
1

Interactive Computation and Rendering of
Finite-Time Lyapunov Exponent Fields

Samer Barakat, Christoph Garth, Member, IEEE , and Xavier Tricoche, Member, IEEE

Abstract—Finite-time Lyapunov exponent and Lagrangian coherent structures are popular concepts in fluid dynamics for the
structural analysis of fluid flows but the associated computational cost remains a major obstacle to their use in visualization. In
this paper, we present a novel technique that allows for the coupled computation and visualization of salient flow structures at
interactive frame rates. Our approach is built upon a hierarchical representation of the FTLE field, which is adaptively sampled
and rendered to meet the need of the current visual setting. The performance of our method allows the user to explore large
and complex datasets across scales and to inspect their features at arbitrary resolution. The paper discusses an efficient
implementation of this strategy on the graphics hardware and provides results for an analytical flow and several CFD simulation
datasets.

Index Terms—Flow Visualization, Vector Field Data, GPU and Multi-core Architectures, Interactive, FTLE, Streaming Data.

F

1 INTRODUCTION

F LUID flows are ubiquitous in science and indus-
try and massive computational resources are in-

vested to study their behavior though Computational
Fluid Dynamics (CFD) simulations. The analysis of
the resulting data seeks a better understanding of
both qualitative and quantitative properties of fluid
flows, which has become instrumental in the study
of multifaceted physical phenomena. Yet, despite the
impressive research activity in flow visualization over
the last 20 years [22], [23], [17], creating effective de-
pictions of very large, complex, and unsteady vector
fields remains challenging.

Topological [18] and feature-based [23] methods specif-
ically attempt to characterize salient structures to
offer a high-level representation of the flow. Yet,
both approaches have significant shortcomings. The
topological technique is sometimes unable to capture
essential flow patterns such as vortices. Moreover, its
Eulerian viewpoint and lack of Galilean invariance
make the interpretation of topological structures prob-
lematic in the transient setting. In contrast, feature-
based visualization techniques use problem-driven
and typically heuristic feature definitions to identify
interesting patterns in an application-specific fashion.
In this context, a promising third avenue has been
emerging in recent years, which leverages the notion
of Lagrangian Coherent Structures (LCS) to create a
portrait of the flow. LCS correspond to ridges of the

• S. Barakat and X. Tricoche are with the Department of Computer
Science, Purdue University, West Lafayette, IN 47907.
E-mail: {sbarakat|xmt}@purdue.edu

• C. Garth is with the Computer Science Department, UC Davis,
Davis, CA 95616 and the Computer Science Department, Uni-
versity of Kaiserslautern, 67655 Kaiserslautern, Germany E-mail:
garth@cs.uni-kl.de.

Finite-Time Lyapunov Exponent (FTLE), a scalar field
that characterizes the amount of stretching about the
trajectory of a point over a finite time interval given
a certain starting time. Following the seminal work
by Haller [10], LCS visualization through FTLE has
gained significant traction in the fluid dynamics [29],
[9], [30], [2], [20] and visualization [6], [26], [7], [31],
[27], [14], [28], [35] communities for its ability to au-
tomatically identify important flow structures within
an objective mathematical framework.

Unfortunately, despite its compelling properties, the
FTLE-based approach poses a fundamental compu-
tational challenge. Indeed, the analysis of the FTLE
field requires to compute the trajectories of massless
particles along the flow from a dense set of spatial
locations. The relative behavior of neighboring parti-
cles during the motion is then used to measure the
coherence of the underlying transport phenomenon
and to determine the presence of embedded repelling
and attracting manifolds. Hence, a prohibitive numeri-
cal integration must be carried out from virtually every
location in the domain. In addition, the Lagrangian
nature of the analysis enables the identification of
structures whose scale can be significantly smaller
than the computational mesh [21].

Despite the contributions made recently to improve
the efficiency of FTLE computation and visualiza-
tion [6], [26], [2], [20], [27], [14], no technique proposed
to date achieves interactive performance. Yet, interac-
tivity is essential to turn any visualization approach
into an exploratory tool. In the special case of FTLE vi-
sualization, interactivity would be especially valuable
since it would afford the user the control necessary
to navigate the inherently multi-scale complexity of
Lagrangian structures. Furthermore it would permit
to focus the computation on the flow patterns that
are most relevant to the analysis. These observa-

2

tions constitute the motivation of the present work.
We introduce an efficient technique for the coupled
computation and visualization of FTLE at interactive
frame rates. Our approach is built upon a hierarchical
representation of the FTLE field, which is adaptively
sampled to meet the needs of the current visual
setting. By optimizing the use of the computational
power available on modern graphics processing units
(GPU) we achieve the interactivity that allows the
user to explore a dataset across scales and inspect its
features at arbitrary resolution.

The contents of this paper are organized as follows.
We review previous work in Section 2. We formally
define Lagrangian coherent structures and discuss the
challenge posed by their visualization before outlining
our proposed solution in Section 3. A novel texture-
based dynamic octree data structure is introduced in
Section 4 followed by a description of our allocation
strategy in Section 5. We present the details of our
algorithm in Section 6, along with the pseudocode
for the key aspects of our GPU implementation. Re-
sults and performance assessments are provided in
Section 7. Finally we conclude our presentation by dis-
cussing possible extensions of this work in Section 8.

2 RELATED WORK

Haller pioneered the idea of characterizing La-
grangian coherent structures in transient flows
through the finite-time Lyapunov exponent [10]. This
seminal contribution generated a significant interest in
FTLE and its applications to the structural analysis of
transient flows in the fluid dynamics community, both
from a theoretical and from a practical viewpoint.
Haller studied the robustness of the structures char-
acterized by FTLE [12] and showed that they remain
valid under approximation errors in the velocity field.
He also suggested to identify stable and unstable
manifolds with ridge lines of the FTLE field. Shadden
et al. investigated the theory of FTLE and LCS in
2D [29] and proved that the flux across ridge lines
of the FTLE field is small and typically negligible.
An extension of LCS to arbitrary dimensions was
proposed [30]. These concepts have been applied to
the study of turbulent flows [11], [9], [21] and used in
the analysis of vortex ring flows [28].

Several approaches have been explored in the visu-
alization literature to analyze the structures exhibited
by time-dependent flows. Topological methods have
been applied to transient flows in the Eulerian per-
spective [34], [32], [33]. Flow topology is not Galilean
invariant and the choice of a proper reference frame
is especially problematic in the transient setting since
instantaneous topological features of the velocity field
do not reveal the true nature of the flow. Moreover, the
corresponding techniques can miss essential flow pat-
terns like vortices. Texture-based representations have
been used to visualize time-dependent flows while

offering an effective depiction of salient structures,
see [16] and references therein. Because of the intrinsic
difficulty of defining structures that are both coherent
in space and time, each of these methods resorts to
an ad-hoc combination of Eulerian and Lagrangian
perspectives, thus yielding animations whose physical
interpretation can be difficult.

Sadlo and Peikert presented a method for the ex-
traction of LCS through ridge-driven adaptive refine-
ment of the FTLE field [25] and later extended this
work to support the tracking of LCS over time [27].
Lipinski and Mohseni proposed a technique for the
efficient computation of LCS through a ridge tracking
approach that exploits temporal coherence while as-
sessing the approximation error [20]. Neither method
is interactive and their mapping to the GPU appears
non-trivial. The GPU-based acceleration of FTLE com-
putations for two-dimensional flows was previously
considered by Garth et al. [8]. However, their method
does not extend to 3D flows due to memory and
bandwidth constraints. An adaptive FTLE computa-
tion for 3D flows was also described by Garth et al. [6].
Brunton et al. proposed a technique that exploits the
similarities between trajectories of a sequence of flow
maps over time to speed up the computation [2]. A
germane idea was applied by Hlawatsch et al. who
introduced a new hierarchical computation scheme
for integral curves and described a GPU implementa-
tion [13]. Both approaches trade computational com-
plexity for increased memory footprint, which is tied
to the spatial and temporal resolution. Investigat-
ing fine scales can become prohibitively expensive,
especially for time-dependent datasets. In addition,
unnecessary computations are performed when finer
resolutions are only relevant in a small portion of
the volume. Some papers have considered data-driven
refinement algorithms that exploit the coherence of
particle paths to generate smooth approximations of
the flow map [6], [19]. In our approach, we adopt an
adaptive view-dependent refinement where computa-
tion is performed on the fly while optimizing the use
of memory and computation resources.

Crassin et al. discussed the volume rendering of
large datasets using multiresolution data representa-
tion on the GPU [4]. They proposed corresponding
techniques for streaming and high quality filtering.
The Tuvok architecture [5] also achieves multireso-
lution volume rendering using an optimized out-of-
core, bricked, level of detail data representation. In
both cases, the volume is fixed. Hence, their proposed
multiresolution structures are static, in contrast to the
dynamic octree data structure described in Section 4.
We present an algorithm for adaptive optimization of
the tree hierarchy based on the visual result, and the
memory available on the GPU. Our method permits
progressive sampling on the fly for the required res-
olution rather than paging solutions.

3

3 THEORY AND METHOD OVERVIEW

In the following we provide the definition of finite-
time Lyapunov exponent before outlining our ap-
proach for its computation and visualization.

3.1 Flow Map and Finite-time Lyapunov Exponent
Let v : (I ⊂ IR) × (D ⊂ IR3) → IR3 be a smooth
time-dependent three-dimensional vector field de-
fined over a spatial domain D and a time interval
I describing the velocity of a fluid flow. The corre-
sponding dynamical system describes the motion of
massless particles along the flow:{

ẋ(t, t0, x0) = v(t, x(t, t0, x0))
x(t0, t0, x0) = x0.

(1)

The map x(·, t0, x0) : t 7→ x(t, t0, x0) describes a
particle trajectory. The map xt := x(t, t0, ·) is called
flow map: xt(x0): it indicates the position reached at
time t by a particle released at x0 at time t0.

With previous notations, one considers the spatial
variations of the flow map xt, whereby t = t0+ τ and
τ is finite. The variations of this flow map around a
given position x0 are locally determined by its spatial
derivative, the matrix Jx(t, t0,x0) := ∇x0x(t, t0,x0) at
x0 and the associated (right) Cauchy-Green deforma-
tion tensor C = JTxJx. Maximizing the dispersion of
particles over all directions around x0 at t0 is namely
equivalent to evaluating

στ (t0,x0) :=
√
λmax(C(t, t0,x0)),

where λmax denotes the maximum eigenvalue of the
tensor. To obtain the average exponential separation
rate, one finally computes the finite-time Lyapunov
exponent λ(t, t0,x0), defined as follows:

λ(t, t0,x0) =
1

|τ |
log στ (t0,x0).

This rate can be evaluated for both forward and
backward advection (positive or negative τ).

Practically, the flow map is sampled at a discrete
set of locations (typically at the vertices of a raster
grid) through the numerical integration of the dif-
ferential equation 1. FTLE is subsequently evaluated
by approximating the spatial derivative Jx from this
discrete information. Note that large values of λ for
forward advection correspond to manifolds that have
a strong repelling impact on nearby particles, while
large FTLE values for backward advection correspond
to manifolds that attract nearby particles.

3.2 Challenges and Proposed Solution
The visual exploration of FTLE in practical fluid flow
problems poses two sets of challenges. The first one
concerns the inherently multi-scale complexity of the
patterns exhibited by FTLE in typical practical (e.g.,
turbulent) flows. This property implies that an ex-
tremely fine flow map sampling rate may be required

to properly resolve all the features of interest. In
particular, this sampling resolution may significantly
exceed the resolution of the flow simulation itself,
as a consequence of the Lagrangian nature of the
processing. Beside the difficulty of assessing this (a
priori unknown) finest resolution in pre-processing,
trying to uniformly compute an FTLE field at that
resolution is clearly wasteful. First, the sparse nature
of the LCS embedded in the FTLE field means that
only a small fraction of the volume is actually going
to contain salient surfaces. Second, a high-resolution
uniform sampling yields a data volume that typically
exceeds the memory of the graphics hardware in the
rendering stage. In that regard, it is worth noting that
while the method proposed by Sadlo and Peikert [26]
offers a means to adaptively refine the flow sampling
in the direct vicinity of LCS detected at an initially
coarse resolution, it is not interactive and cannot
guarantee the detection of those fine scale LCS that
elude detection at a low flow sampling rate.

A second significant challenge pertains to the am-
biguity of the integration length τ needed to achieve
the best characterization of the flow structures. While
short integration times fail to resolve fine structures
and properly localize major ones, excessive integra-
tion times can yield an excessively complex pictures
by superimposing multiple temporal scales. Hence,
the usefulness of any offline FTLE computation in pre-
processing depends on the appropriate choice of this
parameter, which may require multiple attempts and
thus incur a significant computational overhead.

Our solution to tackle both problems consists in
carrying out the FTLE computation and the rendering
of the resulting information in a view-dependent and
interactive fashion. That way, we give the user flexible
control over both integration length and adequate
sampling resolution in a setting that is responsive to
her interest and exploration behavior. Resolving FTLE
structures at a high uniform resolution is intractable
due to memory and time constraints. Instead, our
method restricts the computation to the visible portion
of the flow domain and further it adaptively focuses
on the regions that contribute to the rendered image,
as determined by the user-defined transfer function.
More precisely, the basic idea of our method consists
in alternating partial FTLE sampling and ray casting
of the resulting field at each frame, following an in-
cremental approach. By intertwining computation and
rendering, we leverage the rendering step to inform
the following computing step about missing samples
that were identified during the volume rendering
of the available data. Our method is built upon a
hierarchical data representation implemented in tex-
ture memory. In contrast to typical view-dependent
rendering techniques however, our method requires a
dynamic data representation, which disqualifies static
GPU data structures. We therefore propose a novel
data structure that extends the traditional texture

4

FTLE
Computa,on

Volume	
Rendering

User

Update	 Mul,-‐resolu,on
structures

Update	 computa,on	
priori,es

Change	 view	
se?ngs

Update	 rendered	
image

1

2

3

4

Ini,alize	
computa,on	
parameters

0

Adap,ve	 refinement	
over	 a	 sequence	 of	 frames	

Fig. 1. Overview of the components of our method

octree by allowing for the dynamic allocation of tex-
ture memory to the spatial region that is currently
visualized. The allocation policy is controlled by a
priority metric that quantifies the importance of a
spatial region in the current frame in terms of its FTLE
content, size, and visibility.

With these elements, our algorithm proceeds as an
incremental process that optimizes the use of avail-
able computational and memory resources at each
frame. Moreover, we adopt a progressive approach
that weighs responsiveness and image quality based
on the user interaction. Finally, the entire method
has been implemented and optimized on the GPU to
document its benefit in a practical setting. We present
the main building blocks of our method in Figure 1.

4 DYNAMIC HIERARCHICAL DATA REPRE-
SENTATION

In the following we describe a novel data structure
that supports the dynamic and adaptive refinement
of both flow map and FTLE field. This data structure
is pointerless and can be implemented very efficiently
in texture memory on the graphics hardware.

4.1 Modified Texture Octree

Our data structure is based on the idea of the texture
octree [15], whereby the octree nodes are saved and
interlinked in a texture called indirection pool. Our im-
plementation adopts a modified version of the texture
octree in which texture blocks rather than individual
values are assigned to the leaves [1], [24]. A direct
benefit of this approach is that texture caching and
interpolation can be leveraged, thus achieving high
performance on the GPU. Note that the boundaries
of each block are replicated across blocks to ensure
the local memory footprint of both interpolation and
gradient computation. In this work we improve upon
this basic data structure in two ways to support the
dynamic modification of the octree at runtime.

!

"

#

$

$

!

"

%&'()&*+,&-.(/&01*23+(.,+(*4 5*23+(.,+(*4

%&67178+(,&-.(1,19-:+.,&-',8(,
117;&(.,&<,.*'*,8+-=>1

?7'9,:&01*23+(.,+(*6(1 ?7'9-:',:&01*23+(.,+(*6(1

@(A:7)(1,",8+-=>1,
4-),=97+.)(&

B(6(+1,&(=(11*)<,4-),
C&(),)(1-+:D-&1

Fig. 2. The need for the virtual leaves

First, we introduce the concept of virtual leaf. A
virtual leaf, in contrast to a regular leaf, does not have
an assigned 3D texture block. In our terminology,
leaves that possess a texture block are called sam-
pled leaves since they contain sampled values of the
flow map and FTLE field. Virtual leaves allow us to
dynamically assign the limited number of 3D blocks
available in texture memory to the portion of the
tree that directly contributes to the visualization. In
particular, as the user zooms into a particular region
of the dataset, sampled leaves in coarser levels are
continuously evacuated when necessary to free blocks
for the finer levels, as explained in the algorithm
description in Section 6. Observe, however, that we
prevent the evacuation of nodes in the three coarsest
levels to ensure the availability of a basic data set
overview at all times (e.g., when the user is suddenly
zooming out). Refer to Figure 2.

Our second improvement consists in allowing con-
tinuous changes to the structure of the texture octree.
This necessitates the use of a map, hereafter referred
to as indirection pool map that keeps track of the free
tree nodes. This map associates each octree node in
the indirection pool with a value indicating whether
that entry is currently used or not. When an octree
node is deleted and an entry is freed in the indirection
pool, its corresponding entry in the indirection pool
map is marked as invalid. Upon sorting the indirec-
tion pool map with respect to the valid / invalid
tag, free entries in the indirection pool are identified
and made available for subsequent processing. Since
the performance of the texture octree heavily relies
on the caching mechanism offered by the GPU, it
is read-only by nature. We overcome this limitation
by deferring all per-frame structure modifications to
the end of a computation step (further discussed in
Section 6.3.1), which alleviates the issues caused by
cache invalidation. In addition, the leaves (sampled
and virtual) are linked to corresponding entries inside

5

the priority table data structure whose role is detailed
in Section 5.2.

4.2 Block Repository
The block repository stores the 3D texture blocks that
are pointed to by the sampled leaves of the octree.
Each block contains entries corresponding to forward
and backward FTLE computation over a portion of
the domain. Updates to this structure can only occur
at the granularity of a block since it is allocated
in texture memory referenced by the ray casting.
Consequently, we use a scratch pad structure that
is capable of holding all the updates that can occur
during a single computation phase (Section 6.3.1).
The volume of these updates is significantly smaller
than the repository size. The updates are then copied
from the scratch pad structure into their correspond-
ing positions in the repository once the computation
phase is completed. This approach permits concurrent
execution of computing and rendering, and increase
cache performance by deferring updates until the
rendering is complete.

5 OPTIMAL SAMPLING

The interactivity of our visualization technique de-
pends on its ability to automatically and effectively
determine what sections of the dataset must be pro-
cessed (through flow map sampling and FTLE com-
putation) to meet the needs of the current camera
setting. Given the strong memory and performance
constraints that apply to our method, this selection
amounts to an optimization process. Specifically, we
introduce a priority function that quantifies the contri-
bution of a region to the visualization from the current
viewpoint. The priority value assigned to each leaf
allows us to define an optimal octree as the solution
that maximizes the overall priority within the given
memory constraints. These aspects are detailed next.

5.1 Priority function
The priority function evaluation naturally occurs dur-
ing the rendering stage since this is where the visual
impact of a given block in the final image is deter-
mined. The basic objective of the priority function is
to provide an objective measure of visual importance.

The image footprint of a block at distance r from
the viewpoint scales as 1/r2, hence we insert this term
in the expression of the priority function. The second
factor concerns the effect of the block on the color
of the pixels corresponding to its image footprint.
Several aspects need to be taken into consideration.
The data values in the block may be mapped through
the transfer function to a very low opacity, which
implies that the block has very little to show and
its priority should be low. The same is true if the
block is occluded by other blocks. A straightforward

r
O1

O2

E=O2–O1

..

Octree
level 1

level l

level 2

Image frame

Fig. 3. Priority function terms

technique would be to measure the total contributions
of the block to the colors of the rays intersecting it.
Thus for every ray one could measure the change in
the ray color and opacity after traversing the block.
However we are primarily interested in the maximum
impact of the block on all crossing rays since it allows
us to account for the presence of the sparse salient
structures embedded in a block.

Coarse blocks should have a higher priority than
finer blocks because their volume and corresponding
image footprint are larger. For example, the screen
footprint of a block at level l is roughly the quarter
of that of a block at level l + 1. More generally, the
priority of a block at level l is inversely proportional to
(2l)2. If a certain level corresponds to a resolution that
is sufficient for a good rendering quality we should
penalize the priority of finer levels to prevent a split
when this level is exceeded and save space for possi-
ble new blocks. Assuming that the best current level
is m, we therefore divide the priority value by the
factor (2(l−m))2. The different factors are illustrated in
Figure 3, where E = O2 − O1 designates the change
in opacity caused by the block traversal. Finally we
arrive at the following expression for the priority of
a block b with maximum color effect E:

P (b) =
E

r2 ∗ (2(l−m))2

5.2 Priority Table
The link between octree leaves (both sampled and
virtual) and their priority value is established through
a priority table. This table stores the priorities of the
leaves during the ray casting algorithm. When a ray
crosses a leaf, we look up the corresponding entry
in the priority table and update the priority of the
leaf only if the newly computed priority exceeds the
original value in the table.

In addition, the priority table is used to keep track
of the vacant blocks in the block repository. Practically,
each table entry contains three values corresponding
to leaf reference, leaf priority, and associated block
reference. Hence, the priority table contains as many
entries as necessary to link all leaves (sampled and

6

virtual) to their priorities as well as to all blocks.
Virtual leaves are given an invalid block reference
while free blocks have table entries that contain an
invalid leaf reference. As a result, a sort applied to
the block reference field of the priority table entries
will reveal the identity and number of free blocks for
subsequent processing.

5.3 Optimality criteria

To define an optimal octree refinement, we intro-
duce some convenient notations. First, we call merge
candidate any internal node whose children are all
leaves (sampled or virtual). Such nodes are some-
times referred to as internal leaves. The term merge
candidate alludes to the fact that in the course of a
dynamic modification of the octree, these nodes can
be collapsed by merging their children to form a new
leaf. The algorithm determining when such a collapse
takes place will be discussed in Section 6. Observe that
upon being merged such a node can either become a
sampled or virtual leaf depending on the availability
of sample information in its children. Hence, if a leaf
has a virtual child, it will itself be virtual.
• SL(T): set of sampled leaves of an octree T
• V L(T): set of virtual leaves of an octree T
• L(T): set of leaves of an octree T where
L(T) = SL(T)

⋃
V L(T)

• P (T): (total) priority

P (T) =
∑

l∈SL(T)

P (l)

• P (T): average priority

P (T) =
1

|SL(T)|
∑

l∈SL(T)

P (l)

• Var(T): priority variance

Var(T) =
1

|SL(T)|
∑

l∈SL(T)

(P (l)− P (T))2

• M(T): set of merge candidates
• NB : total number of blocks
The optimal tree uses the limited available blocks

efficiently such that the memory allocated to the
various portions of the tree is commensurate with
the priority of the corresponding regions. As stated
previously, the priority value provides a quantitative
assessment of the contribution of a given region to the
visual representation. We define an optimal tree Topt
as a tree satisfying two conditions:

1) Topt has maximum priority over all trees T

P (Topt) = Pmax := max
T∈T

P (T)

where T is defined as

T = {T | SL(T) ≤ NB}

This condition guarantees that the data blocks
hold data with the highest visual effect.

2) Topt has the minimum variance among the trees
with maximum priority.

Var(Topt) = min
T∈T, P (T)=Pmax

Var(T)

The smallest variance ensures the smoothness of
the image. Given two trees of equivalent priority,
it favors a more regular assignment of blocks to
priorities: the memory space per priority unit is
closer to the average across the different blocks.

6 ALGORITHM

We now describe the basic algorithmic strategy of our
method as well as its practical implementation. The
latter takes the form of a succession of computational
steps designed to progressively increase the priority
of the tree and rendering steps that display the infor-
mation currently available. These various aspects are
discussed next.

6.1 Heuristic
To meet the optimality conditions outlined in Sec-
tion 5, we apply the A*–search algorithm [3]. Specif-
ically, we find the optimal tree by first defining a
heuristic lower bound on the number of operations
needed to reach this optimum. The two conditions
mentioned above are separate: the second condition
implies a constrained optimization, once the first
condition is satisfied. Hence we can use two dif-
ferent heuristics, which once combined define the
underestimated total number of needed operations.
Equivalently, we can carry out the search based on
the first condition followed by a search based on the
second condition. The heuristic function for the first
condition is:

h1(t) = {v | v ∈ V L ∧ ∃ s ∈ SL s.t. P (v) > P (s)}

In other words, the number of operations needed is
at least the number of virtual leaves that can replace
sampled leaves and get transformed to normal sam-
pled leaves.

For the second condition we apply the following
heuristic:

h2(t) = {s | s ∈ SL ∧ ∃m ∈M s.t. P (s) > P (m)},

whereby SL is the split candidate list (since split
candidates are leaves by definition) while M is the
merge candidate list (refer to Section 6.2). h2(t)
is an underestimate of the number of operations
needed to satisfy constraint 2) because trading each
merge node m ∈ M with priority P (m) with a
split node s ∈ SL with priority P (s) such that
P (m) < P (s) will reduce the overall priority variance
of the tree. Indeed, assuming that the priority of
both nodes remains unchanged after this exchange

7

(see discussion below), the variance is decreased
since Var({s1, .., s8,m}) < Var({s,m1, ..,m8}), with
∀i P (si) = P (s)/8 and ∀i P (mi) = P (m)/8.

The description above relies on the assumption that
the priority of the merge candidate is equivalent to
the sum of the priorities of its children. However, the
definition of the priority given in Section 5.1 does not
strictly guarantee this invariance. To explain why this
assumption is justified it is necessary to consider the
makeup of the priority function. First, the difference
in levels between a node and its children implies that
the parent will have a screen footprint roughly four
times larger than any of its children when a merge
occurs. Second, since a ray crosses two children on
average as it traverses the corresponding parent node,
we can assume that the effect on the opacity of a ray
color crossing the parent will be twice that of a ray
crossing any child. Thus, given that the eight children
have close priorities, the parent will have a priority
that is almost eight times larger than the average child
priority. At coarse resolutions, siblings will have close
priorities and difference between merge and split
candidates in priority will be significant which makes
our assumption true. At finer resolutions, the decision
will not be as accurate. However, since re-evaluation
occurs in each rendering phase and therefore after
only one operation is performed per node (merge
or split), and because the priority difference between
merge and split is insignificant, we make sure that the
effect is visually unnoticeable.

6.2 Iterative Solution

Assuming that an upper bound k is known on the
number of operations that can be performed per frame
we can restrict our considerations to an equivalent
number of merge and split candidates to determine
which node transformations will actually take place.
Note that the creation of any sampled leaf during
split requires to perform trajectory integration for both
forward and backward FTLE, a computationally in-
tensive operation dominating the whole computation
phase. We refer to this number k as consideration zone
and discuss it further in Section 6.3.1. Practically, a
collective list is used to hold k split candidates (i.e.
leaves) having highest priorities and k merge candi-
dates (Section 5.3) having lowest priorities. This list is
then used to decide which sampling operations must
be performed next.

To further illustrate this process, let us now de-
scribe the operations performed over a sequence of
frames in order to approach the target optimal tree.
As stated previously, the operations should result in
a monotonic decrease of the heuristic measure h1 and
h2 mentioned previously. The first heuristic can be
targeted by the following two operations:

1) Convert a node from virtual leaf to sampled
leaf. This happens when the virtual node pri-

ority exceeds other nodes priorities in the col-
lective list and when the redistribution of the
frames in this list grants the needed empty data
block to the node.

2) Convert a node from sampled leaf to virtual
leaf. The new virtual leaf will retain the same
priority as the original sampled leaf. However,
if the view settings changed virtual leaves pri-
orities are set to a high fixed value if it is hit
by a ray in the new settings. This will force a
split to happen and consequently will permit the
re-evaluation of the actual priority of this leaf
under the new camera setting.

For the second heuristic to monotonically decrease,
we perform the merge and split operations after the
redistribution of data blocks with preference to high
priorities. These operations occur over a sequence of
frames until no merge candidate has a priority less
than any leaf.

In addition we do not allow a split unless the node
has a priority larger than a certain limit. Otherwise
splits would continue until all blocks are consumed,
which would slow down subsequent frames when
free blocks become necessary. We also force a merge
when the priority of the internal node is considerably
less than the same limit mentioned for splitting even
if the required blocks are available. This allows us
to free blocks when possible. This can be thought
of as amortizing the efforts of merging over frames
by doing some merges ahead of time if they are
anticipated.

6.3 Implementation
Practically, the operations performed at each frame
of the visualization are organized in a computation
phase (during which flow map sampling and FTLE
computation are performed) and a rendering phase.

6.3.1 Computation Phase
During the computation phase, we use parallel radix
sort on the priority table in order to separate the
entries corresponding to free blocks from the rest of
the entries in addition to finding the highest priority
nodes. After separation, we can easily find the number
of free data blocks by counting. It is necessary to
correct the map from the octree nodes to the prior-
ity table entries after the sort. We apply the same
technique to the indirection pool map (previously
discussed in Section 4) to separate empty and non-
empty indirection grids. Again we need to correct the
references from the internal nodes to the indirection
pool map entries.

Before deciding what merge and split operations
need to be performed in the computation phase, we
check all sampled leaves for possible evacuation. If a
sampled leaf is not visible (its priority has the lowest
initialization value after the rendering is complete)

8

and has a level coarser than the current finest level
by more than 3 then we convert it to a virtual leaf
and free its block. The condition on the level is to
avoid deleting samples that might be needed in the
close future due to sudden zoom out or rotation. This
is the step that makes sure blocks are saved to finer
resolutions when the coarser resolutions in the tree are
not visible. After this operation, we need to repeat the
sorting operations mentioned above and to find the
new number of free blocks.

In order to find the merge candidates, we search all
internal nodes having only leaves as children, and we
add them to the merge candidates lists. Each merge
candidate is coupled with the number of blocks freed
if the merge is performed. In addition, their priorities
are computed as the sum of their children priorities.
An exception is when the node has a level less than
four; in this case the node is exempted from the
merge. We then perform a sort to find the merge
candidates of lowest priorities.

The consideration zone parameter k (previously
mentioned in Section 6.2) is chosen according to the
degree of parallelism available by the architecture and
according to the execution time of a single operation.
After identifying k, we add the k highest priority split
candidates (found using the priority table) and the
k lowest priority merge candidates (found using the
merge candidate list) to the collective map and we sort
it according to priorities. We sum the blocks that will
be released when merging the k lowest priority merge
candidates. We add this number to the number of free
nodes to get the number of permissible blocks. We
then reassign all permissible blocks to the entries of
the list in decreasing order of priority until the blocks
are exhausted. If a split candidate was included in the
selected entries, it is marked for splitting. Similarly, if
a merge candidate was not included in this priority-
based selection, it is marked for merging.

Merge is performed by first updating the data
structures. This is followed by copying data from
children blocks to parent block. The copy operations
are performed only if none of the children is a vir-
tual leaf. After finding the starting index of the free
blocks in the priority table, we assign offsets to leaves
marked for splitting according to their position in the
collective list.

We perform the split operations in 3 stages:
1) Update the data structures.
2) Compute the flow map for the new points. This

operation is performed in a loop by streaming
the vector maps, and performing the integra-
tions corresponding to the time frame of these
maps.

3) Perform FTLE computations for all the points.
For every point we find the flow map gradient
using the neighboring grid points. Replication
of the block boundaries is necessary to find the
neighbors.

After we have completed merge and split
operations, we reassign entries in the priority
table for all leaves. The following pseudocode
illustrates the computation phase sequence:

1) Sort priority table and indirection
pool map

2) Find number of free blocks and needed
blocks through reductions

3) Test sampled leaves for possible
conversion to virtual leaves and
convert when appropriate

4) Repeat sorting and find new number of
free blocks

5) Construct merge candidate list and sort
6) Merge k highest priority split

candidates and k lowest priority merge
candidates in collective list of size
2k

7) Sort collective list
8) Find number of blocks used by merge

candidates in the collective list and
add it to number of free blocks

9) Redistribute this number on collective
list

10) Perform merge and split operations and
corresponding trajectory integration in
forward and backward directions

11) Copy memory to update the block
repository and rebind the textures,
and re-initialize priority table for
upcoming rendering

6.3.2 Rendering Phase
The rendering phase is a conventional ray casting
algorithm where we assign rendering to threads on a
per ray basis. When a ray hits the volume the texture
octree is traversed to identify the leaf from which to
sample the FTLE value. To speed up the rendering,
we hold references from children to parents in order
to climb to the closest ancestor containing the new
point. Normal top down traversal is then resumed
from this common ancestor node. When the ray exits
a block, we compute the difference in opacity due to
the block and we evaluate the priority function. The
result is then saved in the priority table if it is higher
than the original priority value of the leaf in the table.

To enhance the responsiveness of our visualization,
we perform the computation phase every few frames
(e.g., in every third or fourth frame) whenever the
interaction is high. Since we do not allow the merge
of the first (coarser) three levels, the renderer is guar-
anteed to have enough data to produce an image
that shows the overall structure at all times. Hence,
when the user starts interacting with the system the
frame rate will increase due to the computation phase
skipping. Once the interaction stops the frame rate
will drop to provide an accurate image in the shortest
time. Another way to enhance responsiveness is to
decrease the sampling rate by a factor of 6 (value
chosen empirically) while interactions are heavy. The
sampling rate across blocks is constant and hence is

9

variable along the ray. This is a consequence of blocks
having different resolutions corresponding to leaves
at various depths in the octree. The sampling distance
along the ray is half the distance between samples
in the block. This satisfies the required Nyquist rate
necessary to benefit from the computed samples.

7 RESULTS AND DISCUSSION

We have implemented our method on the GPU using
NVIDIA CUDA. Both phases, computation and ren-
dering, are broken into small parallel tasks to ensure
maximum code path coherency among threads and
take advantage of the parallelism. We have bench-
marked our algorithm on a Intel Core2 Extreme
QX9650 (12MB,3.0GHz) machine, whereby the GPU
kernels are executed on NVIDIA GeForce GTX 280 (30
multiprocessors, 30720 threads, 1GB device memory).

The selected block size is 163. This size is chosen
as a compromise between the total number of blocks
needed to represent the different levels of refinements
and the efficiency of the ray casting. A smaller block
size will increase the number of blocks traversed by
a single ray and consequently the number of octree
queries. Using a texture to hold the data is necessary
because close rays are kept on the same core through
thread assignment to rays. Updates are copied from
the scratch pad (Section 4.2) after every computation
phase. We also rebind the indirection pool texture
to its memory structure at the same time to commit
changes made to the octree structure.

The consideration zone parameter is selected ac-
cording to the compute capability of the device and
the current load. As operations are assigned per core,
this number should be a multiple of the number of
available cores (30 for the NVIDIA GTX 280 used in
our implementation). Since only one operation fits on
each core, this parameter should be a multiple of 30 to
keep all cores busy. This is equivalent to manipulating
8k data blocks (each operation involves 8 children)
during the split and merge. This k value however
can be changed dynamically to increase the efficiency.
For example, if the user is changing the viewpoint
we can pick a small k to favor higher frame rates. In
contrast, if the view is stable we can select a higher k
value and compute more data per frame. We used a
consideration zone of 30 for our tests. This amounts to
around 20 million integration steps per computation
phase. The lower threshold on priority is selected
empirically to be equivalent to the priority of a block
that is barely visible. This parameter is fixed across
all datasets.

The benchmark cases considered in the follow-
ing consist of the standard analytical ABC (Arnold-
Beltrami-Childress) flow and of three unsteady CFD
datasets described in Table 1. The ABC flow is
a canonical test case, exhibiting complex turbulent
structures [10]. In the PLATE dataset, fast and slow

TABLE 1
Dimensions of the different datasets

Dataset PLATE JET1 JET2

Size 384 x 96 x 96 128 x 128 x 128 128 x 256 x 128

fluid layers mix after passing a thin plate; the shear
induced by the differing velocities creates strong vor-
tices. The JET1 and JET2 datasets describe a fluid flow
injected into a medium at rest using high-speed jets.
Here, initially large LCS quickly break down into very
small turbulent structures. Characterizing these struc-
tures requires a high resolution in the computation
and depiction of the FTLE field. Hence, the analysis
of these datasets greatly benefits from our approach.

In order to measure the performance of our method
we compute the average frame rate during a (conic)
helix camera movement around the volume. The cam-
era starts at a position such that the volume fills
around 25% of the screen area and approaches the
volume gradually until the volume is totally filling
the screen. During this helix movement, the camera
rotates around the volume several times with a speed
corresponding roughly to a user exploration. The helix
path allows us to test the ability of our method
to accommodate a continuously changing viewpoint.
Computations need to be performed continuously in
a timely fashion in order to provide a smooth view
around the volume. A usual interaction behavior will
typically contain pauses, which allows computations
to proceed without view changes. As a result the
frame rate and responsiveness of the system increases
due to a reduced computational load. Thus, our test
cases can be interpreted as more demanding than a
realistic application scenario.

We keep threads of spatial proximity on the same
core to maximize chances for cache hits and hence
decrease the time needed for texture fetches. Table 2
(a) presents the average frame rates for the helix
movement described above when the early ray ter-
mination is turned off, and when it is turned on. The
opacity transfer function is a smooth approximation of
the step function. The viewport used is 1024×768 and
the computations are performed every three frames,
as described in Section 6.3.2. The advection takes place
in space and time. We use as many time steps as can
fit in memory to reduce the need for streaming. The
early ray termination helps increase the frame rates
in general but to various degrees. The frame rates
speedup for the PLATE dataset is more substantial
than the one achieved for the other datasets. This is
due to the fact that the PLATE dataset contains strong
(opaque) structures on the exterior, a configuration
that best leverages the early ray termination.

For the advection of particles we use a Runge–Kutta
2 (RK2) scheme with a small step size (around 0.5%
of the volume maximum side length). This scheme

10

TABLE 2
Impact of rendering modes (a), integration method (b),

transfer function (c), and viewport size (d) on frame
rates (fps)

JET1 JET2 PLATE

(a) Computation + Rendering 19 15 24
+ Early Ray Termination 22 18 30

(b) Euler 25 20 34
Runge–Kutta 2 22 18 30
Runge–Kutta 4 19 16 23

(c) Smooth Step 22 18 30
Constant Transparency 21 18 28

(d) 400× 300 40 37 39
640× 480 31 28 38
1024× 768 22 19 30

works best with the GPU architecture because it re-
quires a small number of registers hence allowing
for a larger number of concurrent threads. In our
tests, this method outperformed higher-order numer-
ical methods with larger step size. In Table 2(b), we
show the effect of using different integration methods
on the performance while using the same step size. In
Figure 6(c-d), we show the FTLE field for the ABC
dataset with a time dependent term computed by
our method with RK2 (c) in side by side comparison
with that computed on the CPU at fixed resolution
(5123) with the Dormand–Prince (DOPRI) integration
scheme (d). All major structures are similar in both
views.

While slight discrepancies can be spotted, they are
in fact primarily due to the limited (fixed) resolu-
tion used for the CPU computation (a limit imposed
by memory constraints in the subsequent rendering
stage). Indeed, we validated our results at high res-
olution by comparing the images obtained on GPU
and CPU with the same integration scheme (RK2),
whereby we computed only the visible portion of
the volume at high resolution on the CPU. We then
extracted 2D ridges from the resulting images and
measured the corresponding average CPU/GPU dis-
tance (using a simple gradient-descent approach).
That distance was found to be under a pixel width
in all tested cases, thus confirming the accuracy of
our GPU results.

The opacity of a block affects its priority as de-
scribed in Section 5.1. Hence the transfer function
can affect the amount of computation performed. We
used a 1D transfer function in our experiments though
multidimensional transfer functions are possible. We
compared the frame rates achieved with a smooth
step opacity function and with a constant low opacity
function covering the same range of values. The con-
stant opacity is used to reveal the internal structures
of the volume, thus increasing the computation load.
Table 2(c) shows a comparison between the frame

rates achieved with each transfer function. We notice
a slight decrease in the case of uniform transparency,
which is expected since less computation is required
in outside blocks while more is necessary in inside
blocks. This balanced effect led to a limited change in
the frame rate. However, we observe that for a high
zooming factor and with a transfer function consisting
of a set of spikes the frame rate can drop to 7 fps. This
is due to the fact that more computations are required
to identify the optimal tree in which visible blocks are
distributed to a wide range of resolutions. Similarly,
the cost of rendering is increased, too. When the ray
traverses blocks of significantly different resolutions,
the corresponding thread needs to move up and down
the tree for every change in resolution crossing a large
number of nodes in each case (c.f. Section 6.3.2). This
implies significantly more accesses to the octree nodes
by the threads.

The amount of velocity data streamed from the
CPU-side cache to the device is a critical factor in
the overall performance of the computation phase. We
compare 4 different cases. In the first case the flow is
steady. No streaming is necessary and the cache per-
formance is optimal since only one texture is held in
memory. Now, let N be the maximum number of steps
that can reside in memory simultaneously. The second
case corresponds to an unsteady flow where the time
steps used for both forward and backward advections
can fit in memory simultaneously (N time steps).
This case does not require streaming but will lead to
decreased cache coherence compared to the previous
case since different textures are accessed at different
times. The third case corresponds to an unsteady flow
for which the number of steps used for each advection
direction can fit in memory. Hence, in this case we
need to stream once per integration direction (N time
steps for each direction). The last case corresponds to
an unsteady flow for which the number of time steps
needed for every direction corresponds to twice as
many steps as the previous case (2N time steps for
each direction). Hence, we need to stream twice for
every direction. In our implementation we leverage
page locked memory to hold the datasets in the RAM.
This leads to faster transfers using DMA. In addi-
tion, we use asynchronous streaming for the different
components of the velocity data. The latest versions
of NVIDIA hardware (e.g., NVIDIA Fermi) should
be able to interleave integrations with streaming.
This is not possible with our current configuration
because the cost of interrupting the integration kernel
more frequently with a ping pong like technique is
significant and cannot properly hide the streaming
latency on our hardware. The number of time steps
used for each case is summarized in Table 3(a). The
resulting computation times are shown in Table 3(b)
(total computation time and its percentage out of total
time) and the resulting frame rates are presented in
Table 3(c). Again, we are using the same viewport size

11

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

!"

!(!%"

!(!'"

!(!)"

!(!*"

!($"

!($%"

!($'"

!($)"

!($*"

!" +" %+" &+" '+" #+"

!"
#$

%
&
'$
(#
')
*$

+,&'-,$-./,%.0$

,*$1'/$2$

!"

#"

$!"

$#"

%!"

%#"

&!"

!"

!'!%"

!'!("

!'!)"

!'!*"

!'$"

!'$%"

!'$("

!'$)"

!'$*"

!" +" %+" &+" (+" #+"

!"
#$

%
&
'$
(#
')
*$

+,&'-,$-./,%.0$

1*$2'/$3$

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

!"

!+!$"

!+!&"

!+!("

!+!*"

!+#"

!+#$"

!+#&"

!+#("

!+#*"

!" $," &," (," *," #!," #$," #&," #(," #*," $!," $$," $&,"

!"
#$

%
&
'$
(#
')
*$

+,&'-,$-./,%.0$

)*$12',-$3.4$

-./01234.5" 675879:5;" <93/7"6327"

Fig. 4. Detailed behavior of the three datasets for the
unsteady case without streaming.

(1024×768) and camera path discussed previously. For
the unsteady test cases with streaming, we augment
the number of vector fields through interpolation in
between original time steps. This ensures that the
computations we perform and the obtained structures
are strictly identical and hence the comparison reveals
differences due to the streaming alone.

For the first 2 cases, we notice that the computation
phase constitutes only a small percentage of the whole
test duration. This is expected for two reasons. First,
we only do computations that are necessary using
an optimized strategy. Second, our rendering is more
costly than the rendering of a typical 3D texture
because our rendering includes the traversal of a
hierarchical structure (octree) in addition to priority

!"#$%&
!'#(%&

%"#()& %*#)!&

)#+& *)#%'&

)+#"%&
))#%)&)%#+)&))#+"&)!#'%&

*#+%&

%+#(!&
%%#%(& %$#(,&

)'#+!&

!"#)%&

%(#'+&

$&

)$&

%$&

!$&

,$&

+$&

"$&

*$&

'$&

-./&)&0)1&& -./&)&0%1& -./&%&0)1& -./&%&0%1& 234/.&0)1& 234/.&0%1&

Fig. 5. Frame rates for the steady (labeled 1) and
unsteady (labeled 2) cases without streaming

computations and corresponding memory writes. The
priority for any block is set to the highest value
computed by any ray. Computation, rendering times,
and frame rates in the course of the animation for
the unsteady case without streaming are shown in
Figure 4. The computation phases appear as spikes
since they are executed only every three frames. It
can also be noticed that the computation time is low
in certain ranges while high in subsequent ones. This
can be explained by the fact that block resolutions
remain sufficient for a while until a higher resolution
is found necessary as the object approaches the cam-
era. Low frequency oscillations with increasing times
correspond to complete rotations around the object
from successively shorter distances to the camera.

The frame rates achieved for the first two cases are
shown in Figure 5. Notice that the resulting volumes
for these cases are not strictly identical owing to tran-
sient variations but they remain similar because we
use very close time steps. Hence, the difference reflects
primarily the cache performance decrease when using
a set of textures in the unsteady case compared to a
single texture in the steady case. The percentage of the
computation phase time increases significantly when
we switch to the streaming cases. This is due to the
limited bandwidth between RAM and device.

As we described previously, the percentage of ren-
dering time relative to the whole animation time
is high in the absence of streaming. To determine
how this ratio scales with different viewport sizes,
we repeat the second case with viewport sizes of
400× 300 and 640× 480 in addition to the 1024× 768
viewport we used along our tests so far. The results
are summarized in Table 2(d). Every viewport has 2.56
times more pixels than the directly following smaller
viewport. The frame rate increases by only about 50
to 60% moving from the 1024 × 768 viewport to the
640× 480 viewport. This is explained by the fact that
the computation ratio increases as the viewport gets
smaller. Also, as the viewport gets smaller, the cache
coherence between ray texture accesses decreases. As
we explained in Section 6.3.2, the sampling rate in-
creases by a factor of 6 while the user is not changing

12

TABLE 3
(a) Number of time steps used in every case. (b) Effect of streaming on computation time and (c) frame rates.

a b c
JET1 JET2 PLATE JET1 (s./%) JET2 (s./%) PLATE (s./%) JET1 JET2 PLATE

steady 1 1 1 5.41/27.3 6.24/25.5 24.61/39.2 25.93 20.94 36.12
unsteady + resident 11 6 6 9.29/40.11 9.48/34.06 38.73/50.58 22.29 18.58 29.85

unsteady + 2 x streaming 21 11 11 45.17/67.04 41.95/60.59 167.7/76.74 7.43 7.22 10.15
unsteady + 4 x streaming 41 21 21 82.37/79.1 77.68/74.69 295.79/88.86 4.84 4.83 6.72

the visual setting to achieve very high quality render-
ings. The difference between sampling rates is almost
invisible unless a spiky opacity transfer function is
used. We notice however that the frame rate decreases
by a factor of around only 3 when the sampling rate is
increased by 6. We explain that by the increased cache
coherence when the sampling distance is shorter. In
general, this reduced frame rate is not a concern
for interactivity since the sampling rate automatically
adjusts to the behavior of the user.

(a) (b)

(c) (d)

Fig. 6. (a) General view for the FTLE field of the
ABC (Arnold-Beltrami-Childress) flow dataset (b) Cor-
responding block visualization for the same view. (c)
Forward FTLE field using RK2 (d) Forward FTLE at
fixed resolution computed on the CPU using DOPRI.

Figure 6(a-b) presents a high quality rendering of
the ABC flow dataset along with the corresponding
block subdivision (the local parameterization of each
block is mapped to the RGB unit cube). Figure 7
shows two different opacity transfer functions applied
to the PLATE dataset (step function vs. opacity peaks).
In both cases the boundaries between blocks at dif-
ferent resolutions are invisible. Figure 8 documents
the zooming capability for a clipped section of the

JET2 dataset. Intermediate zooming steps are shown.
Notice that as we zoom in we cross certain structures
to reveal the smaller-scale ones located behind. Fi-
nally, Figure 9 illustrates the zooming applied to two
different views of the JET1 dataset.

8 CONCLUSION

We have presented a novel and highly efficient ap-
proach for the visual exploration of flow structures at
arbitrary resolutions through the interactive computa-
tion and rendering of the FTLE field in transient fluid
flows. Our solution consists in intertwining compu-
tation and rendering stages. Specifically, our method
restricts the costly numerical advection of particles as-
sociated with the FTLE computation to those regions
of the domain whose mapping through the chosen
transfer function contributes to the rendered image.
The ray casting in the rendering stage is used to
determine the optical properties of each block in an
adaptive subdivision of the domain. Those properties
are mapped to a priority value quantifying the visual
impact of each block to rank their respective compute
priority. This algorithm is enabled by a novel dynamic
octree encoding introduced in this paper, which we
use to constantly reallocate limited memory resources
to the most relevant sections of the FTLE volume.

We have described a very efficient implementation
of this approach on the graphics hardware, which
fully leverages the massive compute power of modern
GPUs. Finally, we have presented experimental results
obtained by our system on 3 CFD datasets and a
canonical analytical flow. Our numbers document the
high performance of our method across a range of
demanding scenarios. With its interactivity and its
ability to efficiently navigate across spatial scales,
our technique offers for the first time a visualization
framework in which the powerful concept of FTLE
can be used as a data exploration tool.

An interesting avenue for future work is to extend
the current algorithm to allow for the explicit geo-
metric characterization of LCS as ridges of the FTLE
field. Ridge extraction is an involved procedure whose
interactive computation on an adaptive spatial sub-
division appears quite challenging. We also wish to
explore improved streaming approaches and a better
collaboration between CPU and GPU to permit the in-
teractive exploration of time-dependent LCS in large-

13

(a) (b) (c)

Fig. 7. (a), (b), and (c) show different transfer functions applied to the FTLE field of the PLATE dataset.

(a) (b) (c) (d)

Fig. 8. Overview of the FTLE field for JET2 with a cutting plane and different zooming steps.

Fig. 9. Overview of the FTLE field for JET1 with two different zooming scenarios.

scale transient CFD simulations. This latter aspect will
also raise some interesting questions pertaining to
user interaction given the multidimensional (space,
scale, time) nature of the exploration space.

ACKNOWLEDGMENTS

This work was supported by an Intel PhD Fellowship,
the Director, Office of Advanced Scientific Computing
Research, Office of Science, of the U.S. Department
of Energy under Contract No. DE-FC02-06ER25780
through the Scientific Discovery through Advanced
Computing (SciDAC) programs Visualization and An-
alytics Center for Enabling Technologies (VACET),
and the National Science Foundation under grant IIS-
0916289.

REFERENCES
[1] I. Boada, I. Navazo, and R. Scopigno. Multiresolution volume

visualization with a texture-based octree. The Visual Computer,
17(3):185–197, May 2001.

[2] S. L. Brunton and C. W. Rowley. Fast computation of finite-
time lyapunov exponent fields for unsteady flows. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 20(1):017503, 2010.

[3] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-
rithms, 2nd Edition. The MIT Press, 2001.

[4] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gi-
gavoxels: ray-guided streaming for efficient and detailed voxel
rendering. In I3D ’09: Proceedings of the 2009 symposium on
Interactive 3D graphics and games, pages 15–22, New York, NY,
USA, 2009. ACM.

[5] T. Fogal and J. Kruger. Tuvok, an architecture for large scale
volume rendering. In M. Dogget, S. Laine, and W. Hunt,
editors, Proceedings of the 15th International Workshop on Vision,
Modeling, and Visualization, pages 57–66, June 2010.

[6] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Efficient
computation and visualization of coherent structures in fluid
flow applications. IEEE Transactions on Visualization and Com-
puter Graphics, 13(6):1464–1471, 2007.

14

[7] C. Garth, H. Krishnan, X. Tricoche, T. Tricoche, and K. Joy.
Generation of accurate integral surfaces in time-dependent
vector fields. IEEE Transactions on Visualization and Computer
Graphics, 14(6):1404–1411, 2008.

[8] C. Garth, G.-S. Li, X. Tricoche, and C. D. Hansen. Visualization
of coherent structures in transient 2d flows. In Topology-based
Methods in Visualization II, Mathematics + Visualization, pages
1–14. Springer, 2009.

[9] M. Green, C. Rowley, and G. Haller. Detection of lagrangian
coherent structures in 3d turbulence. J. of Fluid Mech., 572:111–
120, 2007.

[10] G. Haller. Distinguished material surfaces and coherent struc-
tures in three-dimensional flows. Physica D, 149:248–277, 2001.

[11] G. Haller. Lagrangian structures and the rate of strain in
a partition of two-dimensional turbulence. Physics of Fluids,
13(11):33653385, 2001.

[12] G. Haller. Lagrangian coherent structures from approximate
velocity data. Physics of Fluids, 14(6):1851–1861, june 2002.

[13] M. Hlawatsch, F. Sadlo, and D. Weiskopf. Hierarchical line
integration. Visualization and Computer Graphics, IEEE Transac-
tions on, 17(8):1148 –1163, aug. 2011.

[14] J. Kasten, C. Petz, I. Hotz, B. Noack, and H.-C. Hege. Localized
finite-time lyapunov exponent for unsteady flow analysis. In
M. Magnor, B. Rosenhahn, and H. Theisel, editors, Vision,
Modeling, Visualization, pages 265–276, 2009.

[15] J. Kniss, A. Lefohn, R. Strzodka, S. Sengupta, and J. D. Owens.
Octree textures on graphics hardware. In ACM SIGGRAPH
2005 Sketches, SIGGRAPH ’05, New York, NY, USA, 2005.
ACM.

[16] B. Laramee, J. van Wijk, B. Jobard, and H. Hauser. ISA
and IBFVS: Image space based visualization of flow on sur-
faces. IEEE Transactions on Visualization and Computer Graphics,
10(6):637–648, nov 2004.

[17] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and
D. Weiskopf. The state of the art in visualization: Dense and
texture-based techniques. Computer Graphics Forum, 23(2):143–
161, 2004.

[18] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology-
based flow visualization, the state of the art. In Mathematics
and Visualization, editors, Topology-Based Methods in Visualiza-
tion II, pages 1–19. Springer-Verlag, 2007.

[19] F. Lekien and S. D. Ross. The computation of finite-time
lyapunov exponents on unstructured meshes and for non-
euclidean manifolds. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 20(1):017505, 2010.

[20] D. Lipinski and K. Mohseni. A ridge tracking algorithm and
error estimate for efficient computation of lagrangian coherent
structures. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 20(1):017504, 2010.

[21] M. Mathur, G. Haller, T. Peacock, J. Ruppert-Felsot, and
H. Swinney. Uncovering the lagrangian skeleton of turbulence.
Phys. Rev. Lett., 98:144502, 2007.

[22] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch.
Feature extraction and visualization of flow fields. In State-of-
the-Art Proceedings of EUROGRAPHICS 2002 (EG 2002), pages
69–100, Sept 2002.

[23] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch.
The state of the art in flow visualization: Feature extraction
and tracking. Computer Graphics Forum, 22(4):775–792, 2003.

[24] D. Ruijters and A. Vilanova. Optimizing gpu volume ren-
dering. In Thirteenth International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision (Winter
School on Computer Graphics), pages 9–16, Feb. 2006.

[25] F. Sadlo and R. Peikert. Efficient visualization of lagrangian
coherent structures by filtered amr ridge extraction. IEEE
Trans. Vis. Comput. Graph., 13(6):1456–1463, 2007.

[26] F. Sadlo and R. Peikert. Visualizing lagrangian coherent
structured and comparison to vector field topology. pages 15–
29. In Topology-Based Methods in Visualization, Proceedings
of the 2007 Workshop, 2007.

[27] F. Sadlo and A. Rigazzi. Time-dependent visualization of
lagrangian coherent structures by grid advection. pages 151–
165. Springer Berlin Heidelberg, 2008.

[28] S. Shadden, J. Dabiri, and J. Marsden. Lagrangian analysis of
fluid transport in empirical vortex ring flows. Physics of Fluids,
18:047105, 2006.

[29] S. Shadden, F. Lekien, and J. Marsden. Definition and proper-
ties of lagrangian coherent structures from finit-time lyapunov
exponents in two-dimensional aperiodic flows. Physica D,
212:271–304, 2005.

[30] S. Shadden, F. Lekien, and J. Marsden. Lagrangian coherent
structures in n-dimensional systems. Journal of Mathematical
Physics, 48(065404), 2007.

[31] B. Soni, D. Thompson, and R. Machiraju. Visualizing
particle/flow structure interactions in the small bronchial
tubes. IEEE Transactions on Visualization and Computer Graphics,
14(6):1412–1427, 2008.

[32] H. Theisel and H.-P. Seidel. Feature flow fields. In Proceedings
of Joint Eurographics - IEEE TCVG Symposium on Visualization
(VisSym ’03), pages 141–148, 2003.

[33] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Topo-
logical methods for 2d time-dependent vector fields based on
streamlines and path lines. IEEE Transactions on Visualization
and Computer Graphics, 11(4):383–394, 2005.

[34] X. Tricoche, T. Wischgoll, G. Scheuermannn, and H. Hagen.
Topology tracking for the visualization of time-dependent
two-dimensional flows. Computer and Graphics, 26:249–257,
2002.

[35] G. A. Voth, G. Haller, and J. P. Gollub. Experimental mea-
surements of stretching fields in fluid mixing. Physical Review
Letters, 88(25 Pt 1):254501, 2002.

Samer Barakat is a Ph.D. student in Com-
puter Science at Purdue University. He re-
ceived a MSc in computer engineering from
Alexandria University, Egypt in 2007 and a
MSc in computer science from Purdue Uni-
versity in 2011. His research interests include
interactive visual analysis of ultrascale flow
phenomena on parallel architectures, extrac-
tion and visualization of 3D structures in vol-
umetric medical and engineering datasets,
and query-driven visualization.

Christoph Garth received a Ph.D. (Dr. rer.
nat.) in Computer Science from the Univer-
sity of Kaiserslautern in 2007 and spent his
postdoctoral time as a researcher with the
Institute for Data Analysis and Visualization
at the University of California, Davis. He is
currently an assistant professor in Computer
Science at the University of Kaiserslautern.
His research focuses on scientific visualiza-
tion, analysis of vector and tensor fields,
topological methods, query-driven visualiza-

tion, and parallel/scalable algorithms for visualization.

Xavier Tricoche is an Assistant Professor
of Computer Science at Purdue University.
He was previously with the Scientific Com-
puting and Imaging Institute at the University
of Utah. He received a MSc in Computer
Science from ENSIMAG (’98), a MSc in Ap-
plied Mathematics from Grenoble University
(’98), in France, and a PhD in Computer
Science (’02) from the University of Kaiser-
slautern, Germany. His research focuses on
the scalable structural and visual analysis of

multivariate datasets. His work has found recent applications in fluid
dynamics, solid mechanics, high-energy physics, bioengineering,
and medical image analysis.

