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Abstract
We introduce a compact hierarchical procedural model that combines feature-based primitives to describe complex terrains with
varying level of detail. Our model is inspired by skeletal implicit surfaces and defines the terrain elevation function by using a
construction tree. Leaves represent terrain features and they are generic parametrized skeletal primitives, such as mountains,
ridges, valleys, rivers, lakes or roads. Inner nodes combine the leaves and subtrees by carving, blending or warping operators.
The elevation of the terrain at a given point is evaluated by traversing the tree and by combining the contributions of the
primitives. The definition of the tree leaves and operators guarantees that the resulting elevation function is Lipschitz, which
speeds up the sphere tracing used to render the terrain. Our model is compact and allows for the creation of large terrains with
a high level o detail using a reduced set of primitives. We show the creation of different kinds of landscapes and demonstrate
that our model allows to efficiently control the shape and distribution of landform features.

Keywords: terrain modelling, procedural modelling, natural phenomena, geometric modelling
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1. Introduction

Terrain modelling has been on the radar of computer graphics for
more than three decades. However, despite the considerable progress
towards developing efficient methods for modelling terrains, it still
remains an open problem.

Existing terrain modelling techniques can be categorized into
procedural, physics-based, sketch-based and example-based. Ero-
sion simulation and hydrology-based algorithms generate results
that are geologically correct, but often lack controllability and take
a long time to calculate. Sketch-based methods involve manual edit-
ing that can be tedious and example-based algorithms are limited by
the provided input. An important problem is the scalability of the
algorithms. The generated terrains usually represent only features
at a single scale that are stored in a discrete regular heightfield. The
heightfield is later converted into a mesh suitable for fast visualiza-
tion with varying levels of detail. Moreover, there is no algorithm
that would allow for an interactive editing of complex terrains with
a high level of detail, in turn allowing for a quick and controllable

placement of features using simple editing operations. In contrast,
procedural methods are computationally efficient as they define the
elevation of the terrain using a continuous procedural function. One
limitation is that they do not provide control over the terrain features.

A key observation of our work is coming from viewing real
landscapes that are composed of features from different scales, such
as rivers, mountains, cliffs or lakes. Additional terrain features arise
from human activity and include roads and urban structures. The
terrain could be created by composing the major features, preferably
in an interactive manner and completed by less important procedural
content.

We introduce a novel compact hierarchical model that combines
procedural primitives representing landform features. Our represen-
tation defines continuous terrains (Figure 1) with varying level of
detail (LoD), allows for a wide variety of terrains, and provides
intuitive control over the terrain creation and editing. It is based on
a tree structure that combines different kinds of primitives using
operators.
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Figure 1: A scene created with our representation. Thirty primitives
were combined to define the terrain. The water was represented
using an additional construction tree.

This representation is compact, computationally efficient and
easy to implement, even on GPU. Moreover, the mathematical def-
inition of the primitives and operators provides us with foundations
for fast visualization. The use of Lipschitz elevation functions al-
lows us to visualize the terrains in real-time using an accelerated
sphere tracing algorithm or polygonization techniques (Figure 2).
Because of this, our model is suitable for representing and intuitive
editing of large scenes. Combined with the intuitive editing tools
that focus on placement and distribution over landform features, the
tree representation provides global and local control.

2. Related Work

We relate our work to procedural approaches, physics-based meth-
ods and interactive editing. For an overview of recent approaches in
procedural modelling we refer to [STBB14] and terrain structures
are surveyed in [NLP*13].

Physics-based techniques exploit the usage of water, temperature
changes or human activities as geomorphic agents. Probably the
first to introduce erosion was [MKM89] and this work was extended
by stabilization and hydraulic erosion in [Nag98, CMF98, BF02].
The majority of the above described techniques works with Eule-
rian approaches by using discrete regular heightfields, layered data
structures [BF01] or a 3D volumetric data [BTHB06]. Lagrangian

approaches that use smoothed particle hydrodynamics were com-
bined with erosion in [KBKŠ09], and corrosion simulation has been
introduced in [WCMT07]. Among the disadvantages of geomorpho-
logical algorithms is their low controllability. A related problem is
their scalability due to the use of a discrete regular grid to represent
the terrain. Because of high computational demands, these methods
cannot be used to simulate large terrains with a high LoD, even with
the GPU [MDH07, VBHŠ11].

Interactive editing addresses terrain generation by using user in-
tuition. Rusnell et al. [RME09] generate terrains by computing
distances in a weighted graph. Zhou et al. [ZSTR07] combine
2D heightfield examples into the final terrain, but fails to gener-
ate results that are not exemplified by the input. Sketching ap-
proaches [GMS09, HGA*10, TGM12, TEC*14] and interactive
terrain editing [PGMG09] provide good control over the resulting
terrain, but can lead to results that are not geologically correct.

Hybrid approaches that attempt to combine interactive editing
with physics-based algorithms [ŠBBK08, VBHŠ11] are limited to
small scenes and to editing existing terrains. As for erosion simu-
lation and hydrologically based approaches, sketch- and example-
based methods rely on a discrete regular grid and cannot create large
terrains with details.

Procedural techniques have been used in computer graphics for a
long time. They are easy to implement and allow for the generation
of a wide range of terrains by changing a few input parameters.
The adaptive subdivision provides an intrinsic LoD and belongs to
noise-based procedural approaches that combines noise functions
at various scales [EMP*98]. Although fractal-based methods can
generate infinite terrains with unlimited precision, they are not easy
to control and produce terrains without any underlying geographical
structure.

Various algorithms have been developed to incorporate complex
features, such as rivers into the procedural terrains. Kelley et. al
[KMN88] proposed a procedural method to generate watersheds by
fractal interpolation. Prusinkiewicz et. al [PH93] combined context-
sensitive L-systems with the midpoint displacement method to gen-
erate rivers in fractal terrains and Belhadj and Audibert [BA05]
modified stochastic subdivision to constrains ridges and river curves
generated by fractional Brownian motion. Teoh [Teo09] started by

Figure 2: Overview of our pipeline: using different inputs (procedural generation or terrain data), we create and allow an intuitive editing of a
hierarchical terrain model. The construction tree can be evaluated either on the CPU or on the GPU and exported as a mesh (regular/adaptative
grid or TIN). We can also visualize terrains directly in real-time by using an adaptive polygonization [DIP14] or by an accelerated sphere
tracing, both performed on the GPU.
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Figure 3: A simplified construction tree representing a river carved
into a hilly scene. Editing the scene usually consists in modifying
the placement of the different primitives or in tuning the parameters
of the different elevation functions.

producing the river network first and fitting a terrain into it. Derzapf
et. al [DGGK11] generated river networks by subdivision schemes
on a planetary scale.

Recently, Génevaux et. al [GGG*13] used models inspired by ge-
ology and hydrology to generate models of terrains with embedded
coherently placed rivers. While this work is inspired by the data
structure they introduced, our representation is extended to include
several new compact operators and primitives. Moreover, our model
allows for intuitive editing and provides mathematical foundations
based on the Lipschitz property to accelerate processing.

3. Construction Tree Representation

The terrain model is defined by a construction tree shown in
(Figure 3). The leaves of the tree act like primitives (Section 4),
each generating a terrain portion containing similar landforms fea-
tures. The internal nodes of the tree represent operators (Section 5)
that combine and aggregate their subtree (each representing a part of
the terrain, recursively composed of one or several primitives). The
elevation of a point p depends on the evaluation of the hierarchical
combination of every primitive in the tree.

We define two functions in each node of the tree: an elevation
function f : R2 → R and a weight function α : R2 → R+. The
weight function defines the way a terrain portion will be combined in
its environment, when used with an operator. We define the compact
support, denoted �0, of the weight function α as:

�0 = {p ∈ R2|α(p) > 0}.
The elevation function f is defined on �0. Let T > 0 be a thresh-

old value. The terrain is defined on the subdomain denoted �T ⊂ �0

and defined by:

�T = {p ∈ R2|α(p) ≥ T > 0}.

An example in Figure 4 illustrates this concept and represents
the domains �0 and �T ⊂ �0. Both domains �0 and �T can be
composed of disconnected components. In the remainder of this
paper, the zone of influence �0 \ �T is removed for clarity, except
whenever explicitly specified.

Figure 4: Characterization of a terrain feature: for each node, �0

defines the support of f and α, however, the terrain only exists
on �T ⊂ �0. The domain �0 \ �T is used as a zone of influence to
provide smooth blending.

In our implementation, we use T = 1/2. We define the terrain
surfaceT as the set of points (p, f (p)) in space whose elevation f (p)
is defined from their projection p in �T :

T = { (p, f (p)) ∈ R3, p ∈ �T }.

The tree representation allows to adapt the evaluation of the ele-
vation function f according to a continuous LoD (Section 6). More-
over, the construction of the hierarchical model guarantees that the
elevation functions f attached to the primitives and the operators
satisfy the Lipschitz property. The weight functions are C1. These
mathematical properties provide us with mathematical foundations
to accelerate the computations for visualization (Section 7).

Finally, the construction tree implements a bounding volume hi-
erarchy (BVH) that allows for efficient encoding of spatial relations.
Thanks to this property, our model allows for an efficient rendering
as shown in Section 7.

Normal vector evaluation may be needed by some operators, e.g.
during rendering. The normal of the terrain at a given point p can be
computed from the gradient of the elevation ∇f or by its discrete
approximation.

∇f (p) � 1

2ε

(
f (p + εx) − f (p − εx)
f (p + εy) − f (p − εy)

)
.

Our framework implements exact computation of the gradient
for each node type whenever possible. Moreover, when the evalu-
ations f (p), α(p) and the gradient ∇f (p) are needed, we use an
optimized query that simultaneously computes the values at the
same time when traversing the tree structure and returns them to-
gether. This speeds up computations, not only because the tree is
traversed only once, but also because the computation of several
intermediate terms can be factored out.

4. Primitives

We use two different kinds of primitives: skeletal-based procedural
primitives and image-based. Those two approaches allow for the
creation and control of the landform features in different ways.

c© 2015 The Authors
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Figure 5: Disc primitives allow to generate landforms in small
circular areas. Various elevation functions can be used: a constant
function will represent a plain or plateau, a turbulence will produce
hills and a ridge multi-fractals noise function [MKM89] will mimic
mountains landscapes.

The skeletal primitives are fast to render and have smaller mem-
ory requirements, but they need an explicit analytical elevation func-
tion associated, whereas the image-based primitives provide, with a
memory cost, an easy way for an artist to integrate real data and/or
precise user-crafted features into the scene.

4.1. Skeletal primitives

Skeletal primitives are inspired by the Constructive Solid Geometry
and by the Blob-Tree model of [WGG99]. They are defined by
a geometric skeleton (point, segment, curve or contour) and a set
of parameters that describe the elevation and the weight functions
depending on the distance from the skeleton. We use different types
of skeleton adapted to the representation of the domain of each
feature.

Disc primitives represent a small portion of a terrain. The centre c
and the radius r describe their areas of influence (Figure 5). The
noise function referred to as η controls the local ground roughness.
Let η : R2 → R denote a 2D noise function, {ai} a set of decreasing
amplitudes and {si} a set of increasing frequencies. The elevation
function is defined as:

f (p) = cz +
n−1∑
i=0

ai η((p − c)si).

Curve primitives are built from a piecewise curve skeleton � and
from a set of profiles {ci} describing the cros- sections perpendicular
to the curve (Figure 6). In our implementation, each cross-section is

Figure 6: Curve primitives allow us to create easily terrain features
structured around trajectories, such as roads or rivers. The curves
can be constructed with lines or splines but, in order to speed up
the evaluation, it is important that the distance and orientation
functions are fast to compute.

Figure 7: More complex primitives can be defined using polygonal
shapes. A lake is created by defining a set of increasing cross-
sections, radiating from the centre c.

stored as a 1D piecewise quadric function to speed up computations.

The signed distance between p and the curve � is denoted d(p),
the projection of p on � is denoted q. Let c be the cross-section
in q, constructed by interpolation using the curvilinear coordinates
on the curve �. We define:

f (p) = qz + c ◦ d(p).

Rivers are created from a curve skeleton that defines the river
path �. The profile curves {ci} represent the cross-section of the
river that corresponds to the river type (stream, river, meander, main
stem).

Confluences or braided river streams can be built in the same
way using more complex cross-section curves representing multiple
channels, or by combining several rivers using the blending operator.

Roads rely on the same model as rivers but with different cross-
sections. The skeleton is a piecewise C1 continuous curve approx-
imation of clothoids that represent trajectories, whereas profile
curves define the cross-section of the road and are parametrized
by the road width and the size of the carriageway. Road primitives
also define the elevation of the terrain in the neighbourhood of the
road to allow a combination with other primitives in the terrain.

Contour primitives are created from a curve enclosing a cen-
tre point c, from an orientation vector v and from a set of pro-
file curves {ci} that describes the elevation in radial direction.
Each cross-section is stored as a 1D piecewise quadric function
(Figure 7).

The elevation function f is defined as follows. Given a point p, we
compute its polar coordinates: the distance d(p) and the angle θ (p)
computed according to v. The elevation of a point depends of a cross-
section c that we compute by interpolation using angular sectors.
We define:

f (p) = cz + c ◦ d(p).

Those primitive resemble anisotropic distance functions for implicit
sweep objects proposed in [CBS96].

Weight functions are defined as C1 continuous decreasing func-
tions over compact support to limit the influence of the primitive
and allow to control the way they are combined by operators in the
construction tree.

c© 2015 The Authors
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Figure 8: Using real data (Mount St. Helens, Washington, U.S.A.)
and mapping it onto a convex quadrangle that can be deformed
is possible. For a given point in the quadrangle, we compute its
parametrization using inverse bilinear interpolation and then get
the elevation value contained in the image.

Let d(p) denote the distance between the evaluated point p and
the skeleton. We define the weight function α as a composition of
the distance with a smooth fall-off filter function g:

α(p) = g ◦ d(p).

In our implementation, we use Wyvill’s fall-off filter func-
tion [WGG99] which provides good range control:

g(x) =
⎧⎨
⎩
(

1 −
(x

r

)2
)3

ifx < r,

0 otherwise.

4.2. Image primitives

Image-based primitives define specific and complex terrain features,
such as detailed rivers or sand ripples, which would be difficult to
create by using procedural skeletal primitives.

The elevation and weight functions are computed by mapping a
discrete heightfield and weight field images onto a given domain �

for which the parametrization (u, v) is known.

The evaluation of f and α is done by interpolating the data to
guarantee a Lipschitz property for f and a C1 continuity for α,
respectively. We implement a parametrization for convex quadran-
gles that allow us to easily use real heightfields, such as mountains
depicted in Figure 8.

We also propose a parametrization along curves that allows to cre-
ate rivers and confluences of complex trajectories and surroundings
(Figure 9). In our implementation, rivers are created by connecting

Figure 9: Mapping raster images (Grand Canyon, Arizona, U.S.A.)
onto curves allow us to use complex geometries multiple times with-
out visual artefacts due to tiling.

Figure 10: The blending operator allows to aggregate several prim-
itive in a smooth and continuous way. This node can be easily trans-
formed in n-ary operator to work with a large amount of primitives.

several curve image primitives. The different images defining the
local elevation of the terrain match together at their borders in a
seamless way.

5. Operators

Operators are internal nodes that combine the elevation and weight
functions of their subtrees, thus defining two new functions f and α.
We consider binary nodes and denote the two subtrees A and B.

5.1. Blending

This operator provides an effective way for creating large terrains
with different features from a set of patches. The blending of two
nodes A and B combines the elevation functions fA and fB according
to the weight functions αA and αB and allows to aggregate two terrain
primitives (Figure 10).

f = αAfA + αBfB

αA + αB

, α = αA + αB.

When two primitives are far away (their support �A and �B do
not intersect), they do not have a mutual influence and the resulting
terrain is the union of the two terrain patches produced by the sub-
trees A and B. As the primitives get closer, their regions of influence
intersect and they progressively blend together (Figure 11).

The blending operator is commutative and associative and it can
be extended to become an n-ary node. This property enables us
to optimize the memory footprint of the hierarchical structure my
minimizing the depth of the tree. Combined to a grid acceleration
structure, it is also used to speed-up the computations when many
primitives blend together.

Figure 11: Blending allows to extend the definition domain of the
terrain. If the primitives do not intersect, the operator corresponds
to the union. When primitives get closer, their support and elevation
blend in a smooth way.

c© 2015 The Authors
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Figure 12: The replacement operator allows to easily constraint
the landscape. It also represents a notion of temporality: here, the
last operand corresponds to the most recent crater impact.

5.2. Replacement

This operator defines and locates specific terrain features, such as
lakes, mounds, rivers or roads over an existing terrain. The operator
continuously replaces its argument subtree A by another one B.

Replacement is an asymmetric operator and it has been used
to place water-course geometry, such as rivers or lakes, onto the
terrain (Figure 20). It allows to easily sculpt road paths or create
lunar landscapes (Figure 12). The node A is replaced by B only
when αB > 0:

f = (1 − αB)fA + αBfB, α = αA.

In general, we want to keep the weight of the left-hand operand,
which is why we set α = αA. Depending on the context, we may
want to take into the account the influence of the weight function αB

and set:

α = (1 − αB)αA + αB
2,

which progressively replaces αA by αB.

5.3. Addition

This operator locally adds variations and details to the elevation of
an existing terrain A according to the weight function αB of the
second argument B (Figure 13)

f = fA + αBfB, α = αA.

Figure 13: The sand dunes are added to a mountainous landscape.
Because we want them to appear at low altitude without masking the
rocks, the weight function αB is defined according to the mountain’s
elevation fA and gradient ∇fA.

Figure 14: It is possible to deform both primitive and terrain por-
tions made of a combination of nodes. Deformation allows to elim-
inate the visual artefacts due to the repetitive usage of a single type
of primitive across a large terrain.

Similarly to the replacement operator, we want to keep the weight
of the left-hand operand, which is why we set α = αA. Another
possibility is to take into account the influence of the weight func-
tion αB, and use α = αA + αB

2.

5.4. Warping

This operator allows a distortion of the shape of a surface by warping
both the elevation function f and the weight function α (Figure 14).
A warp is a bijective C2 function denoted as: ω : R2 → R2. The
warping operator is defined as an unary node which can be evaluated
as:

f (p) = fA ◦ ω−1(p), α(p) = αA ◦ ω−1(p).

In some cases, we may want to compute the gradient of the
elevation function, e.g. for normal vector evaluation. The gradient
of f becomes:

∇f (p) = ∇fA ◦ ω−1(p) × Jω−1 (p).

In order to speed-up the computations, we store the Jacobian Jω−1

for every warp function ω.

Affine transformations can be applied as specific warp opera-
tors. Although the effect is not different from applying the same
transformations to the skeletons, the advantage is that it is possible
to transform a complex terrain portion corresponding to a subtree
composed of several primitives. Moreover, each primitive can be
defined in its canonical position, orientation and scale that allow us
to instantiate the primitive multiple times. Thus, the construction
tree becomes a directed acyclic graph (Figure 15).

Figure 15: Instantiation associated with transformation operators
(translation, rotation, homothety) allow to use the same primitive
several times in a scene.

c© 2015 The Authors
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Figure 16: A continuous LoD primitive: as the global level of de-
tail κ(p) increases, the filter functions bi will, one by one, unravel
smoothly the different levels of details. Note that to get a correct
rendering, the textures should be filtered as well.

Affine transformation can be composed with deformations. For
efficiency, consecutive affine transformations can be concatenated.

6. LoD

Our hierarchical representation allows to easily adapt the compu-
tation of the elevation function according to a continuous required
LoD. Adapting the evaluation of f is done by using either specific
LoD operators that will chose which primitive to use, or with the
help of specific primitives with a parametrized continuous LoD sys-
tem. We denote κ : R2 → [0, 1] a continuous C1 function defining
the LoD.

LoD operators are binary nodes whose subtrees are evaluated ac-
cording to the input of detail κ(p). They are characterized by two
threshold values: kA and kB with 0 ≤ kA < kB ≤ 1 that define which
subtree should be evaluated according to the needed LoD. The ele-
vation function is defined as:

f (p) =

⎧⎪⎨
⎪⎩

fA if κ(p) ≤ kA,

(1 − t)fA + tfB if kA < κ(p) ≤ kB,

fB otherwise,

with

t = κ(p) − kA

kB − kA

.

The weight function α is computed in the same way.

Continuous LoD primitives are characterized by an elevation
function f whose computation directly depends on the LoD func-
tion κ(p). Continuous LoD primitives automatically simplify their
evaluation with the objective of speeding up computation as the
LoD decreases.

Our system implements different kinds of continuous level of
detail primitives. One example is the disc terrain primitive whose
elevation is defined by a sum of several noise functions of decreasing
amplitudes and increasing frequencies.

When this primitive is queried with a low level of detail, we can
only sum the lowest frequencies. Between two levels of detail, we

Figure 17: Examples of terrains rendered in real-time using the
accelerated sphere tracing algorithm. Using sphere tracing instead
of adaptive tessellation allows us to render faster and without visual
artefacts detailed and sharp geometries such as those sand dunes.

interpolate the elevations to get a continuous and smooth transition.
We define f (p) as:

f (p) = cz +
n−1∑
i=0

ai η((p − c)si)bi ◦ κ(p).

The filter functions bi : [0, 1] → [0, 1] are defined as smoothly
increasing functions on the interval [k−

i , k+
i ] of the input level of

detail κ(p):

bi ◦ κ(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if κ ≤ k−
i ,

(1 − t2)3 if k−
i < κ ≤ k+

i ,

1 otherwise,

with

t = κ(p) − k−
i

k+
i − k−

i

.

Continuous level of detail can be controlled by modifying the
different definition intervals (Figure 16). A typical set up for κ is
to make it decrease the LoD when the distance from the evaluated
point to the camera increases.

7. Visualization

We introduce an accelerated ray-tracing method to visualize our
terrain model (Figure 17) taking advantage of the mathematical
properties provided by the definition of the elevation function of
the construction tree. Our approach is inspired by the sphere tracing
method [Har96] which is a robust technique for ray tracing im-
plicit surfaces. Unlike LG-surfaces [KB89] it does not require that
the evaluated function is C2 continuous. Instead, it requires only a
bound on the magnitude of the derivative — that the function is C0

continuous and obeys Lipschitz property. Thus, the derivative of the
function does not need to be continuous or even defined.

Recall that a function h : R3 → R is Lipschitz over � if and only
if there exists a positive constant λ such that:

∀(p, q) ∈ � × �, |h(p) − h(q)| < λ‖p − q‖.

The Lipschitz constant λ is the minimum satisfying this equation.
In practice, Lipschitz constants are overestimated by a Lipschitz
bound, particularly for nodes in the tree whose subtrees have known
Lipschitz constants.

c© 2015 The Authors
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Figure 18: Lipschitz constant λ of f and ray direction u provides
us with a guaranteed intersection-free area.

7.1. Sphere tracing

The sphere tracing algorithm consists in marching along the
oriented ray � from a camera o towards the surface by an adaptive
increment defined as |h(p)|/λ that is sufficiently small to guarantee
that we will not penetrate the surface. Let r(t) = o + tu be the
parametric ray equation (where u is normalized). The field function
along the ray develops as h�(t) = h ◦ r(t). We denote ε the
threshold value from which we consider that we are so close to the
surface that we intersect it. The algorithm can be written as:

(1) Compute a Lipschitz bound λ of the function h and the interval
of intersection between the ray and the domain [t−, t+] =
� ∩ � . Initialize t = max(0, t−).

(2) While t < t+, compute h�(t).
2.1 If |h�(t)| < ε, we consider there is an intersection.
2.2 Otherwise increment t with |h�(t)|/λ and continue.

In the following sections, we show how we can take advantage
of the tree definition to improve the algorithm and speedup compu-
tations.

7.2. Accelerated sphere tracing

Let p be a point of R3 where pxy and pz denote the x, y and z

coordinates of p. Recall that f (pxy) represents the terrain elevation
at pxy . We define an implicit surface characterizing the terrain by its
field function h : R3 → R defined as:

h(p) = pz − f (pxy).

Since the elevation function f is built from a hierarchical combina-
tion of compactly supported primitives, the local Lipschitz constants
are usually smaller than λ.

Smaller bounds can be computed by using standard space par-
titioning structures but require the structure traversal. We propose
an accelerated sphere tracing algorithm, adapted to our model and
based on the evaluation of local Lipschitz bounds.

The algorithm consists in marching along the ray with an adaptive
step that depends of the computation of the Lipschitz bound of
the local neighbourhood (Figure 18). At every step, we try to move
forward by a candidate step of length δ and compute the effective
stepping distance denoted as s(t, δ). The candidate distance defines
an interval [t, t + δ] corresponding to a segment [p, q] with p
being the current point along the ray and q = p + δu being a point
further down the ray.

We query the tree structure to compute both the elevation f (p)
and the local Lipschitz bound λ(t, δ) along the segment. The func-
tion h�(t) develops as:

h�(t) = oz + tuz − f (oxy + tuxy).

The derivative of h�(t) according to t is:

h�
′(t) = uz − ||uxy ||f ′(oxy + tuxy).

Depending on the sign of uz − ||uxy || λ(t, δ), two cases arise on
the interval [t, t + δ]:

(1) If uz − ||uxy || λ(t, δ) ≥ 0, the derivative is positive and the
distance between the ray and the terrain is increasing. There-
fore, no intersection can occur on [t, t + δ]:

s(t, δ) = δ.

(2) If uz − ||uxy || λ(t, δ) < 0, the ray may approach the terrain.
Yet we can move forward with the safe increment:

s(t, δ) = h�(t)

|uz − ||uxy || λ(t, δ)| .

Therefore, we can move forward along the ray without intersect-
ing the terrain surface by a stepping distance:

s(t, δ) = min

(
δ,

h�(t)

|uz − ||uxy || λ(t, δ)|

)
.

Given an initial step δ, the algorithm proceeds as follows:

(1) Compute the interval of intersection between the ray and the
domain [t−, t+] = � ∩ �. Initialize t = max(0, t−).

(2) While t < t+, compute h�(t).
2.1 If h�(t) < ε, then an intersection is considered to be

found in t .
2.2 Otherwise, compute λ(t, δ) then use it to increase t with

increment s(t, δ).
2.3 Update the distance δ to 2δ.

Step 2.3 of the algorithm allows to constantly try to move forward
by larger distances. The computation of s(t, δ) guarantees that this
step length is intersection-safe.

7.3. Lipschitz constant computation

Our model provides an accurate Lipschitz constant evaluation for
every type of node (primitives and operators). Thus, the Lipschitz
constant λ of the root of the tree is computed by traversing the tree
structure recursively. This means that for each node, we need to
compute the minimum and maximum elevations and the Lipschitz
constants of both the elevation and weight functions.

7.3.1. Primitives

The elevation functions of primitives always follow the Lipschitz
property. For image-based primitives, the elevation function is com-
puted using a bilinear interpolation of a heightfield. Consider the
mapping onto a square: the elevation function f is Lipschitz and its
constant is bounded by the maximum elevation difference between
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Figure 19: Our model allows to represent scenes composed of primitives of various scales. In this example, the overall relief of the terrain
has been generated by blending multiple noise primitives ; the more detailed mountain, located near the coastline, is an image primitive.
Finally, the lake was produced by a combination of small procedural disc primitives and carved with the help of a replacement operator.

two neighbour samples, proportional to the distance between those
samples:

λ ≤
√

2

l
max

i,j∈[0,n−2]2

(|fi,j − fi+1,j |, |fi,j − fi,j+1|
)
.

When projected along a curve or on a quadrangle, this constant is
modified by the deformation.

In our implementation, skeletal primitives are often built upon a
sum of gradient noises of various amplitudes and frequencies. The
gradient noise function η has intrinsic Lipschitz properties, and we
denote its bound λη. When several harmonics of noise are summed,
we estimate the new bound by summing the Lipschitz constants as
well:

λ =
n−1∑
i=0

ai λη

si

.

Thus, level of detail skeletal primitives (which are derived from
skeletal primitive by filtering the terms according to the prescribed
level of detail) speed up rendering as they provide smaller Lipschitz
bounds.

The weight functions α are defined by α(p) = g ◦ d(p)
where d(p) is the Euclidean distance to a skeleton and g is the
Wyvill’s function. The Lipschitz constant of α is the maximum of
the derivative of g. More details are presented in the Appendix.

7.3.2. Operators

For every operator, we compute its Lipschitz bound according to
the bounds of its subtrees λA and λB. For example, the Lipschitz
constant λ of a blending node is defined as:

λ ≤ max(λA, λB) + max(λαA
, λαB

) sup |fA − fB|,

where λA, λB, λαA
, λαB

represents the Lipschitz constants for the
different functions of each subtree respectively (see the Appendix
for proof materials).

8. Results and Discussion

We have implemented our system in C++ with the use of OpenGL
and GLSL. All examples in this paper were created on a desk-
top computer equipped with Intel R© Core i7, clocked at 3GHz
with 16GB of RAM. Photorealistic images with vegetation were pro-

duced by extracting the surface from a model and directly streaming
it into MentalRay R©. The placement of vegetation and the definition
of the different layers of material are done with the help of additional
construction trees. The texture is procedurally computed according
to the elevation and gradient of the terrain. GPU evaluations were
performed using GLSL 4.4 on an nVidia R© GeForce GTX 670.

8.1. Editing

Our model allows to construct and manipulate complex and vary-
ing terrains composed of both large primitives defining large-scale
features (mountains, plains, plateaus) and smaller primitives that
lets the user sculpt and edit details with arbitrary precision, such as
rivers, dunes and lakes.

A construction tree is represented by a compact array of param-
eters. The structure is lightweight and experiments show that we
need between ten to a few hundred primitives per square kilometre
to represent most of the major features (hills, mountains, rivers).
Very small scale details are provided by manually tuned noise. We
can enrich each scene even more with additional primitives to rep-
resent really fine details, such as footprints, tire track, sand ripples,
mounds, sharp edges, levelling for trees, etc.

Our representation is based on the usage of procedural primitives.
Using compact primitives that are spatially homogenous provides
the user both local and global control. It is easy and intuitive for
an artist to locally edit the terrain and add details, which allows
to construct large-scale scenes (Figure 19) with a large amount of
details (Figure 20).

Figure 20: Our model allows to construct complex scenes. Using
additional construction trees, it is possible to represent different lay-
ers of materials (in this case, the sand and the water). The vegetation
density is defined in the same way.
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Figure 21: Our representation, combined to textures and physically based shading, allows to create complex scenes. The construction tree
of this scene uses only three types of primitives: the lake corresponds to Figure 7, sand dunes to Figure 13 and the mountains are several
instances of Figure 14. The water elevation was defined by an additional construction tree.

Our model can be extended easily by adding new primitives or
operators that answer specific needs for the user. In practice, devel-
oping a new node in the framework requires adding a few dozen
lines of code in a new class.

8.2. Performance

Our model is based on a reduced set of generic primitives and
operators whose elevation and weight functions f and α can be
implemented as generic functions in a shader program. The tree
structure and the parameters of the different nodes in the tree are
stored in two shader storage buffers objects (SSBO). The evaluation
function is performed by parsing the first SSBO containing the tree
structure and calling the functions with the corresponding data.

We have implemented two different techniques for visualizing
on the GPU: an accelerated sphere tracing algorithm (described
in Section 7) and adaptive quad-tree tessellation of [DIP14]. The
parallel evaluation of the terrain tree combined to enhanced shading
possibilities enables us to render images at interactive rates.

Adaptive quadtree tessellation allows for a multi-resolution and
crack-free terrain elevation surface generation with frustum culling
using hardware tessellation and a distance-based level of detail se-
lection criterion. Both the tessellation and the evaluation are done
using the GPU.

On one hand, tessellation is fast and easy and allows for a fore-
seeable number of evaluations, thus, the rendering time is only
dependent of the complexity of the tree. On the other hand, sphere

tracing generates images of better quality, especially on fine and
sharp primitives but the number of evaluations of the construction
tree is larger and view-dependent.

The evaluation of the whole tree in order to visualize a complete
complex terrain takes only a few seconds on the CPU and less than a
second on a GPU. That allows us to explore the scenes interactively.
The timing statistics of the scenes throughout the paper are shown
in Table 1.

For scenes composed of hundreds of primitives, the spatial prun-
ing, thanks to the hierarchical set of bounding boxes, has a great
influence on performance. The frequency pruning allows to avoid
even more unnecessary evaluations and increases sphere tracing
increments by diminishing Lipschitz constants.

8.3. Comparison to other models

Most existing data structures for representing and generating terrains
can be classified into two categories: discrete representations and
function-based models.

The discrete representations define the terrain in discrete points
organized in a regular or an adaptive grid and the continuous eleva-
tion is obtained by a reconstruction that interpolates the elevations
from the corresponding set of samples. The function-based models
directly define the elevation as a procedural or analytic function.

Erosion simulations [MKM89], hydrology-based tech-
niques [BF01] as well as example or sketch-based methods

Table 1: Statistics for some terrain scenes. Number of calls of f (p) include normal evaluations by discrete approximation. Computation times are measured
in ms, memory cost in kB, surface in km2. The sphere tracing algorithm renders images at 1920 × 1080 resolution. The scenes were created in 15 to 55 min.
Most of the construction time was spent placing details. The memory cost of the image primitive used in Figure 19 is about 61 kB.

Sphere tracing Regular mesh Memory footprint

Scene Surface Calls of f (p) Time Calls of f (p) Time Primitives Operators Memory

Figure 1 2 × 2 60M 182 5M 14 70 9 10
Figure 3 1 × 1 55M 36 5M 6 20 3 3
Figure 19 200 × 200 50M 60 20M 25 15 3 81
Figure 20 2 × 2 66M 280 20M 80 78 10 12
Figure 21 100 × 100 79M 561 80M 600 50 25 7
Figure 22 0.6 × 0.6 52M 361 80M 560 148 9 19
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Figure 22: Example of a winding road on a hilly terrain. The artist first authored a draft of the terrain scene by blending a hundred of disc
primitives to define the overall landscape. The trajectory of the road was defined by using about 20 quadric curves and the replacement
operator was used to level the terrain. Several disc primitives were placed along the trajectory of the road to locally adjust the elevation to
make the integration of the road look more natural.

[GMS09] rely on a uniform or adaptive grid to generate the
terrain. Therefore, they do not easily allow the creation of large
terrains with a high level of detail as they are limited by the grid
resolution and can represent only features at a single scale. In
contrast, function-based models, such as fractal- and noise-based
approaches [EMP*98], are not limited in terms of resolution, but
they are difficult to control. Also, they are difficult to combine with
erosion models.

Although our compact hierarchical model allows for discrete in-
put it belongs to function-based models. It provides a simple and
efficient framework that combines different landform features with
varying level of detail, allows for creating a vast variety of terrains,
and provides intuitive control over the terrain creation and editing.

Our model does not handle erosion or hydrological correctness
intrinsically because those methods rely on the computation of
neighbouring values which is not compatible with a pure evalu-
ation approach. However, it could be combined with hydrologically
based generation techniques as presented in [GGG*13], and could
be used in an interactive editor. An implementation of such editor,
along with high level authoring tools, are beyond the scope of this
paper, but would be an avenue for future work.

8.4. Limitations

Our method allows representation of 2D terrains without overhangs
contrary to voxels or layered terrain representations. This is due to
the nature of the underlying tree representation and its evaluation.
However, it is possible to represent multiple layers of different ma-
terials, placed on top of each other, using additional tree structures.
An example is shown as the sand and water in Figure 20, 21 and 23.

We have shown several examples of node primitives. In order
to include new landscape features, our approach would need to
be extended with new types of nodes. Adding new primitives or
operators can be easily done but requires an analytical definition
that represents the new landforms feature.

Our pure function-based approach computes directly the eleva-
tion of the terrain. Therefore, it does not lend itself for erosion
simulation or weathering. Erosion could be integrated by defining a
new operator that would perform erosion simulation on an elevation
grid computed from the subtree. However, such a node would not
be a pure function-based representation.

9. Conclusion and Future Work

We have introduced a novel compact hierarchical procedural model
that combines feature-based primitives to define complex contin-
uous terrains with varying level of detail. Inspired by the skeletal
implicit surfaces and Constructive Solid Geometry, we define the el-
evation of each point as a function by using a construction tree whose
leaves are primitives describing terrain features, and the inner nodes
are the operations that aggregate and combine them together. The
scene rendering is efficiently performed on the GPU by bounding
the terrain to Lipschitz condition that allows for a fast GPU-oriented
rendering or a GPU-oriented polygonization.

One of the interesting extensions would be to make our approach
compatible with erosion models that have a great visual impact
on landscapes. Currently we cannot use simulations, however, we
would like to test pure procedural erosion that does not need any
neighbouring evaluations, such as the approach of [dCB09].

We think that the tree representation has the potential to become
a foundation of many new works. Many existing procedural al-
gorithms could rely on the hierarchical representation instead of
working with regular heightfields.

We do not focus on automatic generation and placement rules.
The appearance of the final terrain depends on properly setting pa-
rameters of the representation that is the placement of the primitives,
tuning of the weight functions and choosing the proper operators.
Therefore, there is a need for a tool for generating complex terrains
with primitives. The landscape generation technique described by
Génevaux et al. [GGG*13] is a procedural approach that could be
used for this purpose. Another way to show the potential of our
method would be to create an interactive editing tool that would
work with the tree structure allowing an artist to construct a terrain
scene in an interactive way with the help of sketching techniques.

Last but not least, it would be interesting to study how to effi-
ciently combine our approach with other models of representation
(structures that allow 3D terrain with caves and arches, animate
fluids, such as water, or models for building representation and
generation).

Appendix: Lipschitz Constants

Here we outline the computation of the Lipschitz constants for some
operators and primitives.
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Figure 23: This complex terrain scene is composed of about thirty instances of a single mountain patch (depicted in Figure 14).

Wyvill blending function We use this function for defining the
weight function α(p) of some skeletal primitives. Recall that
Wyvill’s C2 blending function g(x) is defined as:

g(x) =
⎧⎨
⎩
(

1 −
(x

r

)2
)3

if x < r,

0 otherwise.

For x < r , we have:

g′(x) = −6x(r2 − x2)2

r6
.

Finding the Lipschitz constant of g consists in finding the maxi-
mum of g′, thus we consider the second order derivative:

g′′(x) = −6(r2 − x2)(r2 − 5x2)

r6
.

The second-order derivative has two positive vanishing values
of r and r/

√
5. Only the latter corresponds to a maximum value

of g′(x). The maximum absolute value of g′(x) is obtained by eval-

uating g′
(
r/

√
5
)

, thus λ = 96
√

5/125r . �

Blending operator Let A and B the two subnodes of the blending
operator. Let β = αA/(αA + αB), the blending function definition
may be written as:

f = βfA + (1 − β)fB, α = αA + αB.

The domain is defined by �0 = {p ∈ R2|α(p) > 0}.
Let λA and λB the Lipschitz constants of fA and fB. We consider

the domain where fA, fB, αA and αB are C1. The Lipschitz constant λ
of f is defined as λ = supp∈� ||∇f (p)||. The gradient ∇f can be
written as follows:

∇f = (fA − fB) ∇β + (1 − β) ∇fB + β ∇fA.

Since β ∈ [0, 1], ||∇f || ≤ sup |fA − fB| λβ + max(λA, λB). We
need to find the Lipschitz constant λβ of β. We have:

∇β = 1

αA + αB

(
(1 − β)∇αA − β∇αB

)
.

Thus, λβ = max(λαA
, λαB

) and eventually:

λ ≤ sup |fA − fB| max(λαA
, λαB

) + max(λA, λB).

Similar results are obtained with other operators. �
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É.: Feature based terrain generation using diffusion equation.
Computer Graphics Forum – CGF 29, 7 (2010), 2179–2186.

[KB89] KALRA D., BARR A.: Guaranteed ray intersections with im-
plicit surfaces. Computer Graphics 23, 3 (1989), 297–306.
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warping, blending and boolean operations in an implicit surface
modeling system. Computer Graphics Forum – CGF 18, 2 (1999),
149–158.

[ZSTR07] ZHOU H., SUN J., TURK G., REHG J. M.: Terrain synthesis
from digital elevation models. Transactions on Visualization and
Computer Graphics – TVCG 13, 4 (2007), 834–848.

c© 2015 The Authors
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.


