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1. Introduction

Computational georretry bas the unique opportunity to bridge the shaIp gap between theoretical and applied

computer science. Indeed, practical computations with geometric objects are of intense interest to a wide range of

applied work including computer aided design, robotics, mathemaccs. engineering, etc. At the same time, these COrn-

putations pose many challenging problems of considerable theoretical depth and interest

Implementing nwnerically robust algorithms for computational geometry is a nontrhial task. Except for very

limited classes of geometric objects, it is inCOJ1'G~t (0 assume that infinite precision arithmetic or symbolic compUl.a-

tion will yield corre::t implementations, because basic operations such as O'anslation or rotation inO'oduce inaccuracies

into the representation. For example, a boundary representation for a polyhedral solids consists of two components: A

topological component describing the incidence of vertices, edges and faces, and a numerical component consisting of

face equations. Vo,7hen the coefiicients of the face equations have been mmcated, the topology may claim that four

faces meet at a vertex when in fact the face equations indicate that they meet in a SlJ'Ucrure consisting of two vertices

conne:ted by a very short edge. TIrls inconsistency can lead to a fatal error in a program that is manipulating the

representation and is relying on il5 consistency for program correctness.

It is desirable to assume -that the incidence relations are correct and that the numeric data is only an approxima·

tion to the real data. For instance, [9] shows that the number of significant digits more than quintuples when intersect-
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~ Suppon~ in pan by NSF p;ilDIS DCR 85-02568 and DMC 86-17355 a.lld om C:ODUlC! NOOI4-86-K-0281
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ing linear, three-dimensional strucrores. Moreover, rotating a line by exact angles such as sin(n:J7) would require the

symbolic representation of high degree algebraic numbers. In these and other cases, the machinery implementing

exact arithmetic operations soon dominates the running time of an algorithm and renders it useless in practice.

It is dear that infinite precision computations cannot deal with inaccuracies of the numerical data: Typically, an

algorithm computes a numerical quantity, say oX, and then derives logical infonnation by testing whether x is less than,

equal to, or greater than zero. It is at this point where there is potential for trouble: When.x is less than a cenain thres

hold Eo, the numerical inaccuracies of the input and. possibly, the arithmetic computations simply yield no further

infonnation. Arbitrarily assuming that x=O leads to program failure. Assuming that the input is corre:::t as written

yields, at best, an unpleasant proliferation of microscopica!Iy small geometric strUctur"..s, but may also lead to contrad

ictory information and program failure.

In this paper, we discuss several pa.-adigms for developing pro....ably corre:t implementations of geometric algo

rithms, accounting for the possibility of imprecise numerical input data. These paradigms are based on the concept

that, in the presence of numerical uncertainty, th: logical decision cannot be based on the arithmetic computation

alone, but must be consistent with all previous such decisions. It is our experience that even in situations where a full

correctness proof of the algorithm is not yet completed, this paradigm leads to robust and efficient i.."Tlplememarions

[5]. We illustrate these ideas in a variety of intersecrion problems.

2. The Reasoning Paradigm

If we base logical tests such as incidence on numerical calculation, assuming approximate data and arithmetic

operations of limited precision. then there is an inerval of uncenainty in which the numerical data cannot yield

further information. In such a situarion, a de::ision must be made that has to be consistent with other such decisions

and with the topological data. For exa.-nple. points that have been declared collinear by the topology must be treated

as collinear points by lhe algorithm. Making decisions consistently requires symbolic reasoning, and it is imPOrtant to

understand how complex the reasoning steps could be.

Let M denote a geometric object such as a polygon and letR denote a representation of the object The differ

ence berween an objecl and its representation is that the object can have equations with arbitrary real numbers

whereas the equations in lhe representations are fixed precision numbers. A representation has associated with it a set

of models. A model is a geometric object with the same im:idence structure as the representation and numeric
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specific::J.tions that approximate those of the representation. For many geometric objects lhe represemmion is a model

of itself, called the n.atural model. A binilJ)' operation such as intersection is said to be correct for input representa·

tionsR 1 a.,d R2 ifit produces an outputrepresentauon R 3 such that there exist models M I,M 2. andM3 where Mj is a

model ofR; andM 3=M lr#Zo

The fact that the algorithm is correct in this sense does not mean that it can be used naively as a subroutine in a

larger problem. The notion of COlTectness is one which applies only to a single operation. To see this. consider lhe

problem of inter:secling robustly a pair of line segment';. Each line segment is repl""'..semed by a pair of points whose

coordinates are only approximately correcL In our framework, a correct implementation can be given using .exact or

approximate computation. The algorithm will give comet answers for line segment imersection. but does not account

for possible additional topological structure. Therefore. it cannot be used unaltered 10 implement pol)'gon intersec

tion. since the prop"...rty of consecutive edge incidence. in a common venex is not a:::counted for in the computation.

We examine the utility of the re2Soning paradigm when interse..:ting rwo and three polygons, and discuss me

complexity of the needed reasoning steps. As we shall see, virtually no reasoning is required when intersecting rwo

pol)'gons, provided the algorithm is based on ve.•"te.x!venex and vertex/edge in::idence computations. This is not me

case for siJnultaneous!y intersecting three polygons. Tn~e, theorems from projective geometry must be a::::::ounted

for.

3. Intersecting Two Pol)'gons

A representation for polygons consists of the following data:

(1) S)'IIlbolic venex specifications, oithe fonn ....-=(/,1'). where I and r are lines.

(2) Symbolic edge spe..:ifications, of me fonn e=(v,w) where v and w ue •..mices.

(3) Numeric line specifications of the form l=ax+by+c. where a, b, and c are numbers, e.g.• in floating-point for

mat. Here line equations are orien.ted such that the gradient (a,b) points to the polygon exterior along me

edge.

Note that the natural model polygon may nOt be simple. We quantify the a::::::uracy between a repF-Sentation and a

model by
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Definition. A representation R is e-correct provided there is a model polygon M that satisfies the symbolic

information of the representation, is a simple polygon, and its vertices are within I:: of the vertices of the natural

model.

Next, we need the concept ofmiromwnjeature separation. Intuitively, a representation has minimum feature

separation if no twO vertices are closer than a cenain tolerance. all edges are larger than a certain minimum length.

and consecutive edges have angles not smaller or larger than specific critical values. The purpose of this d:finition is

to limit the effect that perturbing the numerical data has on the polygon geometry. The precise statement is the fol

lowing:

Definition. A representation A has minimum feature separation if consecutive edges form an angle larger [han

a. and smaller lhan 'liHI, if all edges are longer than 3E, two vertices are separated by at least 3E, and no venex is

closer to an edge than 3e.

Here E is a function of ex and represents the maximum error the determination of venex coordinateS can incur

assuming that the lines in~rsecting in the vertex are at an angle a. For example, the condido!: number [3] of the [\\'0

line gradients can be used to define E.

Suppose a '..-enex of one model lies on an edge of the ot.'J.er model Then the \'ertex and the edge are said ID be

co~str2ined. A venex so constrained in tlL.-n constrains its adjacent edges. Thus, an edge can be const:'Wled by its

01,1,7l \'e...."'tices as well as by venices of the oth~ object. An edge with more than twO constraints is over cOI'..rrrwl'.ed,

Lemma J. Let M 1 and M:2 be (\1,'0 model polygons. Then not every edge ofM 1 and every edge of M:2 can be

over constrained.

Corollary. There is at least one edge of M I or M:2 that is not o\'er constrained.

Lemma 2. LetR 1 andR 2 be two r.:presentations with a set of incidence constraints of the forms "venex u is on

edge e," and "verex v and w coincide.n Then there are models of M1 and M2 such that the inciden::.e constraints are

satis.fied provided there is at least one edge that is not over constrained.

Intuitively. the proof of Lemma 2 works as follows: Remove all edges that are not over constrained and also

remove their end points, By a counting argument, there r.:main edges thal now are not over constrained. These are

are removed. along with their end points. This process continues wilb. the remaining edges until all edges are

removed. The edges are now placed in reverse order of removal.
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We can obtain an intersection algorithm based on Lemma 2 as follows: Here E depends on the minimum feature

separation constant and the norm of the line equation L.

(1) Say that aV~ u is on an edge e={v, w) if L(v)<E, where E is a chosen tolerance and L is lite line equation

for e, and if JI. is between v and w and not close to either VeneX-.

(2) Say that vertices u and v are coincident if u is close to .....

It is possible that the algorithm over constrains every edge of both polygons. A case for po~ntial trouble is sho\l,'Jl in

Figure 1. This case is excluded by minimum feature separation. A more subtle difficulty arises as shown in Figure 2

where the tests announce incidences B on DE and E on Be implying B=E or DE and Be are collinear. The test

whether twO vertices are near must be such iliac if u and v are not coincident. then neither u nor v is on both edges

defining the other ven::x.

Theorem 1. Let R1 and R2 be two representations with E correct mod:ls. Then there exists a representation

R lr{?2 with a model M:3 such that there are models M 1 and M2 of R 1 andR 2 ....-ilh M)=M. 1r-M2. Moreover. there

exists a S such that all models are S-co.rre:::t

Note that the theorem shows correctness and quanriJies the accuracy of the intersection algorithm. The accu.

ra::.y crucially depends on the incidence tests. especially the verexlvenex incidence tests.

After tv.·o representations have been intersected, the result need not satisfy lhe minimum feature separation con~

dition for E.. Thus, a pos.-pro::essor may be needed to restore the minimum feaMe separation condition. This may

require lhe obliteration of short edges, ie., affecLS the symbolic data as well as the numeric data of the representation.

As noted in [6.10], adjusting the numeric data to fixed precision rational data is expensive. It is not difficult to extend

these results on intersecting polygons to embedded planar graphs, provided that no relationships of collinearity or

par2.llelism are assumed 8..&7.ong Li.e edges.

We can now explain why an algorithm for intersecting polygons based on verteX incidence tesLS is robust

whereas one based on edge interse::tion computation is not. ~ vertex-on-edge questions are independent but the set

of edge im~e:::tion questions is not. Asking if a venex is on the infinite line defined b)' an edge is not allowed. The

reason for this is that these questions add additional constraints on edges and destroy the independence argument. In

Figure 3, edges AB and CD do not intersect and a vertex can be close to at most one of the edges. However, asking if

verteX .... is on the infinite line defined by AB and on the infinite line defined by CD, could result in a constraint on both
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edges. In fact, a vertex could constrain an OlIbitrarily large number of edges and the proof of Lenuna 2 would not

work.. Simil:Jrly, we must require that the polygons lO be intersected be simple. If edge AB were to cross edge CD

and vena v were close lO the point of intersection, then it would again constrain two or more edges.

Even though there are no relationships assumed to hold among the edges of each input polygon, edges in the

output polygon may have such relationships. For example, in Figure 4, sides A and B must be on the same infinite

line. This will cause a problem when we try to intersect the result with a third polygon. We may choose to discard all

such relationships. Then we can it.eIate polygon intersection. However, in that case the algorithm. cannot be used as a

subroutine by a more general algorithm whose correctness depends on some global prop-"-rty that might be destroyed.

One also should be aware of the f~t that the pairwise interse:tion algorithm is not assodati\'e. In general,

(RlrJR')J(··'.fl.3~Rln(R"J.rY?3)' This suggests [hat there should be twO definitions for correc::ness of the po1rgon

intersection algorithm. One definition for the isolated problem of interSecting two polygons and another definition if

the intersection algorithm is a subroutine of a larger computation. This is exactly analogous to the edge interSection

problem..

4. Simultaneously Intersecting Three Polygons

Rather than imenecting polygons successively, we may consider intersecting more than two polygons si..nul·

raneously. We show that doing so introduces new complexities into the reasoning done to resolve numerical uncer

tainty.

When intersecting three polygons simultaneously, one cannot arbitrarily place a venex with resp"...ct to a n!~2rby

edge as illustrated in Figure S. Assume that we are given three polygons X, Yand Z, whose boundaries include lhe

line segments shown in Figure 5. Ifone claims the incidences

(A,A'), (C,G'), (1,1'), (2,2'), (3,3'), (4,4'), (5,5'), and (6,6'),

then, by Pascal's Theorem, the edges (3,4), (1',6), and (A, C) must intersect in a common point

Pascal's Theorem. If alternate vertices (1,3,5, and 2,4,6) of a hexagon are collinear then the three poinr:s that

are the inLenection of the lines (1,2) and (4,5), (2,3) and (5,6), and (3,4) and (6,1), are collinear.

The theorem is illustrated in Figure 6. Thus the problem of intersecting three polygons is sufficiently complex

so that determining if vertices are on edges requires a theorem prover powerful enough to handle theorems from pro

j~ti"e georneoy such as Pascal's Theorem. It is not difficult to prove that imerse:.ting twO embedded planar graphs
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with colIinearity constraints requires proving alllheorems of linear projecuve geomelry (p2).

5. Line Sweep Algorithms

We consider the line segment intersection problem again as vehicle to explore other paradigms for implement

ing geomettic computations: Given n line segments 11,1 2, ••• ,1,.. and a collection of subsets of the Ii that appear to

intersect at various points, find a consis~nt set of intenections.

Since the geometric snucrure of lhe problem is simple, the following solution could be proposed: Assume the

natural model and compu~ all intenections v.':ith sufficient precision to find the exa:.t imersecrion points. If the line

coefficients are integers of length L, then a precision of 3L+2 is needed [9J. This approach is the e:r:act-as-written.

paradigm. However, the coefficients in the line equations often are not exact,. and it is unlikely that any three. lines

"ill in~ect in a single point. In IIl2JIy applications close coinciden::e really would be coinci&nces were it not for

the approximate line cO"'..fficients. In those cases it is desirable that we perturb the line positions so as to enlarge the

number of common intersections.

.Assume then that the equations of the lines are only approximate and adjust the equations so as to change a

maximal number of near incidences of three lines to true incidences. This can be done as follows. Select a maximal

set of lines 'with the property that no three lines go through anyone point. These lines are said 10 be of t)'Pe 1. Tne

int~e:tion point of a line of type a with a line of type b is said to be of type a-b. Each line not in S appears to go

through a type 1-1 intersection point. If a line not in S appears to go through twO or more t)'Pe 1-1 imerse=.tion points.

then add it to S and call it type 2. New interse:tions of types 1-2 and 2-2 may be created. Now add to S a maximal

set of lines that go Ihrough type 1-1 intersection points and no other intersection points. These lines are designated

type 3. All remaining lines appear to go through a type 1-1 intersection point and a point oft)'Pe 1-2, 1·3,2·2, 2-3 or

3-3. These remaining lines are designated type 4.

The equation for each line of type 1 is asswned to have exact coefficients. Coefficients of lines of type 2 are

adjusted so chat they go exactly through twO points of type 1-1. Thus their coefficients require higher precision than

the coefficients of type 1 lines. In tum lines of t)'Pes 3 and 4 have their coefficients adjusted. Finite pre:.ision arith·

~tic is then used to test all other intersections. For example a line of type 2 may go through three intersection points

of t)'Pe 1 but only ty,·o of the points were used in defining it. The third point must be tested to determine if indeed it is

a real interse:tion. In this m:mner we can insure that the set of answers for line intersection is indeed consistent
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Again. with input coefficients of length L, a precision of mL digits suffices, where m is approximately 27, see [9].

Note. that implementing this strategy using the line sweep paradigm entails reporting the true intersection points off

line. A greedy on-line algorilhm implementation would create lines of higher type and lead to an unacceplable

growth in the number of digits required to test incidence correctly that is not independent of the problem size.

Although logically consistent, the model so obtained may require large coefficient perturbations. Figure 7 illus

trates the problem: If we select lines a, b, C, and d as a maximal sel of type 1 lines, then a small penurbation of the

input coefficients of lhe equation for b creates a very large perturbation of line g. It is much better to sele:t the lines

0, d, e, and f as type 1 lines. In view of this. the following approach yields an algorithm for polygon interSection that

is likely to yield practi::ally s2ti.sfaclory results for polygon interse:tiOl"': Consider one polygon exa:.t as written, i.e..

use the natural model for it. Now pmuro the edge positions of the mher polygon by aying to satisfy first those near

in::idences on an edge that are farthest apart. If drls distance is small such that the resulting vertex position would be

perturbed by more than a specified maximum. distance. then drop one of the constraints. Again, one can implement

this algorithm with bounded precision arithmetic_

6. Robustly Computing the Intersection of Two Polyhedra

The intersection of twO polyhedra can be obtained by a seq\len::e of polygon intersections. Two types of

difficulties arise in this approa=h. In cenain situati~ we e...re ceiling v.ith more th2II two polygons simultaneously.

The other difficulty is that line segments belonging to different polygons rna)' arise from the same face and thus can

not be adjusled independently_

Consider the in~rsection of an arbitr2J)' polyhedron with a convex pol)·hec4""On. There is a surprising degree of

flexibility in the definition of COIT""...emess. From a mathematical point of ,iew, the int:rsectiOn of a convex polyhedron

PI wi:h an arbi:ra."'}- polyhedron P 2 is equi\.·a1ent to in~ecting P 2 v.ith the set of halfspa::es defining the ::onv:x

polyhedron. However, .....ith approximate repl:Semations, in~ecting PI and P 2 differs from interSecting P 2 \1rith

each of the halfspaces defining P l' In the first case, given representations R 1 and R 2• R 3 is a comet result if there

exist corresponding models Mi such that M:,=M1(""}},f 2. In the se:ond case, the definition of correctness for a

halfspace representation RH and a polyhedron representation R1 is that there exist corresponding models M 1 and MH

such that we obtain an output representation R 2 \\ith model M2 such that M2=M l rf!H- The intersection of R 1 and

R1 is then obtained by successi"ely in~rsecting with halfspaces. A representation R" mat is a corre:t intersection by
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the second definition need not be correct for lhe first definition since intersecLion is not associative. Whatever

definition is adopted, it must yield valid objects that agree with the ordinary set theoretic inlerse=tion for objects none

ofwhose fe2tllI""...s coincide or nearly coincide. Moreover, it must be implementable in a provably correct manner.

The usefulness of the second definition is that it can be implemented in a provably correct fashion. When inter

secting with a halfspace, we must determine for each venex of the polyhedron on which side of the plane that bounds

the halfspace it lies. Numerical computation suf.fices for cenain vertices. If the pol)·t:edron is trihedral, we can arbi.

trarily place the oilier vertices on one side or the other, except that if several vertices of the same face are near the

plane then we must place them in a consistent manner. For example, we cannot claim that three noncollinear "ertices

of a face are on the plane and a fourth verex of the same face is off the plane. However, since the output poI)'hedron

need not be trihedral, this approach dO"'...s not lead to an algorithm for intersecting a trihedral and a convex polyhedron.

Tne halfspace intersection approa=h requires one of the polyhedra to be convex. A better algorithm that can be

extended to the intersection of arbitrary polyhedra P I and P:l. is as follows: Intersect the plane of each face of P I with

solid P2 to obtain a set of cross sectional graphs. Each cross sectional graph is clipped by the face of P1 assodated

with the plane that gave rise LO the cross section. Similarly intersect the plane of each face of P2 v.ith solid P I and

clip the cross sectional graphs v.ith the appropriate face of P 2• The representation of P 1r)P2 is then constIUc.ed

from these cross sectior..s.

Conscructing the cross section is analogous to intersecting po!yhed..."a with a hili space. Clipping the cross sec

tions. however, presents added difficulties. FL"St, if the pl2Ile CI.!!S P2 so that the cross section contains a face, an

edge, or a verex of P2. then the cross sectional graph will have a strUcture tbatrepresems twO cross sections of P2; i

e., the cross section on e2:::h side of the plane. Thus the cross section is equivalent to superimposing tv.'o polygons and

clipping gives rise to a third. Figure 8 shows a polyhednm and one of its cross sections. Clipping ",ith the polygon

shown again introduces a complexity equivalent to Pascal's theorem. In the case where one of the polyhedra is can

"ex, the solid on one side of the plane was discarded, as des:::ribed above. This reduced robust clipping to inte."Secting

two polygons. 'When neither polyhedron is convex we can simplify clipping by discarding edges of the cross sec

tional graph that arise solely because of the SlI'Ucrure of the solid on the side of the plane dete..."1I1ined by the positive

face nonnaL This reduces the cross sectional graph [Q a collection of polygons intersecting only at vertices and hence

reduces the clipping problem to the polygon inrersection problem which can be done TObustiy.
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Two problems arise. The first has to do with constraints on the edges of lhe polygons involved. For example,

in the cross sectional graph, it may be the case that several edges arise from the intersection of the cross sectional

plane with the same face of the solid. In this case the resulting edges must be on the same infinite line. These addi·

tional constraints may not permit robust clipping. Note. however, that the problem can be resolved, as shown in Fig

ure 9. by partitioning the face.

The second problem is one of global consistency. Although each cross sectional graph can be clipped robustly,

we must make sure that they are clipped consistently, as explained next.

7. Clipping Different Cross Sections Consistently

Given two faces F I and F 2 we must insure that Ihe cross sectional graphs generated b)' the planes ofF 1 and F:z

are clipped in a consistent manner. Since an edge a ofF1 and an edge b ofF 2 may be generated by the same faceF3,

they cannot be reoriented independently in the respective planes (Figure 10), In addition, a face of lhe other solid

may inter:sect the planes containing F1 and F2 simultaneouslY, and thus its intersection lines may also not be moved

independ..'"Iltly. Both types of constraints must be accounted for. They become espe::ially delicate when an edge e' of

the polyhedron P 2 imerse::ts a face of polyhedron PI near an edge e of the face. Here, the edge e' inte..rsects the face

plane in a venex of the cross section graph, 2nd we Inl!st specify where this verex lies with resp"....::t to the face boun

da; e. Fur..h~ complications arise in the vicinity of a verex of e, and a det2.iled case analysis is required. See also

[5J.

8. Discussion

We have presented several paradigms for correctly impleJro:nting a variety of geometric computations. The

reasoning paradigm considers the numerical information to be approWnate to real data, and seeks to derive informa

tion from the symbolic data describing adjacencies. As we showed, the rea.soning component varies consid~ably

"'ith the geomenic struc[U!'e of the input: InterSecting two polygons is easy, but inter.;;e:ting simultaneously several

polygons requires proving lheorems from projecdve geoxr.etry. So far, we were unable to pro\'e correcmess of a

polyhedral intersection implementation. but we feel that this approach will succeed. We have implemented a

polyhedral intersection routine based on these ideas and have tested it in a \'a..."'iety of cases. For example, a unit cube

was interse:::ted with randomly rotated copy of itself. The resulting polyhedron was in turn intersected v,'ith a ran

domly rotated copy of itself, and so on. After t\velve iterations, the polyhedron sho\\rn in Figure 11 was obtained; see
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also [5J. When intersecting polyhedra with a rotated copy, angles as small as 1110,000 of a degree have been used.

As the angle of rotation is diminished. the algorithm starts to consider near-coincident features to be coincident,

always constructing a topologically valid output Below a cerUlin threshold, me algorithm declares the two copies 10

be identical

Even though the reasoning parndigm is logically satisfactory, it may not have very good numerical behavior and

may lead to large penurbations. The placement strategy of Section 5 strikes a compromise in that some numerical

data is taken as accurate while other data is perturbed. This approach seems to produce smaller p"..rrurbations than the

. reasoning paradigm. Nevertheless. in practice this has not been a problem, and the paradigm has led to a polyhedral

intersection algorithm that is substantially more robust than the algorithms previously reponed in the literature.

The exact·as-....-ritten paradigm of Section 5 is very satisfactory for simple objects such as line segments. It has

been used for provably correct polyhedron intersection 19], but has a number of draw-backs. Briefly, it is not possible

to rotate or translate such a polyhedron without reconstructing it from the rotated or translated primitives, due to the

presence of very small features. Moreo\'er, it seems that this paradigm cannot be extended to nonlinear geometric

objects: The intersection point of li"lear structures wim rational coefficients has rational coordinates, but the same is

nOt true for nonlinear structures. Finally, me proliferation of small features is not desirable in many applications.
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