
Teaching Computational Thinking to Science Majors ∗

Susanne Hambrusch
Dept. of Computer Sciences

Purdue University
W. Lafayette, IN 47907, USA

seh@cs.purdue.edu

Christoph Hoffmann
Dept. of Computer Sciences

Purdue University
W. Lafayette, IN 47907, USA

cmh@cs.purdue.edu

John T. Korb
Dept. of Computer Sciences

Purdue University
W. Lafayette, IN 47907, USA

jtk@cs.purdue.edu

Mark Haugan
Department of Physics

Purdue University
W. Lafayette, IN 47907, USA

mph@physics.purdue.edu

ABSTRACT
This paper describes the development and initial evaluation
of a new course ”Introduction to Computational Thinking”
taken by science majors to fulfill a college computing re-
quirement. The course was developed by computer science
faculty in collaboration with science faculty and it focuses
on the role of computing and computational principles in
scientific inquiry. It uses Python and Python libraries to
teach computational thinking via basic programming con-
cepts, data management concepts, simulation, and visual-
ization. Projects drawn from different scientific disciplines
are complemented with lectures from faculty in these ar-
eas. Our initial evaluation indicates that the problem-driven
approach focused on scientific discovery and computational
principles increases the student’s interest in computing.

Categories and Subject Descriptors
K.3.2 [Computer and Education]: Computer and Infor-
mation Science Education

General Terms
Design, Experimentation

Keywords
Computational thinking, curriculum, multi-disciplinary, com-
puting for scientists.

1. INTRODUCTION
Scientific research is becoming unthinkable without com-

puting. The ubiquity of computerized instrumentation and

∗Work supported in part by National Science Foundation
under Grant No. CCF-0722210.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’09 Chattanooga, Tennessee, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

detailed simulations generates scientific data in volumes that
no longer can be understood without computation. For ex-
ample, in high-energy Physics, the Large Hadron Collider
(LHC) will soon generate data at a rate of 0.1 - 1 GB a
second, accumulating about 8 PB of data a year in search of
the Higgs boson. If one is found, it is expected to manifest
only on 1 in 1013 recorded collision events [10]. Much of
today’s scientific research is computational in nature, evalu-
ating scientific models by detailed simulations and generat-
ing data volumes that are often larger than can be analyzed
in entirety [1]. In light of this evolution of science, future
generations of scientists have to engage computing and have
to understand what computer science can do for their work,
much as they have to understand what mathematics already
does for their work.

This paper describes a multi-disciplinary effort develop-
ing a course on computational thinking for science majors.
At Purdue, science undergraduates have to fulfill a comput-
ing requirement, which is generally done by taking a CS
course[2]. The new course was developed by CS in collabo-
ration with faculty in Physics, Biology, Chemistry, and Sta-
tistics [4]. It uses a problem-driven approach allowing a fo-
cuses on scientific discovery through computational methods
as well as computer science principles.

Related work. Introductory courses with a focus on sci-
ence students have been described in recent papers, includ-
ing [7, 8, 13, 11]. The concept of computational thinking
introduces by Wing in [12] plays an important part in many
of such new courses [9].

2. A COURSE FOR SCIENCE MAJORS
The principles underlying the course were developed by

CS faculty with experience in teaching introductory courses
in collaboration with science faculty. One simple princi-
ple we followed is that examples given should be couched
in a language that is familiar to the student. A physics
major would appreciate examples from mechanics using di-
mensional units, a chemistry major might be comfortable
with balancing chemical formulae as example. After those
examples have been understood, the student can proceed to
abstracting the underlying formal structures. Similarly, it
is our thesis that science majors, conversant in the basics
of the classical disciplines, may apprehend computational
concepts easier if those concepts can be motivated by ex-

amples from science. A second important principle was to
use a language that allows students to quickly write mean-
ingful programs and comes with useful libraries, and which
is used by the scientific community. Not surprisingly, we
used Python. A third principle was to teach in a problem-
driven way. For example, viewing a thermodynamic system
from the computational perspective, as opposed to a purely
descriptive view, naturally led to randomized models and
Monte Carlo techniques. This, in turn, motivated pseudo
random number generation algorithms, discussions of where
else Monte Carlo methods arise, and what the limitations of
this computational paradigm are.

Three areas, physics, chemistry, and bioinformntics gave
expectations on what they wanted students to learn:

• The Physics department uses the approach developed
by Chabay and Sherwood in an introductory calculus-
based physics course [5, 6]. In the lab, students run
and modify Python programs to model and visualize
mechanical systems and fields in 3D using VPython
[3]. Teaching programming or computational princi-
ples is beyond the scope of the physics course. Physics
faculty were interested in having their students take a
CS course that could lead to a better integration with
computation.

• The computational chemistry faculty are interested in
students learning computational methods relevant in
chemical research, in particular Monte Carlo and Sim-
ulated Annealing. In addition, being able to use and
integrate existing Fortran programs was viewed as im-
portant.

• For the area of bioinformatics and statistical comput-
ing, there was an interest in teaching the use of R
for statistical computing and visualization, followed by
learning to program in a language for which bioinfor-
matics software packages exist or can easily be inte-
grated.

The following describes the material covered in the 15-
week course which uses a two 1-hour lectures and one 2-hour
lab per week format.

I. Basic Programming Tools (6 weeks)

• Introduction to Python. Elementary values and data
types.

• Straight line programs, assignments to variables, type
conversion, math library.

• Strings, lists, and tuples. Vectors and arrays.

• Conditionals and loop structures.

• Introduction to 3D visualization in VPython.

• Functions, parameters and scope. Recursion.

II. Computational Tools and Methods (6 weeks)

• Basic plotting using MatPlotLib and VPython.

• Arithmetic and random numbers. Using NumPy. Ex-
amples of numerical stability and problem stability.

• Introduction to simulations and Monte Carlo methods.

• Computational Physics: Ideal gas and Ising Spin sim-
ulations.

• Trees as a data structure, traversal and exploration.

• Introduction to graphs, graph operations using Net-
workX, graphs in science applications.

• Bioinformatics: Analyzing protein interactions. Visu-
alizing large graphs using Cytoscape

• Grand challenges in scientific computing

III. Looking Under the Hood at Computer Science
(3 weeks)

• Object-oriented design. Use and design of classes, OO
concepts. Dictionaries and spatial queries as examples

• History of computer science.

• Limits of computing, intractability, computability.

• Future models of computation: DNA computing, quan-
tum computing.

Python was chosen because of its interactive environment,
its ability to let novice programmers quickly write mean-
ingful code, its adoption by many scientific communities,
and the availability of numerous libraries. Python can be
executed efficiently, making it a good vehicle not only for
small-scale experimentation, but also for larger data sets and
longer computational problems. The course included teach-
ing basics of object-oriented code development. We found
that this subject was quite natural to apprehend towards
the end of the semester, after programming in Python had
become fluent. On the other hand, recursion was considered
challenging by the students.

Visualization is an important element in computing and
brings many quantitative scientific facts to life. VPython
and MatPlotLib were introduced early. VPython allows cre-
ating sophisticated 3D visuals without having to learn the
complexities of traditional libraries, such as OpenGL. The
graphical programming done with MatPlotLib will serve stu-
dents well in other contexts. Visualization helped students
understand the scientific questions asked in the projects, but
it also helped them understand their code. It made it clear
that visual computing is an engaging activity that is under-
utilized in many CS curricula.

As the course was developed jointly with faculty in the
other science departments, it was natural for them to give
guest lectures. The guest lectures showed how CS concepts
arise when solving the disciplinary problems. These lectures
included concepts such as Maxwell’s Demon and used state-
of-the-art software, such as NetworkX for graph manipu-
lations and CytoScape for visualizing protein interactions.
The course material covered was to a large extent driven by
the projects described in more detail in the next section.

3. PROJECT OVERVIEW
The course assigned four small-scale programming assign-

ments and four projects. Almost all questions on the smaller
programming assignments were preparation for the larger
projects. Each project consisted of a programming part and
an experimental part (which for some projects used data

culled from research). The experimental part could be com-
pleted with the code the student wrote or with code provided
by us. Interestingly, very few students decided to abandon
their code, even when it proved to be incorrect and ineffi-
cient. This at times meant that experiments for larger data
sets could not be completed, mainly due to excessive running
times. All projects asked students to produce visualizations
of computational results and provide a write-up on their ob-
servations.

1. Manipulating Digital Audio.
Explore the generation and manipulation of digital
sound. Students write and use several basic functions
that represent sounds as a sequence of wave ampli-
tudes. The project emphasizes arrays, loop structures,
numeric data (including overflow and round off issues),
and modularity through procedures. Experimentation
encourages students to generate sounds with different
kinds of waves (e.g., square and sawtooth) and to in-
vestigate music in different scales.

2. Computational Experiments on Percolation in Grids.
Examine the spread of wild fire through a patchy field
of dry grass, electricity through a surface of conductors
and insulators, or how water soaks through a porous
landscape. This project uses a two dimensional array
to represent these physical scenes and a single para-
meter to represent the probability that any node in
the grid ”percolates”, e.g., burns, conducts, or flows.
By varying the parameter, generating random grids
based on it, and simulating flow in those grids, stu-
dents create plots to answer the question, ”What is
the smallest probability q at which a grid generated
with probability q will percolate?” In addition to rein-
forcing loops, conditionals, and multi-dimensional ar-
rays, this project uses random number generation and
introduces recursive functions.

3. Simulating Physical Systems.
This project elaborates on Monte Carlo methods as a
way to understand the behavior of physical systems
without resorting to a detailed, low-level simulation.
It introduces the ”demon algorithm” (from Maxwell’s
demon) and has students performing two experiments:
(1) simulating an ideal gas to determine its average
system energy (temperature), and (2) using the Ising
model to analyze a grid of magnetic spins, determining
the average magnetization of the grid. The projects
use tools from the VPython and Matplotlib libraries
to create visualizations of their experimental results.

4. Analyzing Protein-Protein Interactions.
Analyze the results of large-scale experiments that char-
acterize protein-protein interactions and predict the
quality of the experimentally observed protein com-
plexes. Goals are to determine functional modules
(finding groups of interacting proteins that participate
in the same or similar biological function) and to find
novel protein complexes that have not been observed
before. Students use the Python-based NetworkX and
Markov Cluster (MCL) libraries to manipulate and
cluster these large graphs, relate them to the pub-
lically available Gene Ontology (GO) database, and
visualize the results using Cytoscape, a high quality,
open-source graph visualization tool.

The two most popular projects were percolation and the
simulation of physical systems. Seeing different percolation
algorithms detect different type of flows through a grid while
graphs plot experimental probability results played a role in
making this a favorite project. The preference of the simu-
lating physical systems projects seems to be related to the
large number of physics majors who had seen this material
in a physics course. The project on protein interactions re-
quired students to write specified algorithms operating on
graphs (using NetworkX) which was a new and for some
unusual level of abstraction.

Students disagreed on the value and excitement about
running computational experiments. Some clearly like that
aspects, while others would have liked to be done after the
programs ran. It is probably valuable to have a course which
is a straight programming course available as a computing
requirement option.

4. EVALUATION
The first offering of the course had 15 students enrolled

initially and 13 completed the course. 10 of the 13 students
were physics majors, the other three were chemistry majors.
About a third of the students double majored in Math. The
class had only one female students. 27% of the students had
no programming experience, 40% had done some program-
ming on their own, and 33% had taken a programming class.
No student had taken a college level programming class.

The objective of the course is providing a foundation of
programming and computational principles that students
can and will apply to scientific inquiry. Our goal was not
to turn science majors into CS majors. Actually, if this
would have been a goal, the cooperation and collaboration
from the other science departments would not have existed.
While almost all students enrolled to fulfill the computing
requirement, our goal was to get students interested in ac-
tively using computation in their major and to consider a
taking a second course.

During the semester, the course did explain what mate-
rial would be covered in what CS course and we tried to
give students a sense on what they would learn in other
CS courses. There was some discussion on what course se-
quence would lead to a minor in CS (which would fulfill the
required multidisciplinary requirement for science majors).
We encouraged students to realize the benefit of writing sim-
ple programs using MatPlotlib or VPython in other projects
and classes. One of out goals is to provide students with the
tools to write small Python programs for visualization and
data analysis purposes. In follow up studies we plan to to
track how many students end up taking another CS course.

Students taking the course completed an entry and an exit
survey (id’s allowed us to link survey responses). The pre-
survey was completed by 15 students and the post-survey
by 13 students. Looking at the background of the students,
27% had no programming experience, 40% had done some
programming on their own, and 33% had taken a high school
level class. 10 of the 13 students who completed the course
were physics majors, the other three were chemistry majors.
About a third of the students were Math double majors, but
they viewed Math as their secondary major.

Two interesting questions to compare responses for are:
”How would you rate your current interest in:”
Q1: Taking another computer science course
Q2: Pursuing a career that requires programming skills

Table 1: Results for two entry and exit questions
Entry Exit

Mean Median Std. Dev. Mean Median Std. Dev.
Taking another CS course 1.62 1 0.92 2.46 3 1.45

Pursuing a career that requires programming skills 1.69 1 1.14 3 2.85 1.7

�����

entry survey response

Comparison of responses

Figure 1: Comparison of entry and exit responses.

There was a choice of five answers: not interested (0),
somewhat uninterested (1), undecided (2), somewhat inter-
ested (3), and very interested (4). Table 1 shows statistical
results and Figure 1 shows a graphical comparison of entry
and exist responses. About two thirds of the responses in-
dicate an increase in interest, and no decrease was by more
than one score. the exit responses indicate that 60% of the
students plan to take another CS course and 40% plan to
minor in CS (which would fulfil the multidisciplinary re-
quirement of the a science curriculum).

We point out that in our introductory courses for majors
(Purdue students declare a major as freshmen), we see a
decrease in the interest in computer science and only 30%
of CS freshmen complete a B.S. in computer science. The
data reported by the Emerging Scholar Program carried out
by a number of institutions also shows a decrease in inter-
est, while showing that students in the program receive bet-
ter grades [?]. The inability of introductory CS courses to
maintain student’s interest is viewed as one reason for the
decreased enrollment in computer science.

From the feedback we have from students in the compu-
tational thinking class, it seems the problem driven format
of the course, the ability to quickly be able to write pro-
grams meaningful to them, and the use of visualization tools
played a crucial role in the overall increased interest. Future
instances of the course will assess this further and will track
students with respect to additional computing courses taken.

5. CONCLUSIONS
We believe that the interaction with science faculty is a

critical element in designing an effective course in computa-
tional thinking for science majors. Based on our experience,
Python is an excellent vehicle. It is used by many scien-

tific disciplines, it allows us to teach modern concepts of
programming, and it can be used interactively, giving stu-
dents immediate feedback and giving them a convenient way
to experiment with different constructs. Such concepts in-
clude recursion (which was considered challenging by the
students) and object-oriented design (which they found nat-
ural). Moreover, visualization is an important element in
computing and brings many quantitative scientific facts to
life. VPython was a good vehicle because it focuses on a
few simple basics in visualization and is learned quickly by
doing.

6. ACKNOWLEDGMENTS
We would like to thank Sagar Mittal and John Valko for

their valuable help on course and project development. We
thank Olga Vitek and Sabre Kais for productive discussions
in the areas of bioinformnatics and computational chemistry.

7. REFERENCES
[1] 2020 - Future of Computing. Nature, 440, March 2006.

[2] College of Science, new
Science Undergraduate Curriculum, Purdue University.
http://www.science.purdue.edu/core/requirements2.asp,
2007.

[3] VPYTHON: 3d programming for ordinary mortals.
http://www.vpython.org/, 2007.

[4] Lectures and course material for introduction to
computational thinking, purdue university.
http://secant.cs.purdue.edu/, 2008.

[5] R. W. Chabay and B. Sherwood. Matter and
Interactions, Volume 1: Modern Mechanics. John
Wiley and Sons, Hoboken, NJ, 2002.

[6] R. W. Chabay and B. Sherwood. Matter and
Interactions, Volume 2: Modern Mechanics. John
Wiley and Sons, Hoboken, NJ, 2002.

[7] T. J. Cortina. An introduction to computer science for
non-majors using principles of computation. In
I. Russell, S. M. Haller, J. D. Dougherty, and S. H.
Rodger, editors, SIGCSE, pages 218–222. ACM, 2007.

[8] Z. Dodds, R. Libeskind-Hadas, C. Alvarado, and
G. Kuenning. Evaluating a breadth-first cs 1 for
scientists. In J. D. Dougherty, S. H. Rodger,
S. Fitzgerald, and M. Guzdial, editors, SIGCSE, pages
266–270. ACM, 2008.

[9] P. B. Henderson, T. J. Cortina, and J. M. Wing.
Computational thinking. In I. Russell, S. M. Haller,
J. D. Dougherty, and S. H. Rodger, editors, SIGCSE,
pages 195–196. ACM, 2007.

[10] W. von Rüden. LHC computing needs, large scale
computing in high energy physics, astrophysics,
accelerator physics, nuclear physics and biophysics,
fermi labs, 2002. Also available as
http://conferences.fnal.gov/lccws/papers/tues/LHC Tues WvR.ppt.

[11] G. Wilson, C. Alvarado, J. Campbell, R. Landau, and
R. Sedgewick. Cs-1 for scientists. SIGCSE Bull.,
40(1):36–37, 2008.

[12] J. M. Wing. Computational thinking. Commun. ACM,
49(3):33–35, 2006.

[13] M. Zhang, E. Lundak, C.-C. Lin, T. Gegg-Harrison,
and J. M. Francioni. Interdisciplinary application
tracks in an undergraduate computer science
curriculum. In SIGCSE, pages 425–429, 2007.

