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1. Introduction

Computational geomatry has the unique opportunity to bridge the sharp gap berween theoretical and applied
computer science. Indeed, practical computations with geometric objects are of intense interest to a wids range of
applied work including computar aided design, robotics, mathematics, engineering, etc. At the same time, these com-

puiations pose many challenging problems of considerable theoretical depth and interest,

Implementing numerically robust algorithms for computational geometry is 2 nontrivial task, Except for very
limited classes of geomemic objects, it is incorrect to assume that infinite precision arithmeric or symbolic compiria-
tion will yield correct implementations, because basic operadons such as translation or rotation introduce inaccuracies
into the representation. For example, 2 boundary representation for a polyhedral solids consists of two components: A
topological component describing the incidence of vertices, edges and faces, and a numerical component consisting of
face equations. When the cosfiicients of the face equations have been truncated, the topology may claim that four
faces meet at a vertzx when in fact the face equations indicate that they meet in a structure consisting of two vertices
connected by a very short edge. This inconsistency can lead to a fatal error in a program that is manipulating the

representation and is relying on its consistency for program correctness.

It is desirable to assume that the incidence relations are correct and that the numeric data is only an approxima-

tion to the real data. For instance, [3) shows that the number of significant digits more than quintuples when intersect-
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ing linear, three-dimensional structures. Moreover, rotating a line by exact angles such as sin{s/7) would require the
symbolic representation of high degree algebraic numbers. In these and other cases, the machinery implementing

exact arithmetic operations soon dominates the renning time of an algorithm and renders it useless in practce.

It is clear that infinite precision computations cannot deal with inaccueracies of the numerical data: Typically, an
algorithm computes a numerical quantity, say x, and then derives logical information by testing whether x is less than,
equal to, or greater than zero. It is at this point where there is potential for trouble: When x is Iess than a certain thres-
hold g, the numerical inaccuracies of the input and, possibly, the arithmetic computations simply yield no further
information. Arbitrarily assuming that x=0 leads to program failure. Assuming that the input is comest as writisn
yields, at best, an unpleasant proliferadon of microscopically small geomeric structurss, but may zlso Iead to conwad-

ictory information and procram failure,

In this paper, we discuss several paradigms for developing provably comrect implementations of gsometric also-
rithms, accounting for the possibility of imprecise numerical input data. These paradigms are based on the concept
that, in the presence of numerical uncertainty, the logical decision cannot be based on the arithmerc computation
alone, but must be consistent with all previcus such decisions. It is our experience that even in situations where a fall
correctness proof of the algorithm is not yet completed, this paradigm lzads to robust and efficisnt implementadons

[5). We illustrate these id=as in a variety of intersection problems.

2. The Reasoning Paradigm

If we base logical tests such as incidence on numerical calculation, assuming approximate data and arithmatic
operations of limited precision, then there is an interval of uncerrzinty in which the numerizal data cannot yield
further information. In such a situadon, a decision must b= made that has to be consistent with other such dscisions
and with the topological data, For example, points that have been declared collinear by the topology must be meated
as collinear points by the algorithm. Making decisions consistently requires symbolic reasoning, and it is imporant to

understand how complex the reasoning st2ps could be.

Let M denots 2 geometric object such as a polygon and let R denote a representation of the object. The differ-
ence between an object and its representation is that the objsct can have equations with arbitrary real numbers
whereas the equations in the representations are fixed precision numbers. A representacon has associated with it a set

of models. A mode! is a peomemic object with the same incidence swucture as the representation and numeric




specifications that approximate those of the representation. For many geometric objects the representation is a model
of itself, called the rarural model. A binary operation such as intersection is said to be correct for input representa-
tions R and R, if it produces an output representation R 4 such that there exist models M ;,M,, and M4 whzre M; is a

model of R; and M 3=M ~\M,.

The fact that the algorithm is correct in this sense does not mean that it can be used naively as a subroutine in a
larger problam. The notion of comrectess is one which applies only to a singls opsration. To see this, consider the
problem of intersecting robustly a pair of line segments. Each line segment is representzd by a pair of points whose
coordinates ar only approximately correct. In our framework, a correct implementation can be given using exact or
approximats computation. The algorithm will give correct answers for lins ssgment interseztion, but doss not account
for possible additional topological structure. Therefore, it cannot be used unaltered to implement polygon intersec-
tion, since the property of consecutive edge incidence in a common vernex is not accountzd for in the computation.

We examine the ulity of the reasoning paradigm when intarsecdng two and thres polygons, and discuss the
complexity of the nseded reasoning steps. As we shall see, virtually no reasoning is required when intersecting two
polygons, provided the algorithm is based on venex/verex and veni=x/edge incidence compuiatons. This is not the
case for simulianeously intersecting three polygons. There, theorems from projective gzometry must be accountsd

for.
3. Intersecting Two Polyzons
A representation for polygons consists of the following data:
(1) Symbolic vertex specifications, of the form v=(/,!"), where [ and !’ are linss,
2)  Symbolic edge specificarions, of the form e=(v,w) where v and w ar= vartcss.

{3)  Numeric line specifications of the form /=ax+by+c, where g, b, and ¢ are numbers, e.g., in fioating-point for-
mat. Here line equations are orienred such that the gradient (g,b) points o the polygon exterior along the
edge,

Note that the natural model polygon may not be simpie. We quantify the accuracy betwsen a representation and a

model by




Definition, A representation R is e-correct provided there is a model polygon M that satisﬁes- the symbolic
informaton of the representation, is a simple polygon, and its vertices are within £ of the vertices of the natural

model.

Next, we need the concept of minimum feature separation. Intuitively, a representation has minimum feature
separation if no two vertices are closer than a certain tolerance, alt edges are larger than a certain minirum length,
and consecutive edges have angles not smaller or larger than specific critical values. The purpose of this dafinition is
to lirnit the effect that perturbing the numerizal data has on the polygon geometry. The precise statement is the fol-
lowing:

Defirition. A represematon A has minimum feamre separation if consecutive edges form an angle larger than
¢ and smaller than =g, if all edgss are longer than 3g, two vertces are separated by at Ieast 3¢, and no verex is

closer to an edge than 3&.

Here € is a function of o and represents the maximum error the detarmination of vertex coordinates can incur
agsurning that the lines intsrsesting in the venex are at an ansle a. For example, the condirnor number [3] of the two

line eradients can be used to defins €.

Suppose 2 vertex of one model lies on an edge of the other model Then the vertex and the edge are said to be
constrained. A verex so constrained in nem constrains its adjacent edges. Thus, an edes can be constzined by its

own verdces as well as by vertices of the other objact An edge with mors than two constraints is over consrained,

Lemma I, Let M and M, be rwo model polygons. Then not every edge of My and every edgs of M5 can be

over constrained.
Corollary. There is at Jzast ons edge of M| or M, that is not over constrainzad.

Lemma 2, LetR, and R, be two representatons with 2 set of incidence constraints of the forms "vertex x is on
edse e," and "vert=x v and w coincide.” Then thers are modzls of M and M, such that the incidence constraints are

satisfied provided there is at least one edge that is not over constrained.

Intuitively, the proof of Lemma 2 works as follows: Remove all edess that are not over constrained and also
remove their end points, By a counting arcument, there remain edges thal now are not over constrzined. These are
are removed, along with their end points. This process continues with the remaining edges umil all edges are

removed. The edges are now placed in reverse order of removal.




We can ¢btain an intersection algorithm based on Lemma 2 as follows: Here £ depends on the minimum feature

separation constant and the norm of the line equation L.

(1)  Say that a vent=x u is on an edge e=(v,w) if L (v)<&, where E is 2 chosen tolerance and L is the line equation

for e, and if u is between v and w and not close to either vertex.
(2)  Say that vertices z and v are coincident if z is close to v,

It is possible that the algorithm over constrains every edge of both polygons. A case for potzntal trouble is shown in
Figure 1. This case is excluded by minimum feature separation. A more subtle difficulty arises as shown in Figure 2
where the tasts announce incidences B on DE and E on BC implying B=E or DE and BC are collinear. The tsst
whether two vertices are near must be such that if # and v are not coincident, then neither # nor v is on both edges

defining the other ven=x.

Theorem 1. Let Ry and R, be two representations with £ comect modals. Then there exists a representation
R1R3 with a modsl M3 such that there are models M, and M, of Ry and R, with M3=M~M,. Morsover, there

exists 2 & such that all models are 8-correc

Note that the theorem shows comrecness and quandfies the accnracy of the intersection algorithm. The accu-
racy crucially depends on the incidence =515, especially the vertex/vertex incidence tests.

Aftet two representations have been intersected, the result need not satisfy the minimum feature separation con:
dition for e. Thus, a posi-processor may be nesded 1o restore the minimum feature separation condition. This may
requirs the obliteration of short edges, i.e., affects the symbolic data as well as the numeric data of the reprasentation.
As notzd in [6,10], adjusting the numeric data to fixed precision radonal data is expensive. It is not difficult to extend
these r=sults on intersecting polygons to embedded planar graphs, providad that no relatonships of collinearity or
parz2llelism are assumed among the edges.

e can now explain why an algorithm for intersecting polygons based on vertex incidence tssts is robust
whereas one based on edge intersection computation is not. All vertex-on-edge questions are independent but the set
of edge intersection questions is not. Asking if 2 vertex is on the infinite line d=fined by an edge is not allowed. The
reason for this is that these questions add addirional constraints on edges and destroy the independence arsement. In
Figure 3, edzes AB and CD do not intersact and a vertex can be close to at most one of the edges. However, asking if

veriex v is on the infinite line defined by AB and on the infinjte line defined by CD, could result in a constraint on both




edges. In fact, 2 vertex could constrain an arbitrarily large number of edges and the proof of Lemma 2 would not
work. Similarly, we must reguire that the polygons to be intersected be simple. If edge AB were to cross edge CD

and vertex v were close to the point of intersection, then it would again constrain two or more edges.

Even though there are no relationships assumed to hold among the edges of each input polygon, edges in the
output polygon may have such relationships. For example, in Figure 4, sides A and B must be on the same infinite
Line. This will cause a problem when we try to intersect the result with a third polygon. We may chooss to discard all
such relationships. Then we can iteratz polygon interseriﬁon. However, in that case the algorithm cannot ba used as a
subroutine by a more general alzorithm whose correciness depends on soms global property that misht be destroyed.
One also should be aware of the fect that the pairwisz intersection algorithm is not assocziative. In gemeral,
R1R2)M3=R 1 (R2R3). This suggests that there should be two dafinitions for correcmess of the polygon
intersection algorithm. One definition for the isolat=d problem of intersecting two polygons and another defdnition if
the intersection algorithm is a subroutine of a larger computation. This is exactly analogous to the edse intersestion

problem.

4, Simultaneously Intersecting Three Polygons

Rather than intersecting polygons successively, we may consider intersecting more than two polygons simul-
tan=pusly. We show that doing so introduces new complexities into the reasoning dons to resolve numerical uncer-
tainty.

When intersecting three polygons simultaneously, one ¢cannot arbitrarily place a vert=x with respast 10 a nearby

edoe as illustrated in Figure 5, Assume that we are given thres polygons X, ¥ and Z, whose boundaries includs the

line szements shown in Ficure 5. If one claims the incidences

(4,4Y), (C,C), (1,19, (2,2, (3,3), 4,4), (5,5"), and (6,6),
then, by Pascal's Theorem, the edses (3,4), (1%,6), and (4, C) must intersect in a common point

Pascal's Theorem, If alt=mate vertices (1,3,5, and 2,4,6) of a h'..;.xagon are collinear then the three poinrs that
are the intersection of the lines (1,2) and (4,5), (2,3) and (5,6), and (3,4) and (6, 1), are collinsar.

The theorem is illustrated in Figure 6. Thus the problem of intersecting three polygons is sufficiently complex
so that determining if vertices are on edges requires a theorem prover powerful enough to handle theorsms from pro-

jective geometry such as Pascal's Theorem. It is not difficult to prove that intersscting two embedded planar graphs



with collinearity constraints requires proving all theorems of linzar projective geometry (P2).

5. Line Sweep Alporithms
We consider the line segment intersection problem again as vehicle to explore other paradigms for implement-
ing geometric computations: Given a line segments 1,15, * ++,l, and a collection of subsets of the /; that appear to

intersest at various points, find a consistznt set of intersections.

Since the geomeic saucture of the problem is simple, the following solution could be proposed: Assume the
nawral model and compute all intersections with sufficient precision to find the exast intersection poi-nts. If the line
coefficients are integers of length L, then 2 precision of 3L+2 is ne=ded [59), This approash is the exact-as-wrinten
peradigm, However, the cosfficiants in the line eguations often are not exact, and it is unlikely that any thres lines
will intersect in a single point. In many applications close coincidence really would be coincidences were it not for
the approximarz lins coefficients, I.n those cases 1t is desirable that we perturb the line positions 50 as to enlarge the

nurnber of common int=rsections.

Assume then that the equations of the lines are only approximate and adjust the equations so as 1o change a
maximal number of near incidences of three lines to e incidences. This can be done as follows. Szlect 2 maximal
set of lmes with the propesty that no thres lines go through any one point. These ]inesla:e said to be of rype 1. The
intersection point of a lire of type g with 2 line of type & is said w be of type a-b, Each line not in § appears to 20
through a type 1-1 intersection point. If a line not in § appears w go through two or more type 1-1 interseztion points,
then add it to § and call it typs 2. New intersections of types 1-2 and 2-2 may be crearsd. Now add to S a maximal
set of lines that go through type 1-1 intersection points and no other intersection points. These lines are designated
type 3. All remaining Jines app=ar to go through a typs 1-1 intersection point and a point of type 1-2, 1-3, 2-2, 2-3 or
3-3. These remaining lines are designatad type 4.

The equation for each line of type 1 is assumed to have exact coefficients. Cosfiicients of Iines of ype 2 are
adjusted so that they go exactly through two points of type 1-1. Thus their cosfficients require higher precision than
the coefiicients of typs 1 lines, In tumn lines of typss 3 and 4 have their cosfficients adjusted. Finite precision arith-
metic is then used to t2st all other intersections. For example a line of typs 2 may go through three intersestion points
of type 1 but only two of the points were used in d=fining it. The third point must be rested to dstzrmine if indeed it is

a real intersection. In this manner we can insure that tha set of answars for line intersecton is indeed consistent.



Again, with input coefficients of length L, a precision of mL digits suffices, where m is approximately 27, see [S].
Note, that implementing this strategy using the line sweep paradigm entails reporting the true intersection points off-
lie. A greedy on-line algorithm implementation would create lines of higher type and lead to an unaceeptable

growth in the number of digits required to test incidence correctly that is not independent of the problem size.

Although logically consistent, the mode] so obtained may require large coefficient parturbations. Figure 7 illus-
trates the problem: If we select lines a, b, ¢, and 4 a5 a maximal set of type 1 lines, then a small psrurbation of the
- input cozfficients of the equaton for b creaiss a very large perturbation of line g. It is much batter to selezt the lines
a, d, e, and f as typz 1 lines. In view of this, the fo].lbwing approach yields an algorithm for polygon intersection that
is likely to yi=ld pracezelly sadsiactory resubts for polygon intersestior: Consider one polygon exast as written, Le.,
use the nzmral modzel for it. Now permurb the 2des positions of the other polygon by trying to sansfy first those near-
inzidences on an edge that are farthest apart. If this distancs is small such that the resulting vert=x position would be
parturbed by more than a specified maximum distance, then drop one of the consmaints. Again, one can hnp!e;nent

this algerithm with bounded precision arithmetiz.

6. Robustly Computing the Intersection of Two Polyhedra

The intersection of two polyhedra can be obizinad by 2 s=qeence of polygon intersscrions. Two types of
difficulties arise in this approach. In certain simations we are dezling with mors than two polygons simultaneously.
The other difficulty is that line segments belonging to different polygons may arise from the same faze and thus can-

not bz adjusted independently.

Consider the intersection of an arbirary polyhedron with a convex polyhedron. Thers is a surprising degrae of
flexibility in the dafinidon of correzmess, From 2 mathemadzal point of view, the intersection of a convex polyhedron
Py with an arbizrary polyhedron P, is equivalent to intersecting P, with the set of halfspaces defining the convax
polyhedron. However, with approximate representations, intersecting P; and P, differs from imtersecting P, with
each of the halfspaces defining P,. In the first case, given represeniations Ky and R, R is a correct result if thers
exist comresponding modzls M; such that Af;=M,~#,. In the second case, the dz=fnition of correctness for a
halfspace representation Ry and a polyhedron reprasentation R is that there exist corrssponding modsls My and My
such that we obtain an cutput representation R, with modei M, such that M =M, ~My. The intersection of R; and

R, is then obtained by successively intersecting with halfspaces. A representation R, that is & correct intersecton by



"the second definition need not be comect for the first definition since intersection is not associative, Whatever
definition is adopted, it must yield valid objects that agree with the ordinary set theoretic interseztion for objects none

of whose features coingide or nearly coincide. Moreover, it must be implementable in a provably correct manner.

The usefulness of the second definition is that it can be implemented in a provably correct fashion. When inter-
secting with a halfspace, we must determine for each vertex of the polyhedron on which side of the plane that bounds
the halfspace it lies, Numerical computation suffices for certain vertices. If the polykedron is wrihedral, we can arbi-
trarily place the other vertices on one side or the other, except that if several vertices of the same face are near the
plane then we must place them in a consistent mannsr. For example, we cannot claim that three noncollinear vertices
of 2 face are on the planz and a fourth vertex of the same face is off the plane. However, since the ousput polyhedron

need not bz gihedral, this approach doss not l2ad to an algorithm for intersscting a trihedral and a convex polyhedron.

The halfspace intarsection approach requires one of the polyhedra to be convex. A better algorithm that can be
extended to the intersestion of arbirary polyhedra Py and P, is as follows: Intersect the plane of each face of P with
solid P to obtain a set of cross sectonal graphs. Each cross sectional graph is clipped by the face of P, associated
with the plane that gave rise to the cross secton. Similarly intersect the plane of each face of P, with solid P, and
clip the cross sectional graphs with the appropriate fac;:. of P;. The representaton of P, ~P; is then construcied
from these cross secdons.

Consaucdng the cross section is analogous to intersectng polyhedra with 2 half space. Clipping ths cross sec-
tions, howevsr, presents added difficulres. First, if the plane cuts P, so that the ross section contains 2 faca, an
edge, or a venizx of P, then the cross sectional graph will have a soucture that represents two cross sections of P; i
e., the cross section on e2ch side of the plane. Thus the ¢ross section is equivalent 1o sui:»erimposing two polyzons and
clipping gives rise to 2 third. Figure 8 shows a polyhedron and one of its cross secdons. Clipping with the polygon
shown again introduces a complexity equivalent to Pascal’s theorsm. In the case where one of the polyhsdra is con-
vex, the solid on one sids of the plans was discarded, as described above. This reduced robust clipping to intersacting
two polygons. When neither polyhedron is convex we can simplify clipping by discarding edges of the cross sec-
tional graph that arise solely because of the structure of the solid on the side of the plane dstermined by the positive
face normal. This raduces the &oss szctional graph to a collection of polyzons intersecring only at vertizes and henca

reduces the clipping problem to the poiygon intersection problem which can be done robustly.




10

Two problems arise. The first has to do with constraints on the edges of the polygons involved. For example,
in the cross sectional graph, it may be the case that several edges arise from the intersecton of the cross sectional
plane with the same face of the solid. In this case the resulting edges must be on the same infinite line. These addi-
tional constraints may not permit robust clipping. Note, however, that the problem can be resolved, as shown in Fig-

ure 9, by partitioning the face.

The second problem is one of global consistency. Although each cross sectional graph can be clipped robustly,

we must make sure that they are clipped consistently, as explainad next.

7. Clipping DilTerent Cross Sections Consistently

Given two faces Fy and F, we;: must insere that the cross sectional graphs generatzd by the planes of F, and F,
are clippad in a consistent manner, Siﬂa an edge a of Fy and an edge b of F, may be generated by the same face Fa,
they cannot be reoriented independently in the respecdve planss (Figure 10), In addition, a face of the other solid
may intersect the planes conmining F; and F, simultaneously, and thus its intersection linss may also not bz moved
independ=ntly. Both types of constraints rust be accounted for. They become especially delicate when an edge e of
the polyhedron P, intersects a face of polyhedron P near an edge e of the face. Here, the edoe &’ intersests the facs
plané in a veniex of the cross section graph, and we must specify whére this vertex les with respect to the faz= boun-
dary e. Furthar complicadons arise in the vicinity of 2 vertzx of e, and a deteiled cass analysis is required. S22 also

[5].

8. Discussion

We have prasentzd several paradigms for correstly implemsnting a variety of geomerric computations. The
reasoning paradigm considers the numerical informadon to be approximate to real data, and seeks to derive informa-
don from the symbolic data describing adjacencies, As we showed, the reasoning componsnt varies considerably
with the geometric structure of the input: Intersecting two polygons is easy, but intersecting simultanepusly several
polyzons requires proving theorems from projective geometry. So far, we were unable to prove comectness of a
polyhedral intersection implementation, but we feel that this approach will succeasd. We have implemenied a
polyhedral intersection roudns based on these ideas and have w=sted itin a \'a.riéry of cases. For example, a unit cube
was intersected with randomly rotated copy of itself. The resulding polyhedron was in turn intersecizd with a ren-

domly rotated copy of itself, and 50 on. After twelve iterations, the polyhedron shown in Ficure 11 was obtained; see
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also [5]. When intersecting polyhedra with a rotated copy, angles as small as 1/10,000 of a degree have been used,
As the angle of rotation 1s diminished, the algorithm starts to consider near-coincident features 10 be coincident,
always consmucting a topologically valid output. Below 2 certain threshold, the alporithm declares the two copies to
be idsntical
Even though the reasoning paradigm is logically satsfactory, it may not have very good numerizal behavior and
may lead to large perturbatons. The placement strategy of Section 5 strikes a compromise in that some numerical
data is taken as accurate while other data is perrurbed, This approach seems to produce smaller permrbations than the
.reasoning paradigm. Neverheless, in practice this has not been 2 problem, and the paradigm has led to a polyhedral

intersection algorithm that is substantially more robust than the algorithms previously reported in the literature,

The exact-as-written paradigm of Section 5 is very satisfactory for simple objects such as line segments. It has
besn used for provably correct polyhedron intzrsection [9], but has a number of draw-backs. Briefly, it is not possible
10 rotate or manstate such a polyhedron without reconstucting it from the rotated or translated primitives, due to the
presence of very small features, Moreover, it seems that this paradigm cannot be extended to nonlinear geomemic
objects: The intersacdon point of linear smuctures with rational coefficients has rational coordinates, but the same is

not wue for nonlinear strucres. Finally, the proliferation of small features is not desirable in many applicadons.

9. References

{11 H.Dwrant-Whyts (1986)
"Conceming Uncertain Geometry in Robolics,” International Workshop on Geometric Reasoning, Oxford, Eng-
land, July 1986,

[2] H.Edelsbrunner, J. O'Rourke, R. Seidel (1986)
"Consucting Arrangements of Lines and Hyparplan=s with Applicatons,” STAM J. Compur 15, 341-363,

[3] G. Goluband C. van Loan {1983)
"Marmix Computaton,” Johns Hopkins Press, Baltimore.

{4] D.QGreene, F. Yao (1936)
"Finite-Resolution Computational Geometry,"” Proc. 27th JEEE Symp. on Found. Comp. Sci., Toronto, 143-
152,

[5] C.Hofimann, J. Hopcroft, M. Karasick (1987)
"Robust Set Operadons on Polyhedral Solids," Tech. Rept. 87-875, Comp. Science, Cornell University

[6] J.Lagarias (1985)
"The computational complexity of simulianeous Diophantine approximation problems,” SIAM J. Comp. 14,
196-209

(7] V.Milenkovic {1986)
"Verifiable Implementations of Gzometric Algorithms Using Finite Precision Arithmetic," Jnternational
Worlshop on Geomerric Reasoning, Oxford, England, Tuly 1986.

[8] T.Owumann, G. Thiemt, C. Ullrich (1987) ]
"Numerical Stability of Geometric Aleorithms,” Proc. 3rd Symp. Comp. Geomeiry, Waterloo, 118-125,



(9]

[10])

12

K. Sugihara (1987)
" An approach 1o error-free solid modeling,” Notes, Instit. for Math. and Applic., Univ. of Minnesota

E. Sugihara (1987)
"On finite precision representations of geometric objects,” Res. Memo RMI 87-06, Dept. of Math. Engr., Univ,
of Tokyo



—

AN A

- Py
A o~

~3

Figure 1
Every ventex incident to edge interior

Figure 2
B incident to DE and E incident to BC




Figure 4




X:
3
A 4
6
——
Y. --"'"-‘".‘.-‘
P
—
P -
A
1

Figure 5




Figure 6
Paszal's Thaorem

Figure 7
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Figure 8

Figure 9
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Figure 10
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Polyhedral approximation to a sphere

Figure 11
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