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ABSTRACT A novel design and manufacturing pipeline for Additive Manufacturing is presented. The
architecture of the pipeline is motivated by the observation that the conventional pipeline is unnecessarily
complex. Most of the time, only a small set of programming steps suffices for 3D design and manufacture.
In particular, the proposed method requires no complex hardware or software, and it generates the geometric
data on the fly. This is demonstrated using a simplified evaluation of general volumetric sweeps. The method
side-steps many of the problems of the conventional Additive Manufacturing pipeline. Several scripts are
provided that illustrate the capabilities and the advantages of the proposed approach. These scripts are
processed on a single-board computer and the parts are manufactured on a Fused Filament Fabrication type
of 3D printer.

INDEX TERMS Additive manufacturing, implicit modeling, slicing.

I. INTRODUCTION
With the advent of Additive Manufacturing (AM),
the expectation of achieving democratic manufacturing
has come closer to reality. In the current state-of-the
art, AM still relies on sophisticated software systems to
create data/instructions needed to drive the fabrication
hardware. From the standpoint of prospective manufac-
turers, the required know-how (including mastering the
design/development tools) along with the corresponding lim-
itations imposed by the software tools hamper the rapid
product-development cycle. Consequently, we seek to sim-
plify the AM fabrication pipeline by eliminating the need for
complex propriety/non-propriety software tools.

The conventional design and fabrication pipeline of AM
machinery is summarized in Figure 1. This pipeline com-
monly uses two separate computer systems. Product design
and slicing are generally performed on a workstation or
a PC with considerable hardware resources. Commercial
Computer Aided Design (CAD) software tools are com-
monly utilized to develop 3D solid geometric models of prod-
ucts. Subsequently, these entities are converted to different
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geometric representations (such as STL, OBJ, AMF,
3MF, etc.) to be later transferred to proprietary Com-
puter Aided Manufacturing (CAM) software. For Powder
Bed Fusion (PBF) / Fused Filament Fabrication (FFF) /
Direct Energy Deposition (DED) / Stereolithography
(SLA) / Digital Light Processing (DLP) type of devices,
the given geometry is transformed into the tool-trajectory data
(i.e. position of the laser beam / extruder head / welding
electrode etc. defined as a collection of rectilinear motion
patches). At this stage, the resulting code (typically NC/G
code of RS274D) needs to be further processed by the embed-
ded computer system (a.k.a. 3D-Printer Processor) of the
AM machinery. It is parsed and interpolated to produce the
low-level instructions (i.e. discrete-time motion- and process
control commands) needed to drive the axis controllers and
other Peripheral Devices (PDs) of the fabrication equipment
in real-time.

Although this conventional pipeline has been embraced by
the AM community, it has many well-known drawbacks:
• Performance of the pipeline depends on the capabilities
of CAD and CAM software tools utilized.

• The host PC should have considerable hardware
resources including high-performance Graphics
Processing Unit (GPU) along with multi-core
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FIGURE 1. Conventional design and fabrication pipeline of AM machinery.

Central Processing Unit (CPU). This is of particular
importance if the geometric models constitute detailed
features such as intricate parts, surface textures/patterns,
lattice structures, etc.

• Data conversion of the designed artifact to STL,
OBJ, AMF, 3MF formats inflicts information loss
(e.g. dimensional resolution, topological relationships
among geometric features, material data, color, interior
structure, etc.).

• The pipeline cannot be interrupted. If any revision on the
geometric model is required, the whole process has to be
started from the scratch.

• The overall pipeline is hard to maintain especially when
upgrading to newer or different software tools (with
additional process steps).

• The NC code generated by (either proprietary or open-
source) CAM software is not universal. The code cannot
be processed by any similar AM machine of the same
technological class.

An alternative approach, which is presented in
Figure 2, aims to overcome the above-mentioned disadvan-
tages by revisiting the basics. In the proposed methodol-
ogy, a single-board (i.e. small-form factor) computer to be
integrated to the 3D-Printer Processor is utilized to perform
the entire design- and fabrication stages of AM applications.
No specific CAD and/or CAM software is required. Instead,
the geometry of a fabricated object is implicitly modeled

FIGURE 2. Proposed design and fabrication pipeline of AM machinery.

via a Python script/code called P3D. Slicing and tool-path
generation are automatically performed with the assistance of
a software agent that is designed for a specificAM technology
such as FFF, PBF, DED, SLA/DLP, etc.

This paper elaborates the above-mentioned integrated
pipeline. The key element of this novel approach is
the simplified model definition where the components of
a 3D geometric model are constructed in a piecewise fashion
by calling a simple sweep function. Here, the spatial / topo-
logical relationships among these components are described
by the operators of Constructive Solid Geometry (CSG).
Users can build complex geometric parts by embedding a
number of sweep functions into the P3D Python script.
Consequently, the input to the proposed AM pipeline is an
executable P3D Python script that defines not only the geom-
etry but also the relevant attributes of the solid part. Note
that the shape to be fabricated does not involve proprietary
data as would be necessary if the description had to rely on
commercial CAD/CAM systems.

The paper presents a software agent (also implemented in
Python programming language) to slice the model and gen-
erate directly tool trajectory data without user intervention.
The approach has been implemented on a small-form factor
computer system (Raspberry Pi Model 3).

The outline of the paper is as follows: Background infor-
mation about the recent developments on implicit model-
ing, slicing, and AM pipeline is presented in Section 2.
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The structure of the proposed approach is elaborated in
Section 3. To assess the performance and benefits of the pro-
posed scheme, several scripts are developed tomodel intricate
parts. The details of these scripts along with the fabricated
artefacts are given in Section 4 where comparisons with the
conventional approaches are also done. Finally, summary and
conclusion on key aspects of the work are presented in the last
section.

II. PRIOR WORK
The AM processes provide more flexibility than the tra-
ditional manufacturing methods but they still require care-
ful planning [1]. There is a basic procedure for almost all
AM processes from design to fabrication. Throughout the
years, many research efforts have concentrated to this aspect
but no efficient pipeline has been introduced to overcome all
pronounced problems. Since our proposed method focuses
on design and slicing perspective of the AM pipeline,
recent literature on these topics is summarized in proceeding
subsections.

A. EXPLICIT MODELING AND SLICING
Explicit modeling and slicing methods can be considered as
foremost approaches in computer graphics andAM. Themain
methods to represent artifacts include CSG, (triangle /poly-
gon) meshes, Boundary REPresentations (BREP), voxels,
and point clouds. A succinct review on these approaches can
be found in [2]. Since these representation methods are not
specifically developed within the context of AM, there exist
many studies on customizing them for AM. In one of these
studies, Chandru et al. [3] used voxels to perform design oper-
ations in AM. Similar to our study, they employed volumetric
sweeps as the primitives for their geometric framework.

Slicing shapes that are defined explicitly is a fundamental
research field, because they all affect the tool trajectories in
AM machinery. Direct slicing is oftentimes coupled to CSG
representations. Once the part is modeled by the correspond-
ing CAD software, special scripts/programs are devised to
carry out the slicing directly on the shape so as to increase
the accuracy of path generation (see [4]). Likewise, there are
numerous studies for slicing in conventional AM pipelines
that employ mesh representations. For instance,
Minetto et al. [5] proposed an optimal slicing algorithm to
decrease the computation time, especially when the number
of facets in the mesh is relatively large (� 1000).

A different approach based on BREP was adopted by
Starly et al. [6]. They extracted the boundary information
from STEP files and then sliced the models using ray-casting
method. Slicing becomes straightforward when voxel-based
modeling is employed. Alexa et al. [7] focused on the vox-
elization side to decrease the computation time while increas-
ing the fabrication accuracy. Point-cloud representations are
also utilized when the AM process needs to duplicate an
artifact. Xu et al. [8] considered slicing the point-cloud based
models. They constructed virtual edges of the given data and
then the model was sliced directly without any conversion to
different geometric representations.

B. IMPLICIT MODELING AND SLICING
Although explicit modeling is utilized by most of the
AM community, it brings some disadvantages to the design
and fabrication pipeline. This is mainly due to the fact that in
explicit modeling, parts are modeled as solids with homoge-
neous interior. When such approaches are adapted, the true
potential of AM technologies cannot be unleashed. Thus,
many studies investigate implicit modeling techniques in
AM. In one of these works, Lefebvre [9] proposed an implicit
modeling and slicing tool (IceSL) for FFF-based 3D printers.
In this approach, Lua-based scripts were utilized to model
geometric entities via CSG. The script, which incorporates
both analytical primitives (i.e. cones, spheres, cubes, etc.)
and the STL models, was processed with the full assistance
of a GPU. The graphics rendering, CSG operations on the
geometric entities (defined in the script), and the subsequent
slicing operations were all performed at the maximum reso-
lution of the 3D printer by making good use of the A-Buffer
technique. Consequently, fabricated artefacts were expected
to be high-fidelity replicas of the original models. Notice that
the model visualization and slicing in this work took place at
very high speeds owing to the fact that all operations were
carried out (in parallel) on the GPU.

Instead of CSG, Zhao et al. [10] used Layer-Depth Nor-
mal Images (LDNI) to define models implicitly. Using
Boolean operations, they improved the efficiency of truss
generation. The study of Zeng et al. [11] can be considered
an extension of the work of Zhao et al. [10]. They utilized
Boolean expressions of LDNI solids to enhance the effi-
ciency of slicing on complicated CSG objects. In another
study, Steuben et al. [12] provided an implicit slicing method
for evaluating the tool-paths for each layer. They further
examined the effect of infill patterns on the performance of
different models in terms of their stress- and strain distribu-
tions. They eventually compared them to the outcomes of
conventional (explicit modelling) methods. The final test in
their study showed a great improvement on the structural
integrity of their specimens. A similar study was conducted
by Xia et al. [13] to define the interior of the parts implicitly
by utilizing the orientations of the maximum principal stress
components. Li et al. [14] followed a similar approach. They
used several implicit functions to model the parts and fab-
ricated them directly on 3D printers. They highlighted the
resulting advantages of implicit modeling and slicing in AM.

Considering the above-mentioned research efforts in the
conventional design and fabrication pipeline of AM technolo-
gies, there remain open relevant research areas. In particu-
lar, mitigating or eliminating the disadvantages enumerated
before awaits further work. This paper aims at doing that in
the framework of implicit models and low processing power.

III. PROPOSED METHOD
The proposed pipeline combines three major tasks:

(i) The artifact to be fabricated is modeled implicitly in
Python using CSG augmented by our library functions
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that are specifically developed for efficient geometric
modeling.

(ii) The cross-sections of the solid model, at arbitrary ele-
vations, can be obtained directly using the P3D script
defining the model.

(iii) A universal AM agent generates automatically the
interpolation data needed to fabricate each- and every
layer to be printed.

The following sub-sections elaborate these methods.

A. CONSTRUCTION OF SOLID GEOMETRIC MODELS
Swept volumes are ubiquitous tools for generating numer-
ous features. Thus, there is a large body of research
that examines this concept [15]. Moreover, almost every
CAD software offers a method/utility/function/operator to
generate such solid geometric models. The method we
offer here relies on a single (but general-purpose) sweep
function that creates the boundaries/surfaces of solid geo-
metric models on a piecewise fashion. User defines a pla-
nar cross-section profile that moves along a given guide
curve, and constructs the boundaries (envelope) of the swept
volume. A generic operation performed by this function
is shown in Figure 3, and can be expressed as follows:

s := sweep(Ps,Pe,G, �, σ ) (1)

FIGURE 3. The operation of sweep function and its critical parameters.

where
Ps = {ps[i] ∈ R2×1

: i ∈ N≤Ns} is the start profile,
Pe = {pe[i] ∈ R2×1

: i ∈ N≤Ne} is the end profile,
G = {g[i] ∈ R3×1

: i ∈ N≤Ng} is the C0-continuous
guide curve,
� ∈ R is the twist rate along the swept path (0 is the
default),
σ = {σ [i] ∈ R+ : i ∈ N≤Nσ } is the shape scale factor,
(default ∅),
Ns,Ne,Ng,Nσ ∈ N denote the sizes of the sets Ps,
Pe, etc.

With respect to the output argument of Equation 1, s defines
the outer surface of the swept volume as a triangle mesh
(i.e. STL): s = {V [i] ∈ R3×3

: i ∈ N≤Nv} is the set of
Cartesian coordinates of the vertices of the triangular facets.
The resulting Python function can handle the following cases:
• Shape interpolation between Ps and Pe along the sweep
course;

• Rotation (or roll) and isometric scaling of the interpo-
lated shape along the travel path;

• Automatic shape blending at sharp turns of the guide
curve since there are no restrictions imposed on G than
C1 continuity;

• Self-intersecting surfaces and ill-defined guide-curves.
Figure 4 presents the rendered images of some mod-

els created by a single call of the sweep function. Notice
that these test cases happen to be quite challenging for
most CAD software packages. It is clear that, with suitable
input arguments, all of the common geometric operations
(such as extrude, revolve, loft, etc.) found in commercial

FIGURE 4. Some solid geometric models generated by sweep function.

VOLUME 9, 2021 107227



V. Haseltalab et al.: Toward Simple Design and Manufacturing Pipeline for AM

CAD software can be implemented using our versatile
function.

1) DEFINING SOLID GEOMETRIC MODELS
Using the familiar regularized CSG operations, complex solid
geometric models can be constructed from the segments of
the form S = {s[1], s[2], . . . , s[N]}. Here, each segment can
be generated by the sweep function described above:

s[n] := sweep(Ps[n],Pe[n],G[n], �[n], σ [n]) (2)

s[n] := transform(s[n],A[n],B[n]) (3)

Note that the sweep function generates a triangle mesh in a
local coordinate frame. That is, the function computes the ver-
tex coordinates of all the triangular facets in a local reference
frame. Therefore, a homogeneous coordinate transformation
on s[n] is needed so as to represent the mesh in a common
global reference frame. Hence, the transform function has
been created for this purpose. In Equation 3, the orientation
of the local coordinate frame is defined with respect to the
global frame. Here, A[n] ∈ R3×1 is a vector containing Euler
angles. Similarly, B[n] ∈ R3×1 is the offset vector defining
the location of the origin for the local coordinate system in
the global reference frame.

Notice that the Boolean operations must accompany the
transformed models (i.e. s[n]). For this purpose, we define a
set of operations on the geometric models:

9 = {ψ[n] ∈ {1,−1} : n ∈ N≤N } (4)

where ψ[n] = 1 refers to the union operation, and −1 to
the difference operation. Hence, the overall operation on the
component pieces is simply expressed as

S =
⋃
i∈I+

s[i]−
⋃
i∈I−

s[i] (5)

where I+ = {i ∈ N≤N : ψ[i] = 1} and I− =
{i ∈ N≤N : ψ[i] = −1}. In the near future, we plan
to augment the operation set 9 to include lattice structures
inside the model, surface attributes, and their corresponding
properties / parameters.

Our Python script P3D will use the developed library to
define complex solid geometric models. When this code is
executed on the Python interpreter, two lists with reserved
names (PL and OL) are created as the outcome. The list
PL corresponds to the superset S and contains the trian-
gle mesh data of the components. The list OL describes
the accompanying Boolean operations. The firmware makes
good use of the data contained in these two lists to produce
the commands to fabricate the final object from its elements.
Figure 5 illustrates the flowchart of the geometric model
definition procedure.

Note that there is no need to assemble the component
models into a single final mesh. Depending on the AM tech-
nology, the cross-sections of the final model S can be directly
generated from the component models s[n].

FIGURE 5. Flowchart of parametric solid geometric model (P3D)
definition.

It is critical to recognize that a sizeable number of CAD
modelling/slicing software uses scripts. That includes Open-
SCAD, Open CASCADE, FreeCAD, OpenJsCAD, Implicit-
CAD, RapCAD, BlockSCAD3D, and lately IceSL [9]. Some
of them such as OpenPySCAD, PythonOCC have Python lan-
guage support. The most common features in those languages
are as follows:
• They are mostly designed as alternatives to the
(GUI-based) conventional CAD/CAM software
packages;

• They utilize extensively the OpenGL API;
• Their APIs comprise a vast number of methods includ-
ing 3D graphics rendering engines/functions;

• They are mostly designed to run on workstations and
PCs with considerable hardware resources. Further-
more, some of these tools like IceSL require even special
hardware, such as high-end graphics cards/GPUs to ren-
der the designs.

The method proposed here circumvents the considerable
complexity challenges arising from the issues explained
above:
• The functions used in P3D script do not require a
foreign API such as OpenGL; they are purely Python
implementations.

• Since only two functions are sufficient to construct com-
plicated geometric models, the learning curve is smooth.

• Users can create/edit/modify P3D scripts as needed.
This is especially useful when the design has symme-
tries or contains replicated features. Moreover, it is easy
to modify the topology, such as creating parametric
designs.

• The proposed conceptualization of the geometric design
is easy to implement on computers with modest capabil-
ities and resources, such as Raspberry Pi, BeagleBone,
Odroid, etc.
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In the following section, we shall discuss how to generate
cross-sections at arbitrary elevation from the individual com-
ponent models.

B. OBTAINING CROSS-SECTIONS FROM SOLID
GEOMETRIC MODELS
In AM process planning, the most important stage is to obtain
the cross-sections of the geometric model. The model is
defined in terms of the two sets S and 9, i.e., the lists PL
and OL. The function dissect generates the cross-section of a
triangle mesh at any given elevation. It is used as follows:

C := dissect(s, z) (6)

where s is a set associated with a (single) triangle mesh, and
z is the elevation, in the direction of the z-axis. Formally,
the plane z = h cuts the model, with h the second parameter
in the function call. The constant h is in the global coordinate
system. The output set (C) is a collection of polygonal chains
in the dissection plane representing various cross-sections.

The function modify executes the Boolean operation ψ ,
add/union or subtract/difference, on the cross-section C and
the polygon P:

C := modify(C,P, ψ) (7)

The output C is the modified cross-section. The final
cross-section is computed using a number of such modi-
fications. The basic algorithm used in the function can be
summarized as follows:
• Given a set C of polygons C = {c1, c2, . . . , cm}, find
the subset of polygons, with index in set I , that have a
nonempty intersection with a given polygon P:

I(P) =
{
i ∈ N≤m : ci ∩ P 6= φ

}
(8)

• If ψ = 1 (i.e. ∪), then unite P with the intersecting
polygons in C:

C ′ =
{
ck ∈ C : ∀k ∈ N≤m ∧ k /∈ I

}
+P ∪

⋃
k∈I

ck (9)

• If ψ = -1 (i.e. –), then take the difference of P with the
intersecting polygons in C:

C ′=
{
ck∈C : ∀k ∈ N≤m ∧ k /∈ I

}
+

{
ck−P : ∀k ∈ I

}
(10)

• Let C:= C′ and return C.
Consequently, the overall cross-section of a solid model,

implicitly expressed as Equation (5), can be constructed by
the following function:

C := xsect(S,ψ, z) (11)

The pseudo-code is listed in Algorithm 1.

Algorithm 1 Pseudocode of the Function xsect
1: function C:= xsect(S,9,z)
2: for i:=1 to |S| do
3: C:= dissect(S[i],z);
4: if i = 1 then
5: Q:= C;
6: else
7: for j:= 1 to |C| do
8: Q:= modify(Q,C[j],ψ[i]);
9: end for
10: end if
11: end for
12: C:= Q;
13: end function

C. PATH PLANNING
The presented approach advocates the use of a path planning
agent to fabricate automatically the part defined with our
P3D Python script. The agent is to be part of the machine’s
firmware and is expected to eliminate the need for propriety-
and non-propriety CAM software tools. The eliminated soft-
ware tools free the user from both having to learn them and
understanding the machine-specific data/codes (like NC/G
Codes) that define the tool trajectory. The agent is expected
to generate automatically themotion commands for themotor
drivers along with the inputs to the auxiliary units (or periph-
eral devices). Hence, the input to the proposed AM pipeline
is a single script defining the solid geometry.

For this purpose, two path planning agents for the FFF and
DLP technologies are devised using the Python scripting lan-
guage. These open-source programs benefit from the library
functions that are specifically developed for the AM process
planning and modelling. Additionally, these programs are
expected to serve as prototypes for firmware developers so
that they can adapt them to any specific machine architecture,
configuration, and hardware.

We shall sketch an abridged (offline) version of the
algorithm implementing the path planning agent for the
FFF technology:

1) Given the process parameters, such as1z; nozzle diam-
eter: 2ρ), run the given P3D script to get S and 9;

2) Initialize all variables/lists and set elevation z := 0;
3) Find the cross-section of the model at elevation z: C :=

xsect(S,ψ, z)
4) Group polygons in C into a new superset Q = {Q[i] :

i ∈ N≤|Q|} (i.e. create a tree structure) such that the
elements of Q are defined as

Q[i] = {qj[i] ∈ C : q1[i] ∩ qk[i]

= qk[i], j ∈ N≤|Q[i]|, k ∈ N>1
≤|Q[i]|} (12)

where the first set inQ[i] (i.e. q1[i]) is themain polygon
whereas the remaining ones denote the hole/interior
polygons. Note that a polygon tree with a depth of
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FIGURE 6. Decomposed solid geometric models and their relevant geometric entities.

two is described here for the sake of clarity. However,
the actual algorithm forms a tree with indefinite depth.

5) For every element in Q,
a) For intermediate layers, create the outer layers

(i.e. shells) of Q[i] by employing a curve offset
generation algorithm presented in [16] (i.e. pcur
function). Using infill function of the library,
compute the rectilinear paths with specified spac-
ing (i.e. infill ratio) covering the remainder of the
internal areas of Q[i];

b) For top layers, compute all curve offsets asso-
ciated with Q[i] where the distance between the
generated offset curves (ρ) is considered to be a
property of the equipment at hand (i.e. the nozzle
diameter of the extruder head);

c) Add the resulting data to the list 0 which serves
the main repository to describe the tool trajec-
tory in 3D Cartesian space. For the sake of con-
venience, the current elevation (z-coordinate) is
appended to the coordinates of all points to be
added to the list.

6) Increase the elevation: z := z+1z;
7) If z < zmax , go to Step 3.
With the given feed-rate, the coordinates in 0 are inter-

polated to issue real-time position commands to the axis
drivers (as well as PDs like extruder-head control sys-
tem and filament feeder). Note that large gaps (> ρ)
between the points in 0 signal the tool retraction and rapid
travel between the accompanying points. Notice that the
parameters1z and ρ (and the data size for Q and 9) directly
govern the fabrication quality.

It is critical to note that in FFF, fabricating a single layer
could typically take one to three minutes, depending on the
size, complexity, and infill ratio of a given model. Hence, it is
beneficial to send out promptly the interpolation data (associ-
ated with a particular layer) to the 3D printer processor.While
the fabrication is in progress, the agent (serving as the integral
part of the device) will have ample time to process the next
layer despite its limited computational resources.

The agent for the DLP technology is much simpler if
compared to the afore-mentioned counterpart. The entire

cross-section at a particular elevation is to be transferred
to the projector as a binary image. The material at the
‘‘fill’’ pixels is deposited at once. Hence, Step 5 of
Algorithm 1 becomes unnecessary. The polygons represent-
ing the cross-sections of the object at a particular elevation
(at Step 4) are basically converted to a binary bitmap image
and is sent out to the digital light processor/projector of the
machine through the designated video data transfer protocol.

IV. EXPERIMENTS AND DISCUSSIONS
We are using three test pieces to assess the performance of
the presented method:

1) (Utah) Tea Pot
2) Impeller (of a (Centrifugal Compressor)
3) Worm Gear
In the following subsection, we shall describe themodeling

of these artefacts. Furthermore, we shall present an example
for a user-friendly interface (i.e. dialog box) that enables users
to make the design changes easily and efficiently without
editing P3D scripts. Finally, the fabrication performance of
our pipeline are compared to those of its counterparts in the
last subsection.

A. DEFINITION OF THE TEST MODELS
The test parts are decomposed into a number of subcom-
ponents as illustrated in Figure 6. Employing the geometric
entities in Figure 6, three P3D Python scripts are created to
define the corresponding geometric models. Table 1 lists the
Python script for the impeller. Note that the data associated
with some of the geometric entities, such as paths and pro-
files, are directly loaded from a MAT data file for the sake
of keeping the Python listing short. In the actual application,
all lists can be included to the P3D file. The related files and
some of the examples are available on GitHub [17].

By modifying the given script, a family of impellers
with different geometric attributes can be developed.
Figure 7 illustrates some of the modified cases. For instance,
Figure 7(a) demonstrates the rendered image of the original
model. By reducing the number of blades from 12 to 6
(See line 10 of Table 1), the geometric model in Figure 7(b) is
obtained. Figure 7(c) shows another variant where the blades
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TABLE 1. P3D Python Script defining the impeller.

FIGURE 7. Rendered images of the impeller with different parameters.

in alternating order is reduced in length by changing the cor-
responding guide curve. Finally, modifying the guide curve
associated with all the blades, the model shown in Figure 7(d)
is attained.

For better interaction with the users, a dialog box
(a.k.a. ‘‘mask’’) can be conveniently incorporated to the
model defined in P3D with the utilization of PyGUI library.
A simple dialog box whose parameters describe the main
dimensions (A to G) of the Impeller model is demonstrated
in Figure 8. Hence, the users can safely modify the geometric
model without editing P3D script.

Next is the fabrication process with the P3D definitions as
inputs.

B. FABRICATION OF THE PARTS
The FFF agent discussed in Section 3 is used to fabricate
the test parts on an Ultimaker 2 Go 3D printer. Since the

FIGURE 8. A sample mask (dialog box).

firmware of this device is not open-source, a Type-I imple-
mentation [18] is made on a Raspberry Pi Model 3 single
board computer. The agent has been developed in Python, and
is now modified to generate the raw trajectory data for each
layer offline. That is, the agent populates the 0 list layer by
layer. The resulting data are then converted to NC commands
needed to fabricate a particular layer on the 3D printer. Note
that the NC codes produced must be sent out to the main
controller of the printer (Arduino Mega 2560) in batches
via USB. The NC code interpreter, by design, has a limited
set of commands and a small buffer. Table 2 summarizes the
fabrication parameters while Figure 9 shows the fabricated
parts. For the tea pot case in Figure 9(a), two different P3D
scripts are used, one for the teapot body, the other for the lid.

As can be seen from Figure 9, the printing quality of the
fabricated test parts is comparable to that of the conventional
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FIGURE 9. Fabricated test parts.

TABLE 2. Fabrication parameters of the test cases.

pipeline. The CURA open-source CAM software was used
to generate the overall NC Code. Note that even a simple,
small change of process parameters, such as modifications
in layer depth, nozzle diameter, feed-rate etc.) will require
the regeneration of the entire NC Code, from scratch. For
instance, in the CURA software tool, this simplemodification
alone would require a chain of changes, including

1) loading the STL model,
2) regeneration of the NC code,
3) saving the resulting file onto a SD card,
4) transferring the code to the printer, and
5) initiating the fabrication.

These steps could take 2 to 3 minutes depending on the
architecture of the printer and on the complexity of the
STL model. The situation would get worse if the user were
to make small changes on the geometry of the part. This
alteration would then necessitate re-using a CAD software
tool. The revisions on the part and the creation of the STL file
could also take a considerable amount of time. None of the
traditional methodologies described would challenge the pro-
posed approach in view of the issues mentioned above. When
using our methodology, these modifications are promptly
carried out and there is no need to re-engage any CAD/CAM
software tools.

C. COMPARISONS
To evaluate the performance of the proposed method
quantitatively, the Impeller model (Case 2) was designed
using 3 different AM pipelines: i) Proposed method

(a.k.a. ‘‘LIPRO’’); ii) Conventional (i.e. SolidWorks CAD
software + CURA software); iii) IceSL. Implementation
details are summarized in Table 3. Here, the term labelled
as the ‘‘Param. CAD’’ refers to a parametric SolidWorks
model whose geometric parameters (a total of 7) are read
externally from an Excel spreadsheet. Similarly, the first row
of this table presents the size of the script/file defining the
3D solid geometric model while the second row (‘‘Design
Time’’) denotes the elapsed time to design the part from
the scratch. The third row (‘‘Learning Time’’) indicates the
‘‘rough’’ estimate on the period for a novice to learn the
required skills to design the part using the corresponding
software tools. Likewise, the fourth row denotes the spec-
ifications of a typical hardware to run the accompanying
software packages. Finally, the last row (‘‘The Size of the
NC Code’’) denotes the size of the NC Code generated by the
above-mentioned pipelines. As can be seen from the table,
the proposed approach appears to be on the leading edge at
almost every category:

• The presented method yields the smallest model size
since only a few functions in P3D script are employed
to generate a relatively complex 3D model.

• The learning curve for LIPRO appears to be quite iden-
tical to that of the IceSL and is not steep due to the fact
that only the basic knowledge in Python programming
language is sufficient. Hence, it is expected to take less
time to commence fabrication in LIPRO if compared to
the conventional techniques.

• LIPRO can run on almost any small-form-factor com-
puter whereas working withmodern CAD software tools
in conventional AM pipelines oftentimes necessitates
powerful PCs. Similarly, IceSL demands a high-end
GPU due to its utilization of advanced rendering
techniques.

• With respect to the size of the NC code, unlike other
techniques, LIPRO does not generate a NC Code to be
downloaded to the 3D printer. In this Type-I implemen-
tation, LIPRO directly generates the tool trajectory for
each layer and the corresponding NC code does not need
to be stored externally.
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TABLE 3. Comparison of the proposed pipeline with similar approaches.

V. CONCLUSION AND FUTURE WORK
We have introduced a new design- and fabrication paradigm
for 3D printers. Our intention is to overcome the drawbacks of
the conventional 3D printing pipeline. The key contributions
of the proposed process are as follows:

• A Python script-based implicit geometric modeling
technique is presented. The method employs a single,
versatile function called sweep to generate solid geo-
metric models piecewise using the Boolean operators
of CSG. Users can easily define complex geometric
parts. Since all of the library functions (including sweep)
mentioned in the paper are open-source, users may tailor
them to accommodate their own needs.

• The presented (path planning) agent, which we devel-
oped in the Python language using versatile LIPRO
library functions, can easily be implemented on any
computing platformwith limited resources. In our exper-
iments, we have been using a single-board computer
Raspberry Pi 3. All computers with small form-factors
would also be suitable since they can be conveniently
integrated to the AM printing equipment. Similarly, our
(open-source) path-planning agents can be adapted to
any AM technology.

• The method eliminates the need for third-party CAD
software. The user can create/edit/modify the solid mod-
els using a simple text editor. As a verification tool,
our system includes a simple 2D geometric viewer as
a utility.

• Our approach advocates the elimination of CAM soft-
ware as well as intermediate low-level codes like the NC
Code. It offers data portability since the only input to the
proposed AM pipeline is P3D Python script that defines
the geometry along with the properties of the solid part.

• We build our geometric models as the decomposition of
subparts. The advantage is that the decomposition of the
geometric model simplifies the path planning procedure,
as well as later stages of the AM pipeline.

• For the time-being, the solid geometric models inside
P3D are implicitly represented as triangle meshes
(i.e. STL models) for the sake of easy implementa-
tion. From the standpoint of users, this indirect use of

STLmodels does not alter the way the geometric entities
are defined. This is partly due to the fact that the STL
data are employed in the subsequent slicing operations
while processing P3D. Such intermediate operations and
their outcome are not transparent to users. Evidently,
advanced data structures to represent geometric entities
more accurately (such as the ones offered by the AMF,
3MF, OBJ etc.) could be smoothly incorporated to P3D
in the near future as the need arises.

Our research continues with the development of the
followings:
• The development of a web-based CAD tool is pending
to allow users design complex parts and save them as
P3D files.

• The P3D file content will be augmented to include
internal- and external properties of the solid models
defined (including density, shell size, infill geometry,
lattice structures, texture, surface quality, etc.).

• To edit the geometric parameters in P3D easily and effi-
ciently, we plan to offermasks as an option for designers.

• The prototypes of path planning agents for all remaining
AM technologies (e.g. FFF, SLA, PBF, DED, Mate-
rial Jetting, Binder Jetting, and Sheet Lamination etc.)
will be presented. Developers will be able to modify
these open-source programs and adapt them to any
AM machinery.
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