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Abstract
The notions of Finite-Time Lyapunov Exponent (FTLE) and Lagrangian Coherent Structures provide a strong
framework for the analysis and visualization of complex technical flows. Their definition is simple and intuitive,
and they are built on a deep theoretical foundation. We apply these concepts to enable the analysis of flows in
the immediate vicinity of the boundaries of flow-embedded objects by limiting the Lagrangian analysis to sur-
faces closely neighboring these boundaries. To this purpose, we present an approach to approximate FTLE fields
over such surfaces. Furthermore, we achieve an effective depiction of boundary-related flow structures such as
separation and attachment over object boundaries and specific insight into the surrounding flow using several
specifically chosen visualization techniques. We document the applicability of our methods by presenting a num-
ber of application examples.

Categories and Subject Descriptors (according to ACM CCS): I.6.6 [Simulation and Modeling]: Simulation Output
Analysis; J.2 [Physical Sciences and Engineering]: Engineering, Physics

1. Introduction

The study of fluid flows is an essential topic in a broad range
of engineering, bio-medical and scientific applications and
is aimed at understanding and control of technical flows. Ex-
amples include important application areas such as combus-
tion, turbo-machinery, automotive engineering, and aeronau-
tics. Modern simulation techniques facilitate computer mod-
els that allow a comfortable study of many application sce-
narios. A key role is played by flow visualization techniques
by providing tools that allow increased insight into and un-
derstanding of numerical flow datasets.

The level of detail and size of modern CFD simulations
however complicates the visualization task greatly. One pos-
sibility to reduce its complexity is to limit the analysis of
a volumetric flow to the study of its interaction with objects
boundaries. This approach is feasible because flow structures
of interest often result from the interplay of flows with em-
bedded objects. Typical examples include vortex shedding
and shear layers, caused by creation of vorticity at bound-
aries and its successive transport into the flow volume. Such

flow processes reflect on object boundaries in the form of
separation and attachment flow patterns.

Recently, the notion of Lagrangian flow analysis using the
notions of Finite-Time Lyapunov Exponent and Lagrangian
Coherent Structures has emerged as a powerful framework
for the visualization and analysis of both steady and un-
steady flows. However, the applicability of methods founded
on these concepts has been limited to two-dimensional flow
domains or three-dimensional flow volumes. In this paper,
we propose a definition of Finite-Time Lyapunov Exponents
on surfaces (Section 3) in the vicinity of flow boundaries
that allows a comprehensive analysis of boundary flow re-
gions and gives rise to a number of visualization techniques
that are aimed at extending this analysis away from the
boundaries into the volume flow. The presented concept is
closely analogous to the established Lagrangian methods,
benefits from their conceptual simplicity and retains many
of their desirable properties. Furthermore, we describe our
implementation of this concept in Section 4 and discuss a
number of visualization approaches based on surface FTLE
measures and focus our presentation on both automated,
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non-interactive and user-assisted scenarios (Section 5). To
demonstrate the applicability of the presented work in the
context of modern CFD datasets, we provide several exam-
ples and discuss specific aspects of our methods in Section 6.
Finally, we conclude with a discussion of the presented ideas
and future work (Section 7).

2. Previous Work

The concept of Finite-Time Lyapunov Exponents (FTLE) as
a means to describe and analyze coherent Lagrangian struc-
tures in transient flows was introduced by Haller [Hal01a] in
2001. He presented FTLE as a geometric approach, aimed
at characterizing coherent structures in terms of preserva-
tion of certain stability types of the velocity gradient along
the path of a particle. This initial research generated a sig-
nificant interest in FTLE and its applications to the struc-
tural analysis of transient flows. The same author also pro-
vided a study of the robustness of the structures character-
ized by FTLE [Hal02] and showed that even under approx-
imation errors, they remain intact. Shadden et al. provided
a more formal discussion of the theory of FTLE [SLM05]
in two dimensions, and an extension to arbitrary dimensions
was discussed in [LSM06]. These tools have been applied to
the study of turbulent flows [Hal01b,GRH07,MHP∗07] and
used in the analysis of vortex ring flows [SDM06]. How-
ever, the visualizations presented in these papers were cho-
sen on a case-by-case basis, and no systematic investigation
of different visualization types was considered. As of re-
cently, the topic has also been treated in the visualization
community. Garth et al. focused on accelerated computation
of FTLE fields and their visualization possibilities in both
2D [GLT∗07] and 3D [GGTH07], while Sadlo and Peik-
ert compared Lagrangian approaches to vector field topol-
ogy [SP07b] and proposed a method for the adaptive compu-
tation of Coherent Structures and examined several variants
of FTLE [SP07a].

The analysis of boundary flow has a long and rich
tradition in fluid dynamics. A large body of both theo-
retical [Leg56, Dal83, CPC90, SGH06] and experimental
work [Dél01] has been dedicated to the elucidation of the
complex and critical flow structures that result from the in-
teraction of an embedded object with its surrounding flow.
Commonplace experimental flow visualization modalities
like a thin film of oil applied to the surface of design provide
a powerful means to facilitate the visual inspection of shear
stress vector field patterns. Their expressive power inspired
the scientific visualization community to develop techniques
that possess a similar visual flavor [dLPPW95].

More recently, the research in flow visualization has
been focusing on a structural characterization of the flow
behavior. In particular, critical point theory and topology
have received a significant attention [WTHS04, GLT∗06,
WTS∗07b], while features of interest like flow separation
and attachment manifolds were the object of a a variety of

techniques [KHL94, TGS06, WTS07a]. Common to most of
these approaches is their reliance on the shear flow vector
field defined on the boundary surface itself. In many cases
this quantity is not directly provided by the CFD simulation
and must therefore be computed in post-processing, which
is usually subject to some numerical difficulty.

In the following section, we proceed to introduce the basic
idea of surface FTLE and discuss its application to surface
and volume feature analysis.

3. Concepts

In the following, we will briefly discuss the basic concepts
behind the Finite-Time Lyapunov Exponent and its compu-
tation and use in visualization. We keep the following pre-
sentation voluntarily informal and refer the interested reader
to the publications listed in the previous section for a more
comprehensive overview of this subject.

3.1. Finite-Time Lyapunov Exponents

The definition of the FTLE relies on concepts from the the-
ory of dynamical systems. There, the Lyapunov exponent is
defined to characterize the rate of separation of infinitesi-
mally close trajectories as time approaches infinity. The idea
behind FTLE is to apply this concept in the context of finite-
time flow fields and to define a measure of coherence in
terms of the trajectories of closely seeded particles.

Considering a (possibly time-dependent) vector field v,
the position ϕ of a particle starting at position x0 at time
t0 after advection along the vector field can be formulated as
the flow map ϕ(t; t0,x0) satisfying ϕ(t0; t0,x0) = x0 and
∂ϕ

∂t

∣∣∣
t
= ϕ̇(t; t0,x0) = v(t,ϕ(t; t0,x0)), where the dot denotes

derivative with respect to the first parameter. Specifically,
with a fixed initial time t0 and a fixed time interval τ, one
defines t = t0 + τ.

A linearization of the local variation of the flow map
ϕ(t, t0, .) around the seed position x0 is given by its spatial
gradient Jϕ(t, t0,x0) := ∇x0 ϕ(t, t0,x0) at x0. This gradient
can be used to determine the maximal dispersion after time
τ of particles in a neighborhood of x0 at time t0 as a func-
tion of the direction dt0 along which we move away from x0:
dt = Jϕ(t, t0,x0) dt0 . Maximizing the norm |dt | over all possi-
ble unit directions dt0 corresponds to computing the spectral
norm of Jϕ(t, t0,x0). Therefore, maximizing the dispersion
of particles around x0 at t0 over the space of possible direc-
tions around x0 is equivalent to evaluating

λτ(t0,x0) :=
√

λmax(Jϕ(t, t0,x0)
T Jϕ(t, t0,x0))

where λmax is the maximum eigenvalue. To obtain the aver-
age exponential separation rate λ(t, t0,x0), the logarithm is
applied and the result is normalized by advection time τ to
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obtain

στ(t0,x0) =
1
|τ| log

√
λmax( Jϕ(t, t0,x0)T Jϕ(t, t0,x0) ).

This rate is then called the Finite-Time Lyapunov Exponent,
and can be evaluated for both forward and backward advec-
tion. Large values of σ for forward advection correspond to
stable manifolds while large FTLE values for backward ad-
vection correspond to unstable manifolds.

In the case of a fluid flow vector field, Shadden et al.
[SLM05] showed that ridge lines in these fields correspond
to so-called Lagrangian Coherent Structures that form a
skeleton of the transient flow in terms of so-called hyper-
bolic material lines which dominate the overall flow struc-
ture. Therefore, analysis and visualization of these structures
is a useful tool in flow visualization, and various techniques
have been proposed for their direct or indirect visualization
in the recent past (cf. [GLT∗07, SP07b, GGTH07, SP07a]).

3.2. FTLE over Surfaces

The setting we examine in this paper is slightly different.
Instead of analyzing a flow vector field in its entirety, we
are especially interested in interactions of a flow with object
boundaries embedded within it, with an emphasis on sepa-
ration and attachment structures in the immediate vicinity of
the surface. To this purpose, we adapt the concept of FTLE
in the following way.

Considering an object embedded in a flow field, we de-
note its boundary surface by B. Assuming that B is a smooth
surface in the differential geometric sense, we can define the
offset surface Bε as the set of points

Bε := {x + εn(x),x ∈ B} ,

where n(x) is the surface normal to B at x. If ε > 0 is cho-
sen small enough, Bε is again a smooth surface [Her98], and
Bε is contained in the domain of definition of v. We denote
the restriction of the flow map ϕ by ϕ

ε. In analogy to the
definition of στ above, we write

σ
ε
τ(t0,x0) :=

1
|τ| log

√
λmax(Jε

ϕ(t, t0,x0)
T Jε

ϕ(t, t0,x0)),

with the difference that x0 only varies in Bε. The relation
between the definitions of σ

ε
τ and στ is clarified by observing

that

Jε
ϕ = Jϕ ·Eϕ,

where the matrix Eϕ projects to the local tangent space of Bε

at ϕ. In other words, σ
ε
τ only measures the exponential sep-

aration of integral curves originating from Bε as the starting
point varies on Bε. Note that while the Jε depends on the
choice of local tangent basis reflected in E, σ

ε
τ does not as

eigenvalues are invariant under a basis change. In the next
section, we will focus on the interpretation of the values of
σ

ε
τ.

Remark that while our construction is described on
smooth surfaces, any surface that is only piecewise smooth
must be decomposed and each of the pieces treated sepa-
rately. This is a consequence of the fact that if the surface
does not admit a smoothly varying tangent space, the com-
putation of σ

ε
τ across tangent space discontinuities is neither

possible nor meaningful.

3.3. Interpretation

The interpretation of σ
ε
τ is basically straightforward. Regions

where this quantity is high hint at exponential separation of
integral curves crossing the surface there. There are two typ-
ical cases that produce such regions on the offset surface:

Surface Separation implies locally increased values of σ
ε
τ

for τ < 0, since a separation line induces a local saddle-
type flow structure that is intersected by the offset sur-
face and has repelling properties in negative time (cf. Fig-
ure 1(c)). This flow pattern typically is indicative of vortex
shedding, for example.

Surface Attachment induces locally maximal values of σ
ε
τ

for τ > 0. The saddle-type pattern on the surface in the
vicinity of the attachment line is repelling in positive time
(see Figure 1(b)). Most commonly, this flow pattern is the
result of the flow being separated as it passes around an
object.

Hence, observing the values of σ
ε
τ on an offset surface

close to an object boundary can provide strong hints of these
classes of flow structures. While we do not propose a sound
fluid dynamical justification for this interpretation, it is con-
firmed by our experiments and allows reliable insight into
flow structures close to or shed from object boundaries (see
Section 6). In the remainder of this paper, we will denote σ

ε
τ

by FTLE+ if τ > 0, and FTLE− if τ < 0.

4. Implementation

In practice, a straightforward approach to computing FTLE
fields consists of sampling the flow map ϕ(t, t0, .) on a dis-
cretized domain and approximate its gradient numerically.
In the following, we will describe the steps that we perform
to this purpose for a given dataset.

Offset Surface We assume that object boundaries can be
extracted from the dataset and brought into the form of
a triangular surface mesh. This is true for most CFD ap-
plication datasets, since the object boundaries are part of
the necessarily discrete computational mesh and are usu-
ally readily extracted. Given such a mesh, we segment
it along sharp features and treat each segment separately
(cf. Section 3.1). We then compute surface normals and
offset each of the original vertices along the normal direc-
tion according to the given ε to obtain an offset surface
mesh. Necessarily, ε must be chosen such that the offset
surface is not degenerate, i.e. it is bounded by the maxi-
mum curvature of the original surface.
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(a) FTLE colormap (b) attachment structure, τ > 0 (c) separation structure, τ < 0

Figure 1: Flow patterns close to the surface are reflected in integral curve convergence or divergence and hence in surface
FTLE measures.

(Optional) Subdivision If the generated offset mesh does
not have sufficient resolution to guarantee a good piece-
wise approximation of the flow map, it can optionally be
subdivided to yield a higher mesh resolution. Care must
be taken at this step, however, to preserve both smooth-
ness of the surface and conformance to the original offset
surface. We have selected a modified Butterfly scheme (as
presented in [ZSS96]) as it is both interpolating and has
a C1-limit surface. The simpler piecewise linear subdivi-
sion is not an option as it introduces discontinuities in the
limit that reflect numerically even after a small number of
subdivision steps.

Flow Map The flow map is then computed by numerical
integration in the volumetric flow field with one sample
(i.e. pathline) per vertex of the offset surface, according
to the selected integration time τ.

FTLE Computation The resulting piecewise linear ap-
proximation of the flow map gives rise to a piecewise con-
stant Jacobian per triangle of the offset mesh. Computa-
tion of the maximal eigenvalue and normalization is then
straightforward, as the specific local orientation of trian-
gles does not influence the end result of the computation
(cf. Section 3.1).

The resulting algorithm is straightforward and simple to
implement. We have incorporated it into the existing visu-
alization system FAnToM, developed at the University of
Leipzig, thereby both leveraging existing infrastructure (e.g.
numerical integration in CFD meshes) and providing inter-
active access to our method to potential users.

Remark: Complex object boundaries may consist of mil-
lions of triangles, therefore, flow map integration can rep-
resent a significant computational cost. We have performed
various experiments with adaptive flow map approximation
similar to the technique presented in [GGTH07]. Essentially,
the flow map is approximated on a sequence of successively
refined meshes, and in areas in which the flow map does not
vary much, interpolation is used instead of evaluation. How-
ever, we did not obtain a significant performance gain (typ-
ically less than 10%), for the following reasons. Either the
initial mesh was already fine enough to represent the flow

map in adequate detail and refinement was not necessary, or
otherwise the flow map variation was quite uniform over the
entire grid, making selective refinement superfluous. Similar
results were obtained for adaptive approximation along the
temporal axis if a sequence of FTLE fields is desired in the
unsteady case. This is a direct consequence of the adaptive
computational meshes that are used in most modern CFD
computations. Furthermore, as discussed in Section 6, all our
test cases required seconds to minutes to compute, further
obviating the need for computational acceleration.

5. Visualization Techniques

Here, we will present a number of visualization techniques
based on surface FTLE fields that are aimed at both auto-
matic and user-assisted treatment of CFD datasets.

Large time-varying datasets often encompass hundreds to
thousands of timesteps and represent an enormous amount
of data. Processing each timestep manually is a tedious if
not impossible task. Therefore, automated methods that re-
quire little or no user interaction are preferable if such the vi-
sualization of entire datasets is required. Furthermore, such
methods guarantee reproducibility and objectivity. The latter
property is especially important in the comparison of multi-
ple datasets.

Direct Visualization The FTLE± fields obtained from our
approximation algorithm are readily accessible to visu-
alization. Contrary to volumetric FTLE-based visualiza-
tion, their surface nature does not suffer from visibility is-
sues. A straightforward approach consists in depicting the
object boundary in combination with a two-dimensional
color map of FTLE±. Before applying the color map, both
quantities are normalized to a uniform range; here we first
discard negative values (as they correspond to converging
flow behavior which we are not interested in), and then
normalize the remaining values to the interval [0,1]. We
have adopted the typically used color scheme depicted in
Figure 1(a).

Stochastic Seeding Similar to the approach first presented
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(a) Direct depiction of surface FTLE± fields using the two-dimensional color map from Fig. 1(a)

(b) 1300 stochastically seeded streamlines. Blue streamlines were seeded in separation regions
(FTLE−) and illustrate vortex shedding on wagon edges. Red streamlines were seeded from at-
tachment regions (FTLE+) and indicate boundary attachment in between vortical zones.

(c) (d) (e)

Figure 2: Direct surface FTLE visualization and stochastic streamline seeding in a high-speed train dataset.

in [GGTH07], we apply surface FTLE fields as Proba-
bility Density Functions (PDF) to seed integral curves in
close vicinity of the boundary. Every triangle of the offset
surface mesh is assigned a probability density that is pro-
portional to its FTLE value and its area. A fixed number
of seed triangles is then randomly selected according to
the PDF, and a corresponding number of integral curves
of prescribed length is computed and depicted. We chose
positive time integration for FTLE−-based seeding, and
negative time integration for FTLE+-based seeding.
Obviously, this technique is not limited to FTLE fields,

Figure 4: Volumetric FTLE fields around the high-speed
train nose show a strong agreement with the results of Fig-
ure 2(a).

but is applicable to any scalar field defined over object
boundaries. However, using FTLE fields yields especially
interesting visualizations, as integral curves close to sep-
aration and attachment structures and their corresponding
manifolds are typically within the selected seed set. More-
over, the uncertainty of the respective feature location as
indicated by the sharpness of FTLE ridges is expressed by
the fuzzy nature of randomly seeded integral curves (see
e.g. Fig. 3).

While the automatic methods presented above allow com-
putation in an offline preprocessing step and are therefore
ideally suited for large datasets, there is often a need to di-
rect the visualization to specific regions or features of in-
terest to examine them in more detail. Furthermore, a user
is uniquely able to incorporate domain-specific knowledge
into the visualization process. In the following, we discuss a
seeding method aimed at leveraging user feedback into sur-
face FTLE visualization.

User-guided Seeding Curve Once surface FTLE fields
have been computed, we provide an interactive tool to de-
scribe a curve on the surface (and in time in the unsteady
case) by letting the user place a number of points on the
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timestep 700 timestep 1000 timestep 1450
st

ea
dy

un
st

ea
dy

Figure 3: Comparison steady vs. unsteady surface FTLE fields and resulting flow structures illustrated by stochastical stream-
line/pathline seeding.

offset surface mesh on which FTLE values are depicted
through a color map. The curve is then fitted through these
points, and integral curves are then seeded from the curve.
To increase flexibility, we allow both uniform and random
seeding (optionally with a user-determined random offset)
and enable a combination of the latter with the stochastic
seeding described above. In this fashion, the user is able to
visually identify regions of interest and examine the flow
structures emanating from them. Figure 5 provides several
examples.
Technically, the seeding curve is not computed through
the surface points in three-space, as the resulting curve
would not be constrained to the offset surface or might
even leave the flow volume, and make it hard to control
in general. Rather, we make use of piecewise surface pa-
rameterizations obtained using the Least Squares Confor-
mal Mapping (LSCM) technique [LPRM02]. To obtain a
curve on the offset surface, we map the selected points
into the two-dimensional parameter space, perform curve
fitting and discretization, and map the resulting points
back to the offset surface. This guarantees that the curve
and consequently all seed points are embedded in the off-
set surface. The mapping between surface and parameter
space introduces only minimal distortion in the resulting
curve by virtue of the LSCM parameterization.

6. Examples

In this section, we will provide a number of examples that
demonstrate the discussed visualization methods on several
CFD application datasets.

Fig. 2 depicts several images of a high-speed train. The
corresponding stationary dataset consists of 2.7 · 106 un-
structured elements and models the traveling train while it is

hit by strong wind from the side, causing vortices to be shed
on the top on bottom edges of the wagon on the side facing
away from the wind. Figures 2(a) through 2(c) show both
the obtained FTLE measures and the results of stochastic
streamline seeding with 1300 streamlines in total. The shed-
ded vortices are clearly visible and are identified to emanate
from separation structures (indicated by ridges of FTLE−,
blue). The boundary between the top and bottom vortex re-
gions is indicated by a weak separation structure (FTLE+,
red). (Remark: these images were obtained without manual
intervention). Figures 2(d) and 2(e) illustrate the effect of
subdivision refinement on the obtained FTLE fields. Clearly,
the refined offset mesh results in a much improved FTLE de-
piction. Computation times range from two minutes for both
FTLE fields over a refined offset surface to 25 seconds for
the stochastically seeded streamlines. A comparison of the
obtained results with volumetric FTLE analysis of the same
dataset (Figure 4, cf. [GGTH07]) shows a strong similarity
of the obtained structures, indicating that our method can de-
liver qualitatively similar results as the much more expensive
volumetric analysis.

We also applied both methods to an unsteady dataset de-
scribing a flow-embedded ellipsoid with the explicit goal of
comparing steady and unsteady FTLE fields. The dataset
consists of 400 timesteps over a grid of 2.6 · 106 elements.
Figure 3 shows the steady and unsteady FTLE on the surface
and 2000 streamlines/pathlines for three different time steps
of the flow around the ellipsoid. Due to the slowly changing
flow behavior the FTLE depictions look quite similar. The
difference of streamlines and pathlines integrated for a suf-
ficiently long time, however, reveals the unsteady character
of the flow. Seeding the lines takes less than one minute and
even the computation of the FTLE reaches its peak for the
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unsteady case with six minutes of computation time for one
step.

The steady BMW dataset (Figure 5) results from a simu-
lation of the air flow around a car and illustrates the applica-
tion of manual seeding; the surface geometry is quite com-
plex and feature sizes vary strongly in magnitude, compli-
cating an application of the stochastic seeding approach (cf.
Figure 5(a)). However, using manually determined seeding
curves, we were able to quickly locate a number of interest-
ing features in this dataset by using surface FTLE depiction
as a visual guide. Figures 5(c) shows such a seeding curve
(green) above the front bumper. The corresponding stream-
lines (Figure 5(d)) seeded from the curve confirm the vor-
tical flow behavior hinted at by the neighboring regions of
strong FTLE+ and FTLE−. Figures 5(e) and 5(b) provide
further examples of successful identification of volume flow
patterns through manual seeding. The computation of the
FTLE± fields took 1.3 and 1.2 minutes respectively.

For the datasets examined here, the choice of the param-
eters τ and ε turned out to not influence the result strongly,
as long as they were chosen within reasonable bounds. We
have generally chosen ε such that the subdivided offset sur-
face follows the boundary surface closely while still re-
maining entirely within the flow volume. This choice was
quite simple to determine in practice by trial and error. The
choice of τ is generally more involved, and no immedi-
ate principle for its choice exists (see also the discussion
in [GLT∗07, SP07b]). However, we found that above a cer-
tain threshold that allows the streamlines or pathlines to
significantly advance from the offset surface, the resulting
FTLE fields did not change much aside from slowly gaining
more contrast with increased integration length.

7. Discussion and Future Work

In this paper, we have applied the concept of Finite-Time
Lyapunov Exponents to flow boundaries, resulting in a both
conceptually and computationally feasible characterization
of flow behavior in the immediate vicinity of object bound-
aries. Furthermore, we have provided a number of visualiza-
tion concepts that are based on these surface FTLE fields
and leverage integral curves to depict flow structures that
interact with or are generated at flow boundaries. We have
demonstrated our methods on a number of examples and
documented their usefulness and robustness with respect to
complex CFD application datasets, and we have determined
that our method allows qualitatively similar conclusions to
fully volumetric FTLE analysis.

Some open questions remain, nevertheless. Although sur-
face FTLE fields admit no direct characterization of La-
grangian Coherent Structures as in the plane and volumetric
cases, we would nevertheless like to examine the interaction
of such LCS with flow boundaries further. Technically, an
extraction of ridge lines of surface FTLE fields seems fea-
sible, however, the current piecewise-linear representation

of surface FTLE fields precludes this. Furthermore, ridges
might prove an ideal candidate for integral curve seeding.
Similarly, streamlines or pathlines provide intuitive flow vi-
sualization, more advanced primitives such as stream sur-
faces or streak lines might be seeded using our methods. Fur-
thermore, a more comprehensive study of the parameters of
our method should be attempted, and we would like to con-
duct a more thorough investigation into the fluid dynamical
background of our approach.
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(a) Direct depiction of surface FTLE± fields using the two-dimensional
color map from Fig. 1(a)

(b) Vortex formation and flow separation at
the aft end illustrated by fuzzy seeded path-
lines.

(c) Manually chosen seeding curve
(green).

(d) Uniformly seeded pathlines along
the curve in (b) show vortical flow
above the bumper.

(e) Fuzzy seeding curve and result-
ing streamlines illustrate recirculation
curve behind the hood.

Figure 5: Manual streamline seeding on the surface of the BMW dataset.
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