An O(n’log n) Deterministic and an O(r?) Las Vegas
Isomorphism Test for Trivalent Graphs

ZVI GALIL
Columbia University, New York, New York, and Tel-Aviv University, Tel Aviv, [srael

CHRISTOPH M. HOFFMANN

FPurdue University, Lafayette, Indiana

EUGENE M. LUKS

Untiversity of Oregon, Eugene, Oregon

AND

CLAUS P, SCHNORR AND ANDREAS WEBER

University of Frankfur(, Frankfurt, West German y

Abstract. This paper describes an O(r’log n) deterministic algorithm and an O(n*) Las Vepas algorithm
for testing whether two given trivalent graphs on n vertices are isomorphic. In fact, the algorithms
constriect the set of all isomorphisms between two such graphs, presenting, in particular, generators for
the group of all automorphisms of z trivalent graph. The algorithms are based upon the original
polynomial-time solution to these problems by Luks but they introduce huamerous speedups. These
include improved permuiation-group algorithms (hat expleit the structure of the undeclying 2-groups.
A remarkable property of the Las Vegas algorithm is that it computes the sel of all isomorphisms
between (wo trivalent graphs for the cost of computing only those isomorphisms that map a specified -
edge to a specified edge,

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity): Non-
numerical Algorithms and Problems—~computations on discrete Structieres;, G.2.1 [Discrete Mathe-
matics]: Combinatorics—combinatorial algorithms; permutations and combinations; G.2.2 [Discrete
Mathematics]: Graph Theory—graph algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Graph isomarphism, permutation groups, probabilistic algorithms,
Structure (ree, lime complexity, trivalent graphs, 2-groups

A preliminary announcement of this research appeared in Proceedings of the 23rd IEEE Symposium
on Foundations of Computer Seience. IEEE, New York, 1982, pp. [18-125.

Haifa, during Summer 1981,

Authors' present addresses: 7. Galil, Computer Science Department, Columbia University, New York,
NY 10027; C. M. Hoffman n, Comp_ulcr Science Department, Purdue University, Lafayeute, IN 47907,
E. M. Luks, Depaament of Computer and Information Science, College of Aris and Sciences, University
of Oregon, Eugene, OR 97403-1202; C. P, Schnorr, Mathematics Department and Computer Science
Depariment, University of Frankfirt, Frankfurt, West Germany; A, Weber, Computer Science Depart-
ment, University of Frankfur, Frankfurt, West Germany,

Permission to copy without fec ail or part of this material is granted provided that the copies are not
made or distribuled for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and nolice is given that copying is by permission of the Association (or
Computing Machinery. To €opy otherwise, or Lo republish, requires a fee and/or specific permission.

© 1987 ACM 0004-5411/87/0700-0513 $01.50

Journal of the Associatian for Compuling Machinery, Yol. 34 No. 1. July 1987, pp. 513-534.

514 Z. GALIL ET AL.

[. Introduction and Preliminaries

It was only recently realized that isomorphism of trivalent graphs is decidable in
polynomial time. A promising approach to graph isomorphism via permutation
groups, introduced by Babai [2], stimulated work of Furst, Hopcroft, and Luks on
permutation-group algorithms in general [5) and specialized algorithms for 2-
groups [4]. The motivation for the latter was the natural occurrence of 2-groups in
the automorphism groups of trivalent graphs (demonstrated by Tutte [13] and
exploited for isomorphism-testing by both Babai [2] and Miller [10]). Luks went
on to show that trivalent-graph-isomorphism is in P by reducing it to a color-
automorphism problem for 2-groups and presenting a polynomial-time solution
for the latter [8]. In fact, the technique was extended to graphs of bounded valence.
In this paper, we focus on the trivalent case.

The presentation of the isomorphism test in [8] and [9] courted simplicity rather
than efficiency, seeking to make the polynomial-time discovery transparent. Thus,
a naive implementation seems to demand O(n'?) steps, although the initial an-
nouncement claimed an O(n° speedup. Qur new algorithms go well beyond those
bounds. Deeply exploiting the underlying structures, we offer a more efficient

reduction to 2-group problems as well as improved methods for computing with

2-groups.

We review Luks’ algorithm in Section 2. An efficient method for dealing with 2-
groups is described in Section 3. In Section 4, a simple graph-theoretic trick is
employed to limit the permutation-domain blowup that occurs in passing to a
color-automorphism problem. It is shown, in Section 5, that the imprimitivity
blocks, which guide the basic divide-and-conquer procedure, are computable in
time O(n?). A more efficient color-automorphism algorithm, exploiting the fact
that one color actually predominates, is offered in Section 6; this is a simplified
version of the Schnorr—Weber algorithm [11). In Section 7, these ideas are pulled
together in an O(n’) algorithm for computing generators for Aut.(X), the group
of automorphisms of the connected trivalent graph, X, stabilizing a specified edge
e (n is the number of vertices in X). A similar procedure can be applied to
determine Iso,, (X', X?), the set of isomorphisms from X' to X? (connected
trivalent graphs) that map edge e, to edge ¢, (Section 8). However, if the machinery
has already been developed for Aut.(X"), specifically the binary tree of imprimitiv-
ity blocks together with the subgroups encountered while visiting each node, there
are some shortcuts in determining the isomorphism set. In fact, with the blocks
and groups precomputed and with a more economical representation of the
permutations {introduced in Section 9), we demonstrate an O(n?log n) algorithm
for Iso. (X', X?) (Section 10). This yields an O(n’logn) algorithm for testing
isomorphism of trivalent graphs. In Section 1, we show how to save a log factor
by allowing coin flipping. The result is an O(n®) probabilistic algorithm that does
not make errors (Las Vegas algorithm). We conclude with comments on open
problems.

For a graph X, V(X) denotes the set of vertices, E(X) the set of edges. A graph
is trivalent if there are at most three edges incident with any vertex.

We denote by Sym(4) the group of all permutations of the set 4. The identity
permutation and the trivial group it comprises are both denoted by 1. Suppose G
is a group acting on a set A. A subset 8 C A4 is said to be G-stable (or stabilized by
G)if ¢(B) = B for all ¢ € G, the induced subgroup of Sym(B) is denoted by G2
If & acts transitively on 4 (i.e., 4 is a single orbit), a proper subset B of A4 is said to
be a G-block when, for all o, r € G, ¢(B) = 7(B) or ¢(B) N 7(B) =0 . We say that

Deterministic and Las Vegas Isomorphism Tests for Trivalent Graphs 515

G acts primitively on A if | A| > 1 and there are no G-blocks in 4 of size > 1. If B
is 2 G-block in A4, we call the collection {a(B) | ¢ € G} a G-block System in A; the
block system is said to be minimal if G acts primitively on the set of blocks. We
recall that, if G is a 2-group, there are precisely two blocks in any minimal G-block
system (equivalently, if a 2-group acts primitively on A4, then | A| = 2 [6, p. 66]).
Let 7 :G — G be a group homomorphism. An element ¢ € G is called a lifiing of
¢ € G il 7(s) = 5. The kernel and image of = are denoted by Ker(r) and Im(x),
respectively. If H is a subgroup of G, denoted H < G, then [G: H) denotes its
index in G. If & C G, (®) denotes the subgroup generated by &.
All run times refer to the RAM with unit cost measure [1].

2. Luks® Algorithm

We skeich Luks’ algorithm [8, 9] for trivalent-graph-isomorphism.

It suffices, both for this original polynomial-time result and for the improved
algorithms to be presented in this paper, to deal with connected trivalent graphs.
By comparing pairs of connected components in the nonconnected case, the same
time bounds easily extend to general trivalent graphs.

To test isomorphism of connected trivalent graphs X! and X? with n vertices
and O(n) edges, we answer O(r) questions of the following form: Given e € E(XY
and e; € E(X?), is there an isomorphism from X' to X2 that ma ps e, to &? (Fix e,
and try all e,.) This question is reduced to constructing a generating set for Aut.(X),
the group of automorphisms of a connected trivalent graph X that fix a specified
edge, e. In the reduction, the graph X is constructed, as in Figure 1, from the
disjoint union of X' and X2 by inserting new vertices in the “middle” of e, €,
respectively, and joining these with a new edge e. The key observation is that the
answer to the above question is yes iff one of the generators of Aut.(X) switches
the endpoints e. This reduction to the study of Aut.(X') was observed in [4].

We assume, henceforth, that X is an n-vertex, connected, trivalent graph, ¢ a
designated edge of X, and we seek to compute Aut(X). The motivation for this
course is twofold. Most essential is Tutte’s observation [13] that Aut.(X) is a 2-
group. (In fact, Babai and Lovasz have shown that any 2-group can arise in this
fashion [3].) The other useful feature is that there is a natural sequence of
“approximations” to Aut.(X). For this, we let X,, r = [,..., n—1, be the subgraph
of X comprised of all vertices and edges on paths of length =< r through e (so X; is
e and X,., is X'). There are natural homomorphisms

e AUlc(Xr+l) — AUte(Xr)s

in which =.{¢) is the restriction of ¢ to X,. In the rth stage, r = 1,2, ..., we
construct a generating set for Aut.(X,.,) given one for Aut.(X;,). For this, we solve
two problems:

Problem 1. Find a set of generators R for Ker(x,).

Problem I1. Find a set of generators § for Im(x,) and a lifting §* of S to
AUte(Xr—H)-

Then R U §” generates Aut.(X,.,). It will be clear that Problem I and the lifting
of § are easy, their contribution to the time-bound insignificant,

Set V. = V(X \V(X,-)). For v € V,,,, we define the neighbor set of v to be
[we V. Iv, w} € E(X)]. Neighbor sets have cardinality 1, 2, or 3. A pair u, v of

516 Z. GALIL ET AL.
x1 X

FIG. 1. The construction of X from (X" e, (X2).

vertices in ¥, will be called twins if they have the same neighbor set. There cannot
be three distinct vertices with a common neighbor set.

Since a permutation in Ker(r,) fixes neighbor sets of all v € Ve+1, its only
nontrivial action can involve switching twins. For each pair, u, v of twins in Vi,
let) € Sym(V(X,+)) be the permutation that switches ¥ and v while it fixes all
other points. Problem I is solved by taking fayy | 4, v are twins} for R.

We also derive Tutte’s observation about the group structures. Note that Ker(r,)
is a 2-group, indeed, its elements have order 1 or 2. Clearly, | Aut.(X;)] = 2.
Suppose that- Aut(X,) is a 2-group. Then so -is its subgroup Im(=,). Since
[Aut(X, .1} | = | Ker(x,)| - [Im(x,)], it follows that Aut.(Y,.,) is a 2-group. By
induction, Aut.(X,) is a 2-group for all r.

To find S, we note that ¢ & Aut(X,) is in Im(x,) iff it stabilizes each of the
following three collections:

(1) the collection of edges (considered as unordered pairs of vertices) connecting
vertices in ¥,

(2} the collection of subsets of ¥, that are neighbor sets of exactly one vertex in
V.r+[:

(3) the collection of subsets of ¥, that are neighbor sets of exactly two vertices
(twins) in V,,,.

For any o stabilizing (2) and (3) is liftable to Sym(V(X...)) by letting it map
each v € V,,, to a vertex whose neighbor set is ¢(v’s neighbor set), the choice is
unique for nontwin elements, whereas twins can be mapped to the corresponding
twins in either order; if « also stabilizes (1), this lifting is in Aut{X,,). It is
convenient to restate this liftability as follows: Let B, denote the collection of all

_subsets of V; of size 1, 2, or 3, and set 4, = V(X—1) U B,; set G, = Aut(X,)
(= Sym(¥V(X,)}) and (canonically) extend the action of G, to B,; color each element
of A, with one of five colors that distinguish

() whether or not it is in collection (1), and
{ii) whether it is in collection (2), or collection (3), or neither.

(Only five colors are needed since collections (1} and (3) are disjoint when r >)

Deterministic and Las Vegas Isomorphism Tests Jor Trivalent Graphs 517

Then ¢ is ip Im(w,) Iff ¢ preserves colors in A,. Hence, Problem 1l is an
instance of

Problem Ill. Given (generators for) a 2-group G = Sym(A4), where A is a colored
set, construct (generators for) the subgroup {o € ¢ | o preserves colors in A}.

We have already incorporated one time-saver in this reduction. The algorithm
in [9] takes for A4, the larger collection consisting of subsets of V(X;) of size [, 2,
or 3.

With a view toward a recursive divide-and-conquer strategy, we generalize
Problem IIl. For a, b € 4, we write a ~ b when ¢ and b are similarly colored. For
K C Sym(A) and B C A, let

Co(K) = {p € K| Vb € B: p(b) ~ b).

We apply the function Cp only to left cosets K = oG of a group G that stabilizes B:
for this we observe that Cp(sG) is either the empty set or a lefi coset of the
subgroup Cp(G). We specify (iriput or output) a coset of a group by enurerating
generators of the group together with a coset representative. Problem III is an
instance (B=A4, 6 = 1) of

Problem IV, Given a coset ¢G C Sym(4), where A4 is a colored set and G 2
2-group, and a G-stable subset, B, of A. Construct Ca(eG).

We present, finally, an algorithm for this problem
Algorithm 1 (for Problem IV).

oG if o(b)~b

Case 1. (B = {b}): Ca(eG) == {(2} otherwise ° return

Case2. (G® is intransitive): Find a nontrivial orbit BY; set B® := B\B', Cs(sG) =
CpaCa(aG); return

Case 3. {G” is transitive): Find a minimal G-block system {B', B% in B: find the subgroup,
H, of G that stabilizes B' and find some 7 & G\IT;, Cy(eG) = CaCp{cH) U
CpCyp(arH); return -

We discuss procedures for finding B, B2, H, r, in later sections. Note that Case 3
could require reformulation of the union of two nonempty cosets of Cp2Cpi(H) =
Cs(i) as a single coset (the union is known to be a coset of Cy(()). Suppose that
p1, p2 are the respective coset representatives. Then, form a generating set for Cz(G)
by adding p1'p; to the generators of Cp(H), and take p; as the coset representative
for Cs(aG).

3. Computing in 2-Groups of Permutations

It is convenient to present 2-groups in a manner that facilitates several key
computations. Let G be a 2-group generated by {v,, ... » vx]. Then the
sequence (v, ..., yi) will be called a smooth generating sequence (SGS) for G if
[Giy G-yl = 2, for i = |, ..., k, where G = (71, ..., v (in particular,
Gy = 1).

For us, the salient feature of SGSs is that, given an SGS, (Yes ..., ve), for G <
Sym(B), one can construct an SGS for a subgroup H of index 2 as well as an
element + € G\ H using the results of the & membership tests “y; € H?” For this:

Let
J=min{i|y, & H}

518 : Z. GALIL ET AL,

and assign
T =750
- Yi lf ‘YI'EH) ;—
Bi:= {7_.% it v & H fori=1,...,k

LeMmMa |, With By, . .., Bi constructed as above

(1) By, ..., P isan SGS for H.
(2) The time to compute this sequence is O(k | B |), assuming that a membership
test requires time O(| B |).

Proor. The timing is clear. For (1), note first that 8; € H since v; & H iff r7'y;
EH Let Hy={(f,...,8)fori=0,...,k Since g is either v; or vj'y;, the
latter possible only for i = j, it is immediate that 8; € Gy, and so Hyy < Gy, for all
i. Then, for { >j’ Yi & G(f—|) implies B: & H(;'_I). So, for all I?ej, [H(,'):Ilr(,‘_”] =
[CGw: Gu-nl- Observing that [Gy;y: G-n] = 2, we have

k k &
-H: [Giy:Ga-nl=1G | =2|H|=2[Hyp|=2 Hl [Hiy: Ho-nl = H: [Ga: Gi-)-
Thus equality holds throughout. We conclude that [H,: H_;] = 2 for all /, and
H= H(k). D

Observe that the length of the SGS produced for H can be reduced to Xk — 1 by
omitting §; = = ~'v; = 1. That will be done in applications.

OQur computations with 2-groups of permutations require the use of induced
actions on other sets, thus involving a homomorphic image of the current group.
We next note that presentations via smooth generating sequences are preserved:

LemMMa 2. Let w1 G — G be a homomorphism. If (vy, . . .,) is an SGS for G,
then (w(v)), - .., m(vi)) is an SGS for Im(w).

Proor. The image of a generating set of Gy, generates #(Gy) and
[7(Gay): 7(Gu-1)] =[Gy Gu-n]. B

The following lemma permits the merging of SGS solutions to Problems 1
and I1.

LeMMA 3. Let m: G — G be a homomorphism, Suppose (8,, . . ., B,) is an SGS
Jor Ker(z) and {avy, . .., o) is an SGS for Im(x). Fori= 1, ..., k, let af be any
lifting of a; to G. Then (B4, . .., Bs, e, ..., af) is an SGS Jor G.

ProOF. Define v; so that (v, ..., vs+) = B1, . .-, Bs, @i, ..., af). It is clear
that G = {1, ..., ¥s+). FOri <5, Gy = Ker(nr) and, for i > 5, 7 (Gp) = (G -y
(where the subscripted subgroups are defined relative to the appropriate generating
sequence). Then

) _ J[Ker(x)@: Ker(n)i-y] if i=s,
LGz ool = {[w(G)z.g:«(G)g_L'ﬁ if i>s

In any case, [G(,'):G(,'_.U] =2 0O

Remark |. Any 2-group G has an SGS (7, . - -, 7&) of minimal length, that is,
with k& = loga(] G |). We do not, however, insist on that restriction 1o all discussions

involving SGSs. The reason is that we apply some of the results (those of
Seclion 5, in particular) to induced, possibly unfaithful, actions of a group; indeed,

Deterministic and Las Vegas Isomorphism Tests for Trivalent Graphs 519

Lemma 2 is offered with that in mind. Nevertheless, in our applications of a revised
Algorithm |, there is an underlying embedding of the group in Sym(V(X,)). With
this full group in view, the SGS will always have minimal length. Thus the length,
k, of any SGS will never exceed 1/2 where n = | V(X)| (recall that | Ker(r,)| = 2%,
where s = the number of twins in V,,, < [¥r+11/2; 50, an induction on r shows
loga(| Aut, (X)) = | ¥(X,}|/2 for all r).

4. Eliminating the Triples in B,

The stze of B, is O(m}) where m, = | V;|. A graph-theoretic trick is used to eliminate
the triples in B,, reducing its size to O(m?2).

Recall that triples are incorporated because the neighbor set of a vertex v & Ves
could have cardinality 3. This situation can be avoided by replacing each such v
by a triangle with vertices at “level” r + | (see Figure 2) and having labeled
(with +) edges. The result is an edge-labeled graph denoted by X with neighbor
sets of size <2.

In considering Aut.(X), it is presumed that automorphisms map labeled edges
to labeled edges. With this convention, the homomorphism #: .¥ — X, contracting
each labeled triangle to a vertex, induces an isomorphism ¥y Aut(X) = Aui,(X).
The computation-of Aut.(X) follows that of Aut.(X} except: B, need only include
the subsets of (the modified) ¥, of size 1 or 2; collection (1) is split into

(1a) the collection of unlabeled edges connecting vertices in V,
(1b) the collection of iabeled edges connecting vertices in V;

and an additional color is allowed for an element of A, to distinguish:
(i") whether it is in collection (1a), or collection (Ib), or netther.

Note that only one color is added since collection (Ib) is disjoint from collections
(2) and (3). Thus, replacing X by X, we may assume B, is free of triples.

Also, we reformulate B, as the set of ordered pairs in V,. For this, observe first
that the coloring of B, induces a coloring of ¥ X ¥, in which (v, v) has the color of
v, while both (%, v) and (v, «) inherit the color of fu, v]. With this color assignment,
the reassignment

B=¥xy

retains the identification of Im(#,} with the color-preserving subgroup,
Cs(Aut,(X,)). Henceforth, we take this definition of B,.

5. Precomputing the Blocks

Algorithm 1 evokes recursive calls for C3(6G) with B C B, G = G. The work can
be reorganized so as to limit the number of distinct blocks, B, visited. These blocks
form a tree that is precomputed and guides the recursion.

Let G be a 2-group acting on B. We call a binary tree T a structure tree Jor B
with respect to G (notation T = Tree(B, Gy, if

(1) the set of leaves of T is B,
(2) the action of any ¢ € G on B can be lified to an automorphism of 7,

The nodes in a structure tree may be identified with and labeled by their set of
descendent leaves. Each node is itself the root of a structure tree for the action of
any subgroup that stabilizes the corresponding subset. Thus, in Algorithm 1, the

520 Z. GALIL ET AL.

+
Vr-l- 1 + +
v,] ° ¢ *
X X

FiG. 2. Replacing the triple neighbor sets.

subsets B' and B? correspend to the left and right sons, By, and By, of node B.
(There will be no confusion in context with the notation B, for the rth stage target
set.) With G = (v, ..., &}, Cases 2 and 3 of the Algorithm 1 can be rephrased:

(New) Case 2. (Vj = kz v{(By) = BL): Cp(6G) := Cy,Cp,(¢G); return

(New) Case 3. (3j < k: v{(BL) = Br): find the subgroup X of G that stabilizes B
and find some r € G\H; Cy(cG) := Cp, Cp (cH) U C5,Cp (o7H };
return

Again, one uses the subtrees rooted at By, Bg in the evaluation of Cg, Cp,. We
precompute the entire structure tree for the initial (B,) as follows:

Algorithm 2 (construction of T = Tree(8, G)).

I. let the root of T be B;

2. if | B[=1 then return (= B is a leaf «}

3. find the orbits of G in B; il G is transitive on B then goto 4; parlifion 5 into two nontrivial
G-stable subsets (= i.e., untons of orbils +) B, Bg; recursively compuie Tree(B,, G},
Tree(Bgr, G); construct 7" to be the vnion, joined to the new root B, of Tree(B., ¢} and
Tree(Bg, G}; return

4. find a minimal block system {8y, Bgr] for G on B; find the subgroup H of 7 that stabilizes
B, and find some r € G\H, recursively compute Tree(8,, H); construct T to be the
union, joined to the new root B, of Tree(8,, H) and r(Tree(B,, H)) (+ie., the iree,
rooted at Bg, formed by the r-images of the nodes of Tree(B,, ') »); return

Remark 2. One can modify the construction of T so as to produce a complete
binary tree. For this, add points to the initial B so that | B | = 2° for some s, letting
the elements of & act trivially on the new points. Then, one need only take care,
in the nontransitive case, to partition B into two equal parts (this is always possible
since the cardinality of each orbit is a power of 2).

We establish bounds on the set decompositions in Algorithm 2. In the following,
we let ¥(x, y) denote the time bound for union-find with x operations on y elements
[1]. It is convenient to postpone the application of a good upper bound for ¥(x, y)
in order to capitalize on the following direct consequence of the definition

(=) Y(x1, y1) + ¥(xz, o) < ¥ + 2x2, y1 + 3).
LemMA 4. Given an SGS (v, ..., ve) for G = Sym(B), | B| = m,

(1) the orbits of G in B can be computed in time O(km),
(2) if G? is transitive, a minimal block system {By, Br} for G on B can be computed
in time O(¥(2km, Zm)). _

Deterministic and Las Vegas Isomorphism Tests Jor Trivalent Graphs 521

ProoF

(1) Finding the orbits is equivalent to finding the connected components in the
undirected graph with vertex set B and edge set {{b, v:(b)} | b € Bi=1,..., k.

(2) For by, b, € B, we write 6, ~ b, if there js a minimal block system {B', B4
in B with by, b, € B'. To test this condition, we determine the unigue smallest G-
block containing both 4, and bs; the result is a proper subset iff b; =~ b,. We point
out that the block systemn including this smallest block is the equivalence class
decomposition for the finest G-invariant equivalence relation, R, in which bR b,
(i.e., the equivalence classes are forced by: 6 R b,, and xR y implies v(x) R vy:(»)
for i < k). To construct R, we use the algorithm in [, p. [44] that tests equivalence
of deterministic finite automata. (It assumes that the initial states are equivalent
and computes the equivalence clagses implied by the two transition functions.)
This can be carried out in time O(¥(km, m)). To find a pair b, = b, it suffices to
take any three elements in B and make the three pairwise tests; at least one test
must succeed since some two of the elements are together in any minimal block
system. If the successful test reveals exactly two blocks, we are done. Otherwise,
we have a partition B = (B, .. .| B7) of B into s blocks of equal size mfs. We
continue, recursively, with the action of G on B. Thus, the time-bound for (2),
t(m, k), satisfies

tom, k) < O(¥(om, m)) + t(%’ k).

The result follows by (). O
This leads to a bound for the construction of Tree(B, G).

LEMMA 5. Given an SGS (vi, ...,) Jor G =< Sym(B), | B| = m, a structure
tree Tree(B, G) can be computed in time O(¥(4km, 4m)).

PROOF. Let t(m, k) be the time bound for constructing Tree(B, G) given 8 of
size 1 and an SGS for G of length k. By Lemma 4, the G-orbit decomposition,
B = U; D;, can be found in time O(km). To form Tree(B, &), we need the
subtrees Tree(D;, G) (see step 3 of Algorithm 2). [n constructing each of these, we
restrict the SGS to its image in G (by Lemma 2, it remains an SGS). Let d; =
| D:l, so 3 d; = m. For each i with d; > 1, we construct 2 minimal (-block
system {D}, D} in D; within time O(¥(2kd,, 2d})) using Lemma 4. We then
find the subgroup H; of G that stabilizes D} and we find some 7 € GP\H,
By Lemma 1, this takes time O(kd;). We construct Tree(D), H) in time
(di/2, k — 1) and then (Tree(D{, Hy)) in time O(d)), joining these to form
Tree(D;, G) (see step 4 of Algorithm 2). We have

m, kY = O(km) + E t(d;, k)
= Qkm) + Z c¥(2kd;, 2d;) + E 1(32{", k— l) (c a constant)

= O(¥(2km, 2m)) + ¥ t(%’, k— 1).

Hence, by (+) and induction, t(m, k) < O(¥(4km, 4m)). O

In our reduction to n — 2 stages of color-automorphism problems, the
groups that arise are the G, = Aut.(X;) = Sym(4,), and the colored sets A, =
V(X—1) U B,. But, since V (Xr-1) is both G-stable and homogeneously colored, 1t

522 Z. GALIL ET AL.

-
¢
FIiG. 3. Tree(d,, G,) with three typical nodes a = 8,, b = {¥] X V,, ¢ = ((v, w)].

suffices to stabilize colors in B,.. Thus, we need the structure trees, Tree(B,, G.),

for each stage r = I, ..:, n — 2 Recall that B, = V, X V,, where V, =
VXNV (X,-), and m. = | V;].
LEmMMA 6. Given an SGS (v, . .., ve) Jor G, a structure tree Tree(B,, G,) can

be constructed in time O(¥(dkm,, 4m,) + m3).

PROOF. A structure tree Tree(V, X V,, G,) can be constructed, as in Figure 3,
from m, + 1| copies of Tree(V;, G.). (There is one upper and m, lower copies; In
the upper copy node B is relabeled-B X V;; for each v € ¥, there 15 a lower subtree
in which node B is relabeled {v} X B.) By Lemma 5, Tree(V,, G,) can be formed
in time O(¥(4km,, 4m,)) and, from that, it takes O(m?) steps to construct
Tree(V, X V., G,). O

To determine the effect of the last estimate over all stages, observe that
k and <7 m, are bounded above by n. We have 3, m? < n? and, by (s),
3, ¥(4km,, 4m,) < ¥(4n?, 4n). But Tagan has shown ¥(x, y) = O(xa(x, y)) for
x = y (see [12] for this and for a discussion of a). Since «(4n?, 4n) = O(1), we
conclude

THEOREM 1. The structure trees Tree(B,, G,) for all stages,r=1,...,n—2,
can be constructed in total time O(n?).

6. Early Termination, the Groups, and the Main Color

Algorithm | terminates (that is, avoids deeper recursion) in Case 1 where
| B] = |. We indicate two other situations in which termination could be ad-
vanced. Let ; denote the set of elements in 4 with color i. If, for any i,
| B Q:| # | a(B) N Qi, then Ca(eG) = @. Also, if B € Q; and ¢(B) € (& then
Cp(eG) = 0G. We expand Case | to include these tests:

Case la. (i | B0 Qi # | o(B) N Q:]): Ca(oG) := O, return
Case 1b. (A BU a(B) C Q)): Cp(eG) := ¢G'; return

Deterministic and Las Vegas Isomorphism Tests for Trivalent Graphs 523

These additional termination opportunities have a significant effect on the timing,
In the rest of this section, we develop some machinery for analyzing that effect and
cutting some additional costs.

We point out first that the determination of the index 2 subgroup, in Case 3,
may be repetitious, for the problem recurs with the same G. There are, in fact, two
subgroups associated to each node B of Tree(B, G). To describe these, let L(B),
R(B) denote the set of leaves of Tree(B, G) to the lefi and right, respectively, of B.
Let G be the subgroup of G that stabilizes the sets L(8), B, R(B) and preserves
coloss in 1(B). It follows that C3(G3) is the subgroup of G that stabilizes 1(8), B,
R(B) and preserves colors in L(5) U B. The groups G and C5(G5) may be thought
of as the entry and exit groups for B, for we have

Lemma 7. In Algorithm 1, the coset passed in each call of the form Cs is a coset
of G (hence, if a nonempty answer is returned, it is a coset of C3(G)). If we agree
that the coset oH is always treated first in Case 3, then the first Ci call passes the
group G's itself.

PrOOF. The first statement follows by induction on the postorder number
[1, p. 54] of the nodes of Tree(B, G), the second by induction on the preorder
" number, 0

A nonleaf B of Tree(B, G) is called gransirive if the entry group, Gj, acts
transmvely on the (two-element) set {By, Br) and intransitive, otherwise. A transi-
tive node B is called color-transitive if the exit group, Cs(G3), acts transitively on
{BL, Br}. Note that the conditions on (New) Cases 2 and 3 could be restated

Case 2. (B is intransitive).
Case 3. (B is transitive).

The following properties of entry, exit groups are immediate.
Lemma 8. Let B be any nonleaf of Tree(B, G), By, By its sons.

(1) {Ga:Gs,] = 2, with equality holding iff B is transitive,
(2) CEL(GgL) = Gj&’ -
(3) [Cs(Gs): Ca (Cg,)] = 2, with equality holding iff B is color-transitive.

The additional termination opportunities offered in Cases la and 1b of New
Algorithm 1 have a significant effect on the timing. This is due, in part, to the fact
that one of the colors tends to force Case 1b. In the color-automorphism problems
ansing from the computation of Aut.(X..), six colors are used to distinguish
membership in collections (2), (3) (Section 2) and (la), {1b) (Section 4). These
colors are not evenly distributed. One color, we'll say it is the sixth, signaling
nonmembership in any of these four collections, predominates. All of V(X,—,) has
the sixth color. Furthermore, any v € V, is the first coordinate of at most two pairs
in ¥, X ¥, that display one of the first five colors. (If (v, &) is so colored then either
{v, 4} is a new edge in X, or there are edges from v and u to a vertex in ¥;,..)
With this in mind, we ignore the sixth color, considering Q¢ to be uncolored. As a
result, the set Q = U« (;, of colored elements in B, = ¥, X V, (equivalently, the
set of colored elements in 4,) has cardinality at most 2m,. It suffices to guarantee
color-preservation in {J, though we continue to consider i = 6 in Cases la and Ib.

We modify the structure tree T = Tree(B, G) to exploit the above interpretation
of the coloring. A node B of T will be called inactive if B N Q = &, and active
otherwise. We say that the node B is visited each time a call to Cj does not

524 Z. GALIL ET AL.

terminate in Cases 1a and [b. It is clear that, with the incorporation of those cases,

only active nodes of T are visited during the recursion. With this in mind, we
consider the subtree Tree,(B, G), consisting of the active nodes, referring to it as
the pruned tree. The pruned tree still guides the recursion.

Amongst the active nodes, there are some that will contribute little to the cost
of the algorithm. We call an active node B facile if B is intransitive with exactly
one active son, and nonfacile otherwise. We assume now, that in the construction
of the pruned tree, we have marked facile nodes and, by switching labels, when
necessary, have assured that B, is the active son of facile node B. To see how we
save work at these nodes, suppose B is facile and that the guard on Case la was
not satisfied. Let A(B) denote the nearest nonfacile descendent of 3. Then,
if « € G is color-preserving on A(B), it must be color-preserving on B. Hence,
Ci(6Gi) = Can(5Gi), so that we can pass to node A(B).

We incorporate the above, together with the modifications from Section 5 in:

New Algorithm | (for Problem IV, given Tree(B, G} and an SGS for G).

Casela. (i | BN Q| # | o(B) N Q;|): CoaleG) ;= &; return

Case Ib. (A& BU o(B) C) Ce(oG) := o, return

Case1.5 (Bis facile): Ca(a) := Cam(oG); return

Case 2. (B3 is intransitive). Cp(eG) := Cp,Cy (¢G); return

Case 3. (B is transitive): Find the subgroup H of G that stabilizes B, and find some
€ G\H; Cp(a(G) := Cp,Cp (o) U Cs,Cp (arH); return

It is assumed that the guards are tested in the order shown. For the timing argument,
we determine, in the following three lemmas, some bounds on the size of the
pruned tree.

LEMMA 9. Assuming Tree(B,, G,) is constructed as a complete binary tree (see
Remark 2), it has at most O(mdogm.,) active nodes.

ProoF. The pruned tree Tree,(B,, G,) has at most 2m, leaves. Since the
complete binary tree Tree(G,, B,) has m? leaves, all paths within it, hence all paths
within the pruned tree, have length at most 2logym,. O

LemMA 10. There are at most 2m, intransitive, nonfacile nodes in the pruned
tree Tree,(B,, G,).

Proor. Each intransitive, nonfacile node has two sons in the pruned tree, which
has < 2m, leaves. [

LemMa 11. There are at most 2.5n transitive nodes in all pruned. trees,
Tree,(B,, G}, r=1,2,...,n—2.

PROOF. At each stage of the computation of Aut.(X), the group gains some
generators and loses some. (Recall SGSs always have minimal length.) In stage +,
generators of the corresponding Ker(w,) are gained; incorporating the starting
generator of Aut,(X,), their total, over all r, is at most #/2. There is also a possible
loss at stage r in passing from G, = Aut.(X,} to Im(r,). But, by Lemma 8 and
induction on the tree height, one sees that the number of generators lost in passing
from an entry group, G, to the exit group, Cs{Gj) is the number of transitive but
not color-transitive nodes in Tree(B,). Since one cannot lose more than one
gains, the number of transitive but not color-transitive nodes cannot total more
than n/2 over all stages. (A similar argument is used in {7].) On the other hand,
the number of color-tcansitive nodes in stage r cannot exceed the number of colored
leaves, so that, over all stages, the number of color-transitive nodes is bounded by
¥ 2m, < 2n. The result follows. O

Deterministic and Las Vegas Isomorphism Tests for Trivalent Graphs 525

“Finaily, we need a bound on the number of visits to any node. For a node 8 in
Treex(B,, G.), let vis(8) be the number of times 5 is visited during the recursion of
New Algorithm 1. By virtue of Case 1.5 we have eliminated any calls at all to
certain facile nodes (those strictly between a facile son, B, of 2 nonfacile node and
A(B)). It is immediate, if a facile node B is ever visited, that

vis(A(B)) =< vis(B).

For the sons By, Bg, of an arbitrary B, we have

P vis(8)_ if B is intransitive,
vis(BL), vis(Br) =][z vis(B) if B is transitive.

For transitive nodes with “unequal color partition” there is a better bound:
Hj: 'BL n QJI 7= {BR n QJI = VIS(.BL), ViS(ﬁR) = VIS(B').

To see this, suppose some visit Cis{oGg) to B engenders more than one visit to son
B (the same argument applies for Br). Then, since two subsequent calls to Cs,
escaped Case la, we have, for all §

|BLn @il = |o(B) N Q] = ar(B) N Q.
But o(BL) U or(BL) = o(B), and, since this started with a visit to B, [Bn Q| =
[a(B) N Q;l, for all j. Hence, for all j, | B, N ;] is half of | B N O}, so that
IBLnQJI = IBRnQJ
These relations and an induction on the distance from the root B establish that
vis(B) < 2m,/| B N @|. Since a call to any node B can only follow a visit to a
parent or a unique facile ancestor, we conclude

LemMMA 12. For any node B of Tree,(B,, G,) there are at most 4m, calls to C;
during the recursion of New Algorithm 1.

7. The Time Bound for Computing Aut.(X)

By Theorem 1, the structure trees Tree(B,, G,), for all stages, r= 1, 2, ..., are
found in time O(n?). By Lemma 9, pruning, including the construction of the
function A, takes O(zlog n) steps. We also need

LEMMA 13

(1} The entry groups for all nodes of the structure trees and the v’s (for Case 3 of
New Algorithm |) are computed in time O(n®).
(2) Transitivity is tested for all nodes in time O(n*log n).

PROOF
(1) We compute new groups and 7’s only at transitive active nodes. By Lemma
11, there are O(n) such nodes. By Lemma 1, the cost at each is O{kn), where
k (<n) is the length of the SGS for the entry group.
{2) Transitivity is tested at an active node in O(k) steps and only on the first visit
to that node. Using Lemma 9, the result follows. O

We now prove

THEOREM 2. Let X be an n-vertex, connected, trivalent graph. Then Aut.(X) can
be computed in time O(n?).

PROOF. We use Algonithm 2 for the blocks and New Algonthm | for Prob-
lem IV. By Lemma {3, we may assume that all the groups, =’s, and transitive

526 Z. GALIL ET AL.

nodes are given. At each call C; to a node 8, we execute the tests in Cases la and
Ib and, if the node is transitive, we might have to multiply two permutations in
-Case 3. The cost of such a call is O(n). By Lemma 12, there are at most O(m,) =
O(n) calls to any node. By Lernmas [0 and | I, there are O(n) nodes in all pruned
trees which are either transitive or nonfacile. Thus the cost associated to all called
nodes is O(x?). O

8. The Isomorphism Test

Having established an O(n°) algorithm for Aut(X), the reduction in Section 2
could be used to test isomorphism of #-vertex, connected, trivalent graphs X!, X2
in O(n") steps. That would involve an Aut.(X) computation corresponding to each
& € E(X?). An examination of this process, however, discloses repetitive compu-
tation of the groups, blocks, etc. for Aut,(X'). We demonstrate an effective
reorganization of the work, capitalizing on the precomputation and storage of that
information.

Our goal is to compute Iso,, .,(X*, X?), the set of all isomorphisms from X! to
X? that take edge ¢; to edge ¢;. If ¢ is one such isomorphism, then Iso., (X', X?)
= oAut, (X"). With this in mind, we compute Aut,(X"), together with the blocks,
groups, 7’s as in earlier sections, and seek a single representative isomorphism, if
one exists. Actually, our interest in the question was only to determine whether
such ¢ exists. However, our method of approximation-by-stages requires knowledge
of the entire isomorphism set at each intermediate stage anyway. Thus, the graphs
are approximated by the subgraph sequences X!, X2 r=1,2,..., n — 1. We
construct, inductively, o,4; € Iso,, (X1, X2,,) given ¢, € Iso., (X}, X2).

Analogous to the discussion of Section 2, this reduces to

Problem V. Given a 2-group G =< Sym(4), a bijection o: 4 — A”, where 4, A”
are colored sets, and a G-stable subset, B, of 4. Determine whether Cp{oG) 18
nonempty, where

Co(eGY=|pE'eG|VbEB :p(b) ~ b}
=oCs(G) if &isany clement of Cs(cG),

and, if so, exhibit an element & therein.

Note that the sets G now consist of bijections from A4 to 4. For our purposes,
they behave like the cosets of earlier sections.

We attack Problem V using analogues of the method for Problem IV. In
fact, with suitable reinterpretation of o, and using the induced tree structure
o(Tree(B, G)) on ¢(B), New Algorithm { applies. However, since our goal is to
tackle multiple instances with the same 4, B, and G, we firsl compute Cg(G) (using
Algorithm 2 and New Algorithm 1), saving all the- groups and structure tree
information. In the isomorphism application, we assume that Aut, (X"} is computed
and the data saved for all stages.

The prepossession of this wealth of knowledge does not, itself, constitute a speed-
up. It eliminates one O(n’) bottleneck (see Lemma 13) but there is- another
(attributable to the costs of testing Cases ta and 1b and multiplying permutations;
sce proof of Theorem 2). We still need to speed up the latter.

9. Local Representation of the Maps

We approach Problem V with the groups and structure tree in hand. The technique
applies as well to Problem IV under the same assumption (where we then need

- —ry

-

Deterministic and Las Vegas Isomorphism Tests for Trivalent Graphs 527

only to determine the nonemptiness of the solution coset, and, if nonempty, a
single coset representative). In fact, it may be useful to keep that familiar context
in mind in the discussion leading to Algorithm 3 (for that, just suppose 4 = A”).

As indicated, the cost per node is now dominated by the timé to execute the
tests in Cases la and Ib and the time to compose ¢ and 7 in Case 3. This time will
be reduced by representing the o’s relative to the node (block) under consideration.

For any s: 4 — A’ and node Bin Trce(B (), we define the Jocal representative
of ¢ at B, notation ¢[B], by

o[B] := (b, o(b)) | b € B, a(b) € O},

where Q = U, Qs is now the set of colored elements (i.e., with “main” color Qs
excluded) in 4 U 4’. We assume also that each node B conta.ms the ist of colored
elements in it. Let g(B)= 15N Q.
It 1s our intention to pass only the local representatives to the modified procedure.
We consider the effect on the local representative of essential manipulations on .
Given ¢[B] and B N Q, we can perform the Cases la and 1b tests

(i) BN Qi # [o(B) N Gi]),
(3i:B U o(B) C Q),

in time O(q(B))
In Case 3, given + € Sym(A) and 4[B], we want to compute o7[B]. This, too

can be done in O{g(B)) steps, for
ar[B] = [(=7'(b),)| (b, o) € c[B]},

and, having passed Case 1a, g(B) = | ¢[B]{. We refer to this operation as a
B-product.

The first problem arises in Cases 2 and 3 with the progression from node By to
node Bg. The output of the C,g,_ call will contain only a local representative, a[5],
for « € Cp,(cGs,). However, to determine CBRCBL{O'GB) = CBR(Q'CBL(GB), we need
a[Bg] = a[B]\a[B,_] We compute this by repeating the computation of Cp (6G5,)
(to be precise, a sequence of B-products with known 7’s) with o[Br] replacing
o[BL]. We refer to the resulting local representative at B, «[B], as the expansion of
a[B.] to B. The point to make is that the repeated computation needs at most one
visit to each node in the pruned subtree rooted at B.. In the first pass, multiple
visits were forced because it was not known which of two sets in the right-hand
side of

Ci(sGa) = C5,C5(6H) U C5,C3,(67H)

is nonempty. That information is now available from the computation of CB
with o[B.]. Thus we assume that the earlier computatlon recorded one bit at
each node, B, directing the expanding process to ¢ or o7, and eliminating any
need for the other computation. Let p(B) denote the number of nonfacile nodes
in the pruned tree rooted at 5. The expansion of a[BL) to B requires al most one
Br-product at each of p(BL) nodes; this is done within O(p(By)g(Bg)) steps.

A second, similar problem arises in Cases 2 and 3 when the output from the call
to Cp, must be expanded, finaily, to B. As above, this is done within O(P(Br)g(BL))
steps. The output from the call, in Case 1.5, requires ‘no expanding since
e(B\A(B)) N Q &,

Algorithm 3 is a modification of New Algorithm |, assuming the blocks, groups,
7’s, are given. It solves the following “localized” version of Problem V.

528 Z. GALIL ET AL.

Problem V1. Fix a 2-group G =< Sym(A), where 4 is a colored set. Given a
G-stable subset, B, of 4, Tree(B, G) together with entry groups at each node,
and a local representative o[B] for some {otherwise unspecified) bijection o:
A - A’, where A’ is a second colored set. Compute

F(B, ¢[B], G)

“@n if CaleG)=0
a local representative ¢[B] of some & € Cp(cG), otherwise.

In the recursions below, recall that Tree(B, G} induces a suitable Tree(B, Gs) at
each node 8 in B, and the entry groups are inherited by the subtree.

Algorithm 3 (for Problem VI).
Case la. (3 |BN Q] # | a(BY N Q:|): F(B, «[B], G) := “O@; return
Case 1b. (3i: BU o(B) C Q.): F(B, o[B], G) := o[B]; retum

Case 1.5. (f} is facile):
F(B, o[B), ¢} := F(A(B), ¢[A(B)], Gam)
(* in this sitvation o[A(B)] = o[B] *);
return

Case2. (B is intransilive):
recursively compute A = F{(By, o[BL], G);
il A = “@" then {F(B, o[B], G} ;= “@"; return);
af B] := the expansion of A 1o B;
recursively compute Al = Fi (BR, a[Bg), Ga,);
if Al =*2” then (F(B, o[B], G) 1= “@”; return);
F(B, a{B], ¢} ;= the expansion of Al to B;
return

Case 3. (B is transitive):
recursively compute A = F(By, ¢[By], Gs);
if A ¢ “@" then
begin
a[B] := the expansion of A to B;
recursively compute Al = F(BR, a[Bg], Gs,);
if Al # “@” then
(F(B, ¢[B], G) = the expansion of Al to B; return)
end;
retrieve 1 € Gp\Ga,;
recursively compute A2 = F(By, e7[BL], Gs);
if A2 7“2 then
begin
B{B] := the expansion of A2 to B;
recursively compute A3 = F(By, S[Bz], Gr);
il A3 5 “@" then
(F(B, ¢[B], G) := the expansion of A3 to B return)
end;
F(B, o[B], G) = “@™
return
We employ Algorithm 3, at stage r in the computation of Ise,, (X", X?), with
B = B,, G = Aut,(X}), and ¢ = g, € Iso,, (X}, X?). The output is either “@” or
o{B,] for some « € Cp(o,Aut, (X})). If the former, there is no isomorphism from
X' to X? sending e, to e;. If the latter, it remains to determine ¢,,, €
150, £{X}+1, X2:1). For that, a final pass over the pruned tree Treey(B,, G,), as in
the expansion process, extends o B;] to liftable 0,4, € Iso., (X}, X?). Since this
requires at most one product of permutations on an O(n) element set at each of
p(B;) nodes, it is done within O(np(B,)) steps.
We analyze the isomorphism fest in the next section.

Deterministic and Las Vegas Isomorphism Tests for Trivalent Graphs 529

10. The Time Bound for the Isomorphism Test

We test isomorphism through the reduction of Section 8 and the discussion of
Section 9. The preliminary gathering of Aut, (X'} information is done in O(n%)
steps. We express the time requirement of Algorithm 3 as a function of the number
of nonfacile nodes and the number of colored leaves in Tree(B, G). That is, let
t(p, q) be the worst case running time for any Tree(B, G) with p(B) < p, ¢(B) < q.

LemMa 14. With ¢t as above, {(p, q) = O(pqlogpg).

PrROOF. One may assume that t(1, g) = t(p,.0) = | (note that p = | happens
only at a leaf). Suppose that p(B) > 1, g(B) > 0. Set py = p(BL), p» = p(Br),
&1 = q(BL), g2 = q(Br), so that g(B) = ¢, + g, and, if B is nonfacile, then p(B) =
o+ p + 1. It suoffices to prove the bound for nonfacile B for then, in the
facile case, the cost is O(g(B)) + the cost of the tree rooted at A(B). Thus
we redefine t(p, g) as the worst case time over all nonfacile B with p(B) < p,
g(B) = g. Suppose that B, G is a “worst case” among these, that is, the time de-
manded by Tree(B, &) is t(p(B), g(B)). Taking all constants to be 1, we have the
alternatives

q(B)
2

2
2% t(p,-, @) + o+ 00 1B 4 4y

i=1 2
t(p(B), q(B)) =
2 Upi, @)+ oo + page + g(B).

i=l

Here, we have associated the cost at B to its first nonfacile descendents on the left
and right. The first inequality holds when B is transitive and ¢, = ¢> = g(B)/2 and
the second otherwise. The final g(B) accounts for any B-product. It also recognizes
the time for tests tn Cases la and ib, including those at facile sons, as well as those
at the sons if B is transitive and the colors do not split evenly between B and By
(which is why that transitive subcase can be covered by the second inequality). The
terms (p, + p2)(g(B)/2) and p1g: + p2q account for computation of expansions
{though there may be two expansions that contribute to the p,(g(8)/2) term recall
that we have taken all constants to be 1). The lemma follows by induction. 0

This is the essence of
LEmMA |5. Assuming that all the blocks and groups from the computation (as
in Sections 5-7) of Aut.(X") are given, the set
Is0., (X', X?) = cdut. (X"
of isomorphisms from X' to X* that map e; to e, is computable in time O(n*logn),

Proor. The initial formation of ¢(B,] from o, is done in O(| B,|) = O(m?)
steps, for a total, over all stages, of only O(n?). As indicated, the computation of
o-+1[B:] in stage r takes t(p(B,), ¢(B.)) = O(p(B.)a(B,)log p(B,)q(8B,) steps. The
lifting to o, € IS0, (X741, X741) is done in O(np(B,)q(B,)) steps. The result
follows by Lemmas 10 and 1. O

Hence,

THEOREM 3. [somorphism of n-vertex trivalent graphs can be tested in time
O(n’logn). The algorithm determines the set of all isomorphisms.

