g., the puir of equations first(pred{X))=pred
and pred{succ{X))=X are prohibired, since the left-
hand sides overlap in first{pred(suce(D)]].

[0'D77) shows that, with these three restric-
tions,

(1) For each expression ED, there {3 at most
one normal form Ef which may ba gbteoined by r=-
ducing EI]' : :

(2} Any strategy for choosing reduction se-
quences which guarantees that every poasible qut-
ermst replacement in an expressien is eventually
done will produce Eg in normal form such thar a
ioplies that Eq"Epr whenever E, exists.

be can uso {2} sbove to prove that an inter-
preter satisfies lts specifications. Strategies
for cheosing reduction sequences f£all into two
classes:

(e] Parallel 3strategies, in which several
redices are reduced similraneously {in practice,
"simultaneous' roductions are scheduled sequen-
tially according to some fair queueing diseipline).

{b} Sequential stracegies, in which a single
redex 1s chosen at each step.

The mst common sequential stretegy chooses

redices in preorder, i.e. lefipnst outermost flrst.

Every set of equations satisfying the restrictions
above my be hendled by a parallel strategy. Sece
[0'D877]) and [Vu74] for a general discussion of the
additional restrictions needad to allow sequen-
tialicy. For LISP, the leftmost outnrmost strategy
1s correct and optimel, bur for Lucid, b-ecausa of
the equations or(T,X)aT and or(X,T)=T, a parallel
strategy is required.

Using subtree replacement systems 4s a madel,
we oay organize the rask of implementing an inter-
preter into the following steps:

(1) Specify the language to be intarpreted
in terms of I, 0, A, with A in the form of equa-
tigns.

(2} Convert the equations A into a form sat-
isfying {*) and the additicnal thras restrictions
abova.

(3) Pick a data structurs to represent ex-
pressions end en algorithm for porforming single
reductions.

(4) Pick a strategy for cheposing the next
redex to be replaced, and develop an efficient
algorithn ro find the redex specified by that
strategy.

Step (1) is izherently intuitive, butr the other
steps nay be partially or fully automated. To
automats Step (2} Tequires further research.
[kB70] gives automatic techniques which somatimes
succeed in ealiminating overlap in equations; buc
at present, a language designer must usually per-
form Step (2) intuitlvely. Sectlon 3 of this - -
paper gives a specification language in which (1)
and (2) cay be presented, and an example of such a
presentation. Sections 4,5 and 6 discuss two
different mechods for performing {3) ond (4) auto-
matically.

3. The Interpreter Speciflcation Language

To specify the allowahle inputr expressions
one need only list a set of syobols with their
arities. The input exprossions will be the usual
temmas composed of the listed symbols. Most inter-
esting programing languages include large seta of
standard symbols such as integer constants. To
aveid exceossively long specifications, there are
standard primitive secs of symbols which may be
specified by a singie name. In this paper we will
use the sets lnteger, containing all integer con-
5tants as Zervary sychols, the zeroary boolean
aychols T and F, as well as the binary symbols
+, -, *, div, mod, eq, ne, lt, gt, le, ge. We
also use the set unspecifled containing as zeroary
symbals all alphanumeric strings not otherwise ac-
counted for, on which eq and ne are defined.

Those sets of primitive symbels containing con-
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atants are primitive domains, and symbols of higher
degree will be called standard functions. Mow, e
useful subset of M-expressicns may be specifled as
follows:
SYMBOLS cons: ; ecar: 1; atom: 1; eval: 2;
eveen: 2; Integar; baclean;
cdr: 1; pair: 2; evlis: 2;

2

2
coend: 3
assoc: 2
0

; unspecified;

QUOTE: 0; ATOM: 0; EQ: 0; COND: 0;
CAR: 0; CDR: 0; CONS5: 0; LABEL: 0
LAMBDA: 0.

Many imperrant equations may be given direc-
tly, e.g. car(cons(X,Y)) = X. Theoretlically, such
equations are sufficient to define general purpose
programning languages. For practical purposes,
however, standard functions such as + defined on
primitive domains should be computed by program.
That is, the set of equations =(0,0) = 0; +({0,1) =l;

+(2,0) 2 1; +(1,1} = 2; ...
ified by a program which, given that a subexpres-

i5 iwmplicitly spec-

slon +(X,Y) where X and Y are integer constants ls
to be reduced, replaces it with an integer censtant
Z such that +(X,Y) = Z. Whenever primitive sots of
syobols are introduced in the language specifica-
tion, these progracs representing equacions defin-
ing standard operations are also included. One
may wish to visumlize the effect of these pro-
grams as specified by schemata, such as

«(L,Y} = Z where X,Y,Z in intoger, and 2 is
the sum of X and Y,

with which is associated some subroutine compuring,
in this case, the valus of 2 as the sumof X and Y.
In this view we can implement predefined standard
functions by a small extension of the mechanisms
needed for user defined reductions. It is tempt-
ing to extend this epproach and to allow the user
to associote subroutines wich reductions in gen-
eral, analogous to the way in which so called
semantic precessing L= associated with syntacric
reduction steps performed by a parser. Hawever, we
wish to limit our device to a few standard fumetions
defined on primitive domains, te ensure that the
language semantics is correctly specified, avoiding
tedious separate proofs.

A syntactic difficulty arises when a large
mmber of equations mist mention emch expression Ln
o large class. For instence, one specificarion of

KoTr i amd

LISP would include a separate equation stom(const)aT
for each unspecified symbol and each integer com-
stant. We wndense such sets of equations inco one
by using e variable Testricted to range over a
union of primitive domains. Thus, the LISP axioos
may be given as follows:
AXIOMS  FOR ALL X,Y:

car{cons(X,Y)) = X;

cond{T,X, Y] = X;

cdr{cons(X.Y)} = ¥;

cond(F,X,Y) = Y

aton(X) a T where X in integer u

unspeclfied W hoolean;

atom{cons{X,Y)) = F;
The complete set is given in the Appendlx A. The
phrase FOR ALL X,Y indicates that the symbols X and

Y are to be token as variables, rather than es un-

spoacified constants, in the axioas.

The set of output expressions is given im-
pliciely as the set of normal form expressions as
determined by the axloms. A separate specification
of g could lead to & wiform treatment of cerrain
errars (see {0'D77] p. 83), but this possibility
has not yet heen explored.

4. Reduction With Beckpointers

The problea of reducing an expression Eo ta
normel form divides naturally into (a) finding
redices, (b) choosing the next redex to be replaced,
(c} performing a aingle reduction step.

Finding redices is essontially a pattern match
problem with trees instead of strings. The choice
of a sultable algorithm Is complicated by the fact
that each reduction step alters the expression tree
locally. It is unaccepteble to rescan the entirte
structure after each reduction step.

Expressions may be stored as dags in which
each node is connected by a circular pointer seruc- _
ture to each of its fethers, as sketchad:

T 1] G
Il ]

A
LT e AN

In this way, from any node we can find eny son or

father. Kithout sharing, we double the pointer
space required. Shering (l.e., multiple fathers) |
cuts down on this wasted space, and may reduce the :
number of raduction steps needed ro reduce EO'

Since the technique for a single reduction step la
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The key
idea for identifying redices is to associmte with

stralghtforward, we omit discussing it.

each node a code indicating which pert(s) of left-
hand sides of equacions mateh the subtree at that
node. We corpute these match stetes from tho leaves
up, using a precomputed table giving the state at
node p a5 function of the lebel at p and tha states
of p's sons. In this way, all redices zay be lo-
cated in Eg in eime proporticonal to the size of the
deg. The problem of matching tres patterns and of
generating these tables is srudied in deteil Ln
[Ho?78].
the diseussion of the technicalities of tree match-

For the purposes of thia paper, we limit

ing to Section &.

When a reduction 1s performed, match states
must be computad for any new nodes which have baen
added, and for some of the ancestors of the redex.
The beck pointers make it easy to find all affected
ancestors. The Iength of any path along which an
update con occur is limited by the maxioum depth of
equation lefthand sides.
new tedices may be discavered.

During this local update,

Given that every node ln the dag representing
an expression has been assigned the oppropriate
match state, a2 siFple parallel strategy for choosing
the next redex would ba to keep all redices inm a
queus, redpcing the first redex in it, and adding
newly discovered redlees ar the rear. A standard
reference count detects if any redsx is reooved
from the expression as side effect of a Tedex pre-
teding it in the queue. The strategy is correct
but nat optimal.

In cases where an g priozri sequential prder-
ing of redices is glven, an appropriate depth-first
traversal of the dag ioplements the reduction
strategy. A single additionel bit maintained at
each node indicating whether the subexpression
rooted at thet nade is In normal form will prevent
useless rescanning of rhe same (shared) normal
form subexpression repeatedly.

We have leplenented a generatoT system
based on these ldeas ln PASCAL. The implementa-
tion effort has becn approximately 5 man weeks,

We have generated no frills interpreters for LISE,
Lucid, and the combinater caleulus. Actual redug-

tlons have been very fast.
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5. Martching Tree Patterns

We wish to generace tables from a set of tree
patterns (the axicm 1hs} with which to drive the
linear matching algorithm outlined in Section 4.
All possible sets of partial matches need to be
known, since they are used to index Into the tables
during the matching process. During the process of
this generation, the restrictions on oxiom lefrhand
sides of Section 2 will also be checked.
there is a straightforward matching algurithn which -
works on O(n -

Note cthae

o) steps, where o is the pattemn size
This algoritha
Tequires no preprocessing, and works for all pattemas.

to be matched in a subject of size n.

The algorithn of Section 4, in contrast, catches in
0(n) steps, afrer suictable tables have heen gener-
ated as explained now.

Glven o forest F of tree pattemns {tl,.. .,tk},
a partch set M for F ix a set of (sub)trees in F
such that there is a subject tree t such that every
wember of M marches t at the moor, and every (sub)
tree in F which is notlin M does not march t at
M is thus the set of all (partial)
A table of match s5ets

the roet.
matches at the rwot of i,
my be generated straightforwerdly in time
O(Sk*l .
maximum arity of any symbol {50 the table is size

o) where s is the numher of sars, k is the

O[Sk)], ond m i5s the total size of ail patterns.
We discuss only oote efficient methods.

Glven distinet pateerns t and t', we define
two relationa: t subsumes £', ¢ > t', if a match
of t always implies a match of r' at the same node.
For example, al(b,c) » afb,v), since v matches
t end t' are independent, t-t*,
iE we can find subject trees .t and ty such

wheresver ¢ does,

that t marches I‘.‘l and t2 at the root, but not ts.
vwhercas t' matches 1:1 and |:3 at the roar, but not
t,. Thus, afbh,v)
a(b,b), and ale,c).

It is not hard to show thet each match set M

~ afv,c), because of trees z(h,c),

oy be partitioned uniquely into a lms;eﬂ.\lo of

pairwise independent trees, and a set M of trees

ench of whizh is subsuned by some iree in MO'

Because of the transitivity of subsuoption, each

match set 1s complately determined by its base set, .

Using the defined relations, [He?8] shows that
(1} The number of distinct mateh seoes my
grow exponentially with che patetern
Jize.
(2) If there are no (sublcrees in the pat-




tetn forest F which are independent, then thes numher
of pessible match sets is equal to the size of F.

Becguse of these results, we restrict axionms
such that their lhs form pactemn sets in which no
tho (sub)traes are independeant. Such pattern sets
are called slmple.

Deflne immadiate subsumption, 2y by t > T,
iff £ » t" and there is no (sub)tree t" in the pat-
tern forest F such that t > t” and t*" > t'. The
directed acyclic groph l:is of the irmedinte subsump-
tion relation is called the subsumption Eraph of F.
For simple forests, [Ho78] shows thet

{1]) Gs is a tree.

(2) The base set of each match set M is a
singleton.

(3) The match set M with base set {t} is pre-
cisely the set of trees on the path fron
the base set tree t to the root of Gs'

Let o be the size of the pattern forest F, and

d the depth of Gs'
algorithn for computing the transitive closure of

There is a straightforward

Gs in O(mz) :n:ep.-;i Using an indexing scheme, we
can design an 0(2"+d) algoriths, which is slower
in the worst case, but can be expected to nun sig-
nificantly faster than the O{m’) algorithm, which
Bath algorithms, at
the same time, can check that F is sizple, and thae

is quadratic for all inputs.

the restrictions of Section 2 are satisfled, with-
aut Iaffecting the running time. The O(nz-d}
algorithm is given in Appendix B.

If there are no funcrlon symbols with arity
exceeding 2, then there is an o(m.d) algorithm for
cooputing Gs' The algorithm can be adapted to per-
form the actual matching too, leading to a matching
algorithm of O(n-d} steps In a subject of size n.
The algorithm can bte sdapred to compute, in the
sama tizme bound, G, for alphobets of higher degrees,
but will then be unable to process certain simple
forests. The details are covered in [Ho78].

Once G, has been computed, the tables to drive
the O(n) matching algorithm can be constructed
easily. If k is the highest occuring arity in the
alphabet I, then the tables require O(nk) space
and take O(mk-d] Steps to censtruet. Unfor-
tunately then, table generation is the bottleneek
of the preprucessing. Since the moximum arity % of
alphabers affects the slze and time of table geners-
tlon g0 critically, it is useful to reduce k by
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introducing a set of palring functions. We have
used this technique successfully to speed up the
interpreter generation, but it should be noted that
pairing sometimes trensforms sicple partern forests
into forests in which independence eccurs. This
phenomenen is alse responsible for the failure of
the adapred O(m-d} algerithm to process all simple
foresta for alphabets ef higher arities, since the
intermediate graphs constructed by the algorithm
conceptually lnoitate argument pairing.

Although teble generation 15 the bottleneck of
the preprocessaing, it {s well worth while to
investigate ways to speed up the computation of Gs
further, because thase algorithms can be adapted
to perform the actual pattern matching without the
need for generating large tables. This may best
be undersrood by observing the analogy of tree
pattern matching and string pattern matching in the
style of [KMP77] and {AC75].

Consider a scring pattemn ul,...,a.k as non-
branching tree ak(ak_l(.. -2y (¥)...)}. tThe graph Gs
for a forest of such nonbranching trees is pre-
cisely the graph of the failure function of [KMP77]
and [AC75].
branching tree is & patrern prefix. Now t > t',

For this, note that a subtree of a non-

for trees t ond t', if t' matches t at the wet,
therefore, in the case of nenbranching trees, t' is
a pattern prefix which is, at the same time, a
suffix of t'. Thus ¢ % t' Iff t* 13 the largestc
proper pattern prefix which is alsep suffix of t.
Thus, it is reasonable to look for matching
algorithos which use principally Gs as data struc-
ture. The adaptatien of the D(m-d) algorithm is
designed in just that way.

6. Reduction Without Back Poincers

Up to half che pointers in the implementation
of Section 4 may be eliminated by representing dags
without back painters. At present we do not have
a nice algorithm for parallel strategies without
back pointers. For sequential strategies, a simple
implementation uses the match states and rormsl form
blt of Section 4. A depth-first traversal ls used
to find the next redex, skipping any subtress which
are marked as being in normal form, Whenever a
node is found whose state or nomal form bit may be

changed by recomputing from its sons, the chenge is
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propagated upwards, but only along the path by which
the node was remched (this path is knewn from the
standard stack used for the traversal).

Informel Development of B More Poue;ful

Algoritho

The sipple algorithm outlined above does not
address the problem of finding an acceprable sequen-
We have a method which finds oprimal
sequential strategies automatically.

tial strategy.
In addirion,
this method generalizes a trick applied by Friedman
and Wide to LISP [FW76,2] in which portions of an
expression which have become stable are output and
elininated to save space. A fuller development of
the algorithm is being prepored for journal publica-
tion, with a proof that the method finds a sequen-
tial strategy whenever such success 1s possible
without considering the right hand sides of equa-
tiona.

The match state idea from section 4 is suffi-
clent for recognizing a redex once we have scanned
The additional
problen is to decide which parts of the tree to

the appropriate parc of a tres.

scan, This decision must accoumt for the possibility
that some match states are outr of date, since a
shared subtree may be changed through ene path
without the chenge being noticed on other paths.

The main new concepr needed is that of a
possibility state. The match stace M{n) at & hade
n represents all partial matches known to hold et
n. The nonoverlapping property gunrantees that
existing matches at n will never be destroyed by
reductions at descendants of n, but new mgtches
¢ould be created. The possibillity state P{n) for
N represents a set centaining all partial matches
which zight ever hold at n as the result of re-
ductions ot descendants. At any given time, some
natches in P(n)-M(n) may already hold at n due to
reductions not yet noticed by n. The true set of
matches holding at n must always be a superset of
M4(n) and a subset of P{n}.

cidable questions, P(n) is cooputed without knowl-

To avoid obviaus unde-

edge of equation right hand sides by assuning that
2 redex may be replaced by any tree.

Finally, we need one more kind of state, called
a search scate, to keep track of those partial
catches which might be useful to the reduction.
March states and possibility states are stored at

eoch node, Search stotes 5 are stored on the

Wt A 0 peapclis

traversal atack, and contain all partial matches
which night make a reduction possible 2t some node
on the stacked path from the root.

The algorithm is developed from the following
observaticns:

1) 1If M(n) contains a cowplete match,
then a reduction may be performed;

2) I£ M(n)NS A p chen an interesting
change has accured which shouid be
propagated up the tree;

3) If M{n)VS = P(n)NS = P then no node
presently on the stack will ever be
changed;

4) If M(n)A S = B but P(r)INS J P then
further processing of descendants is
needed, and the appropriate son to
visit may be recognized by his match
state and possibility state.

A preclse statement of the algeorithm is attached
as Appendix C.

The problem of precomputing states for the new
algoerithm is even trickier than for the old. So
far we know that in some cases possibility sets are
expenential in number even though match sets are
very fow. More study is needed to discover those
cases in which the total number of combinations is
noc koo big.



Appendix A -- LISP Equaticns

McCarchy's original LISP equations {McC60] have several apparent mistakes. The following equations re-

present a correctien and reordering aof McCarthy's definition.
AXIOMS FOR ALL Y, W, X, Y, I:
cer (cons (X, Y) } = X;
cdr (cons ( X, ¥) ) = ¥;
atom { cons ( X, Y) ) = F;
atom { X)) a T
where X in integerl/booleanl)unspecified

U {QUOTE, ATOM, EQ, COND, CAR, CDR, CONS, LABEL, LAMBDA},

cond (T, X, ¥ ) = X;
cond ( F, X, Y] = ¥}

eval ( X, Z) = assoc{¥X,Z)
where X In unspecified;
eval [cons( X, Y),Z) = apply (eval{X,Z),evlis(¥,z))

where X in wunspecifiedU{ATOM, EQ, COND, CAR, CDR, CONS};
eval (cons(cons{¥W,X),Y),Z) = apply (eval(cons{W,X),Z), evlis(Y,2));

apply(eval (ATOM, Z),cons(X, ¥)) = atom{X);
apply(eval (EQ, Z),cons(W,cons(X,Y))) = eq(H,X};
apply{eval (COND, 2), b9y] = eondlis{X];
apply{eval (CAR, Z),cons{X, Y]} = car(X);
apply{eval (CLR, 2),cons (X, Y1} = edr(X);

apply (eval (COXS, Z),cons(W,cons(X,Y))) = cons(W,X};

apply(eval (cons{LABEL,cons (Y, cons(W,X))},2),Y) =
apply{eval (W,cons (cons (¥, cons{con5(LABEL,cons (V,cons(W,X)))),NIL),Z),Y)};
apply (eval {cons (LAMBDA, cons (V, cons{W,X})),2],Y) =
eval (W,appand{peir(V,Y},2));

evlis(NIL, Z) = NIL;
evlis(cons(X,¥Y), Z) = cons(eval(X,2),evlis(Y,2));

append (HIL, ¥) = Y;
append{cons(W,X}, Y) = cons(W,append(X,¥));

paiT{NIL, NIL) = NIL;-
pair(cons(V,HW),cons(X,¥)) = cons{cons(V,cons(X,NIL)),pair(K,¥)};

condlis{cons (¢ens(T,cons (X, NIL}),Y)) = X;
condlia{cons(cons{F,cons(X,NIL)},Y)) = condlis(Y);

assoc(X,Y) = condfeq{ecar{car(Y)),X),car{cdr(car(Y})),azsoc(X,cdr(¥})).

LI 4 n ey T 6 oot



Appendiz B -~ Pattern Preprocessing Algoritho

The preprocessing of simple pattern forests for
generating tobles divides into the corpucation of
the subsumption graph GS (which is a tree for simple
forests), and the generation of tables fruno Gs. The
computation of Gg: with suirable changss not indi-
cated here, also verifies that the patterns presented
form a- simple forest. Verlfylng tha nonoverlap
property can also be incorporatdd.

Assume patterns tl‘ . ..,tk are given., Let T
denote the set of all {sub)trees (0of) the ty, and
denote -a directed edge fTom t to tf in GS by
£{t] = t' —- l.e. t directly subsumes ', The
computation of GS is now as follows:

Algorithn A Compute Subsumprien Graph GS far
Linear For=at F

Input: Linear forest F of partomns

Qutpur: Trea Gs(with edges pointing to ancestors)

Method:

1. Order all trees in T by their depth.

2. For each t = v in T of depth 1 enter f{t)av;
Comment: £(t) = t' 1ff there is a dirscted edge
from ¢t to t';
3. For p := 2 to MAXDEPTH IN FOREST do
For each t=a(t1,...,tk) in T of depth p

do begin

4. 5 Ia vy}

S. For 1 := 1 1o k do begin

6. thoiw £(Y);

7. while therc is no tree t" of (paximal)
depth < p which is subsumed
by t and has t' as 1-th sub-
tree and t' 3 v do

! o= £t

g. For each tree t" with t' as 1-th
subtree which is subsumed by
t and of maximal depth < p do

10. If t” > 3 then 3 := t;

11. end;

12, enter £{t) = s5;

13. end;

Nate that, since we process trees ordored by
increasing depth, the rest t subsumes t' can be

LS B

done by verifying, for each immediate subtree pair
t; and :i', that t subsumes t;'- Since the depth
of both r.i and ti'_ must be strictly smaller than p,
this ceat involves tracing through the existing
porticn of GS.

Since chero may be, in some cases, up to O(m)
trees t' with i-th subtree t', where m is the cardi-
nality of T, and since tracing through the existing
portion of Gs for resting submumption may involve
up to 0(d) steps, where d is the depth of GS' the
algorithm requires O(mz-d} steps.

Glven GS' we can then conssiruct tables ln the

following manner.

Algorithm B

Input: Subsugption groph Gs of linear forest F
Outpucr: Tabkles driving the fast matching algoricthm
of Section 2.

Methaod:

1. Traverse Gs in post oxder. For each tree
ta a(tl,...,tk) visited, k > 0, do the
following:

2. Eater t into all portions of the table for a
which are not yet assigned and are indexed
by tuples < ti. t; e tl:: > where, for
l=izk, ti)ti w ot b,

Enter v into all remaining unassigned table

[

positiens in eoch table.

Far linear forests, Lt can be proved that
Algorithn B cannot attempt assigning t to an entry
already assigned t', unless t'>r; hence the O(nk-d)
tipe bound, where k is the highest occurring arity
in I.

A dix C -- Reduction Without Bockpointers

oA

Let n be any node in a dag representing z tTee.
Labels: 2(n) is the alphabet symbol at n;
Mateh Staces: M(n) is the set of all partial
matches known to hold for the subtzee
Tooted at nj
Possibility States: P-(n) is a ser of partial
matches which might arise at
n as the result of reductions
at proper descendants of n;
P(n) is a set of partial matches

sloffvast Cidoswal)




which might arlse ar o as the
result of reduetions at n and
its descendants;

C ix the ser of complete nmatches

of pattemns;
U i3 the ser of all partial
matches.
Note that
P{n) = P (n) Lif P~{n)NC =2 p
P(ny = ¥ 1f P*{n)NC £ P
A stack of peirs < n,5> 1s used to control the
traversal, The nodes on the steck form a branch

from the Toot. The search scace S is the set of all
partial matches whose occurrence at n could produce

a cooplete match at some node below < n,S » on the
stack.
When T is a set of partiol matches,

PUSH [¢Soni [n) .Suni(P “(n){SwC)) »)
End else

End While

REDUCE, PUSH AND POP have their Iintvitive meanings.
SPLIT is invoked when the nodes on the stack have

all atabilized (i.s., future reductions cennot

possibly chenge them). SPLIT outputs the nodes on

the atack, freeing them for garbage colleceion, and

initiates processing of the remaining subirees in

any order, or simultaneously.
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