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Abstract

A graph-constructive approach to solving systems of gcomelric con-
straints capable of efficiently handling well-constrained, overconsirained
and underconstrained configuralions is presented. The geometric constraint
solver works in two phases, in the analysis phase the consiraint graph is
analyzed and a sequence of elementary construction steps is derived, and
then in the construction phase the sequence of construction steps is ac-
tually carried out, The analysis phase of the algorithm is described in
detail, its correctness is proved, and an eHicieni algorithm to realize il is
presented. The scope of the graph analysis is then extended by utilizing
semantic inforimalion in the form of engle derivations, and by extending
the repertoire of the construciion steps. Finally the construction phase is
brielly discussed.
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1 Introduction

The problem of solving systems of geometric constraints is central Lo compuler
aided design and manufacturing [14, 25], stereochemistry [7], and robot motion
planning. In CAD/CAM applications the user draws a sketch and annotates it
with geometiic constraints. Overconstrained and underconstrained configura-
tions may occcur, deliberately or erroneously.

In numerical constraint solvers [31, 12, 23, 28, 20] the conslraints are trans-
lated into a system of algebraic equations and are solved using iterative methods.
To handle the exponential number of solutions and the large number of param-
eters iterative methods require sharp initial guessecs. Most iteralive methods
have difliculties handling overconstrained or underconstrained instances. A so-
phisticated usc of the Newton-Raphson method was developed in [20], where an
improved way for finding the inverse Jacobian matrix is presented. When the
Jacobian matrix is singular Light and Gossard use a modified version of Doolil-
tle’s method. Rule-constructive solvers [5, 2, 32, 30, 35, 34, 18] use rewrite rules
for the discovery and execution of the construclion steps. In this approach,
complex constraints can be easily handled, and extensions to the scopc of the
method are straightlorward to incorporate. Although it is a good approach for
prolotyping and experimentalion, the exlensive computations involved in the
exhaustive searching and matching make it inappropriate for real world applica-
tions. A method is presented in [32], where handling of overconstrained and un-
derconstrained problems is given special consideration. The graph-construclive
[24, 19, 1] approach has two phases. During the first plase the graph of con-
straints Is analyzed and a sequence of construction steps is derived. During
the second phase these construction steps are followed to place the geometries.
These approaches are fast and more methodical. [1] decomposes the system of
geometric constraints in polynomial time in under-, over-, and well-constrained
irreducible subsystems by an analysis of the bipartite graph of equations and
variables. For a more extensive review the reader is referred to [10]

Comparison with related work, specifically with rule constructive, numerical
and owen on how they ireat over and under.

Figure 1 illustrates a case, where onc of the four 90° angles and onc of
the two distances (lengllt of ¢ and length of @) are redundant. However, the
confliguration is not well-constrained since the length of b is not well specified
or derivable,

The above considerations motivate the [ollowing technical conlributions our
paper makes:

¢ We extend our approach to solving systems of geometric constraints based
on an analysis of the constraint graph Lhat derives a sequence of clementary
construclion steps.
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Figure 1: A syslem of geometric constraints defining a rectangle that is consis-
Lently overconstrained but is not well-determined since its height is not specified.

* The method can handle over-, under-, and well-constrained configurations.
e Efficient algorithms to analyze the constraint graph are presented.

¢ The method is formally studied as a rewrite system of sets and its correct-
ness is proved. Note, Lhat the behavior of the analysis for well-constrained
problems has been reported before in [8].

» Extensions are presented that increase the scope of the core analysis tech-
niques.

o The construction phase is briefly presented, its algorithmic compexily is
studied and the problem of avoiding complex coordinates is discussed.

Section 2 provides an overview of our approach. To make the paper self-
contained, Section 3 describes the reduction analysis for solving well-constrained
and overconstrained configurations. The decomposition analysis for handling
underconstrained configurations is presented in Section 4. Section 5 presents
extensions thal increase the scope of the core reduction analysis. Section 6
briefly describes the construction phase, derives its complexily and discusses
the problem of solution with real number coordinates. Finally, Section 7 offers
conclusions and [uture work.

2 An Overview

A geomelric constraint problem is given by a set of points, lines, rays, cir-
cles with prescribed radil, line scgments and circular arcs, called the geomeltric
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elements, along with required relationships of incidence, distance, angle, paral-
lelism, concentricity, tangency, and perpendicularity between any two geometric
elements, called the constraints. As it is explained in [9] with an appropriate
representation and some preprocessing we may restrict ourselves to points, lines,
with pairwise distance and angle constraints. The geometric constraint problem
is then formulated as follows:

Given a set V of n points and lines and a sel E of pairwise con-
strainis among them, find an intuitive solution thal satisfies the given
conslraints. A pairwise consiraint may be one of: point-point dis-
tance, point-line distance and line-line angle. More formally F is a
partial mapping K :V x V — R.

The problem can be coded as a consiraint graph G = (V, E), in which the
graph nodes are the geometric elements and the constraints are the graph edges.
The cdges ol the graph are labeled with the values of the distance and angle
dimensions.

Example 1 Figure 2 shows a dimensioned sketch defining a constraint problem
involving 4 lines and 6 points. We have 8 implicit point-line distances thal are
0, 2 explicit point-line distances, 3 angles and 4 point-point distances. Figure 3
shows the corresponding constraint graph. O

2.1 A Graph-constructive Method for Geometric Constraint
Solving

Our constraint solving method first forms a number of rigid bodies with three de-
grees of frecdom, called elusters. For simplicity we will assume that a maximum
number of clusters is formed, cach cluster consisting of exactly two geometric
elements between which there exisls a constraint. Geometrically, such a clus-
ter corresponds to a pair of geometric elements whose position and orientation
relative to each oller is known.

Three clusters can be combined into a single cluster if they pairwise share a
single geometric element. Geometrically, the combination corresponds to placing
the associated geometric objects with respect to each other so that the given
constraints can be satisfied.

The constraint solving method works in two conceplual phases:

¢ Phase 1 (analysis phase): The constraint graph is analyzed and a
sequence of constructions is stipulated. Each step in this Sequence corre-
sponds to positioning Lhree rigid geometric bodies (clusters) which pair-
wise share a geometric element (point or line).
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Figure 2: A well-constrained skelch defining a constrainl problem with 10 geo-
metric elements and 17 constraints.

* Phase 2 (construction phase): The actual construction of the geomet-
ric clements is carried out, in the order determined by Phase 1, by solving
certain standard sets of algebraic equations.

To illustrate the process, consider three points A, 2, and ¢ between which
distances have been prescribed, as shown in Figure 4 left. The associated con-
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Figure 3: The constraint graph of the previous sketch
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Figure 4: Constraint problem (left), and associated constrain grapl (right)

straint graph is shown on the right. In Phase 1 of the constraint solving, we
determine first that every pair of points can be constructed separately, resulting
in three clusters. Morcover, the three clusters can be combined into a single
cluster since they share pairwise a geometric element. The combination merges
the three clusters inlo ome. As soon as a single cluster is obtained, Phase |
considers Lle constraint problem selvable.

Phase 1, the analysis phase, consists of two parts:

e the reduction analysis (Section 3) thal produces a sequence of local cluster
merges and handles well-constrained and overconstrained problems, and

o the decomposition analysis (Section 4) that produces a sequence of decom-
positions (that correspond to a reverse sequence of cluster merges) and
handles underconstrained cases. The outcome of Lle reduction analysis is
led as input to the decomposition analysis.

Phase 2, the construction phase, is briefly discussed in Section 6.

2.2 Multiple Solutions and Root Identification

It is well known that a well-constrained geometric problem can have many incon-
gruent solutions. Recall thal at each construction step we may have to choose
one of several solutions. Different choices may lead to incongruent solutions,
cach mathematically satislying the given constraints.

In order to select a solution at each step, a number of heuristics are applied
that make sense if the skelch with which the geometric problem has been spec-
ificd has the same topological order type as the intended solution. This is an
application-specific issue that is [urther discussed in [4].

We assume that the geometric problem has been specified by a user-prepared
sketch. The point-line dislances, and the angles between oriented lines are
assumed to be signed quantitics. The correct sign is determined [rom the original
input sketch. Observing the sign conventions, all construction steps have a
unique solution except in two cases, which are solved as follows:




(i) The relative placement of three points in a construction step has the same
cyclic ordering in the plane as the ordering of the points in the original
drawing.

(i) The relative placement of two points and an oriented line is such that the
inner product of the direction vector of the points and the line is sign
invariant between the original sketeh and in the chosen solution.

The geometric consiruction first places three geometric elements in this man-
ner, and then applies a rigid-body transformation to align the three clusters
accordingly. In particular, placing clusters by the shared geomelric elements
does not involve a reflection. We will prove later that no matter in which order
the clusters are combined, the same set of triples is used to select the geometric
solution, and that this implies congruence.

Note that the heuristics only imply the existence of a solution in 2 generic
sense. Specific dimensions of distance and angle could be such that the solution
selected by the heuristics would require complex coordinates. If this possibility
is to be systematically excluded, some strategy would be roquired that searches
the solulion space in a canonical order. As the space of possible solutions may
be exponential in the number of gecometric elements, this is not an atiractive
prospect. In Lthe case of ruler-constructible configurations, there is a theorem
by Hilberl stating that if onc solution has only real coordinales, then all of
them musl have real coordinates [13]. This means that for such configurations
the heuristics will never fail to deliver a solution if onc exists. The theorem
does nol generalize Lo ruler-and-compass constructible problems, and we know
of no results that make progress beyond llilbert’s thecorem. The problem of
finding a real solution of a system of geometric constraints is further considered
in Section 6.2.

2.3 Well-constrained, Overconstrained and Underconstrained
Problems

Each line or point on the Euclidean plane has Lwo degrees of freedom. Each
distance or angle corresponds to one equation. I we have no fixed geometric
elements {geometric elementls whose absolute coordinates have been specified
explicitly by the user) then we expect thal

| 5] =2|V| — 3, where |[V]=n

Recall that |V] is the number of geometric clements and that |E| is the number
of constraints. Note that the solution will be a rigid body with three remaining
degrees of freedom, because the constraints determine only the relative postlion
of the geometric elements. We use this argument to define a technical notion
of well-constrained sketches in which no attempt is made to account for Lhe
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Figure 5: Degenerate Configuration (right) for o + 8 = 90°.

possibility that for special dimension values an otherwise well-constrained prob-
lem may happen to be underconsirained. An example is shown in Figure 5. In
the figure, the vertex P of the quadrilateral has a well-defined position when
a+ A # 90°. But for o + # = 90° the position of P is not determined. This
“semantic” notion of well-constrained problems is too specific for the constraint
graph analysis because there the generic problem of constructing a solution is
considered independent of dimension values.

Intuitively & dimensioned sketch is considered to be well constrained if it
has a {inile number of solutions for nondegenerate configurations. Similarly a
dimensioned sketch is considered to be underconstrained if it has an infinite
number of solutions for nondegenerate configurations. Finally a dimensioned
sketch is considered to be overconstrained if it has no solutions for nondegenerate
configurations.

The intuitive notions above can be made technically precise as follows:
Definition 1 A graph with n nodes is structurally overconstrained il there is
an induced subgraph with m < n nodes and more than 2m — 3 edges.
Definition 2 A graph is structurelly underconstrained if it is not overcon-
strained, and the number of cdges is less than 2n — 3.

Definition 3 A graph is structurally well-constrained if it is not overcon-
strained, and the number of edges is equal to 27 — 3.

Definition 4 A geometric constraint problem with a structurally over-, under-
or well-constrained constraint graph is called a structurally over-, under- or well-
constrained problem, respectively.

For an algoritltm to test whether a graph is structurally well-constrained see,
e.g. [16, 29]. Note that a structurally well-constrained graph can be overcon-
straired in a geometric sense, for example if there are three lines with pairwise
angle constraints.

The core reduction analysis handles structurally well-consirained and over-
constrained problems. Scction 3 presents this method in detail, together with a
correctness proof and an efficient algorithm to realize it. Section 4 presents the
decomposition analysis that handles structurally underconstrained problems.




3 The Reduction Analysis

We are given a constraint graph G = (V, I) whose nodes V are geometric
elements, and whose edges E are the geometric constraints. Without loss of
generality, the geometric elements consist only of points and lines, and the
constraints are only of distance and angle.

We consider scts C whose clements are sets § thal in turn have as clements
nodes of . Each set S represents a cluster. Intuitively, a cluster S consists
of geometric elements whose position relalive to cach other has already been
determined. A cluster thus can be considered a rigid geomelric structure that
has three degrees of freedom, two translational and one rotational.

Initially, we form a sel Cg from G. For each edge ¢ = (u,v) in &, there is
a cluster §; = {u,v}. The construction steps that solve the constraint problem
amount to one reduciion step thal merges three clusters whose pairwise inler-
section is a singleton. The reduction is denoted by —. The process of finding a
sequence ol reductions that derives a single set of clusters, and thus determines,
a sequence of construction steps that posilions the geometric clements to satisfy
the initial set of constraints, is called reduction analysis.

Example 2 To illustrate better the process of Lhe reduction analysis, consider
the constraint graph of Figure 3. Alter detecting a sequence of cluster merges,
we end up with three clusters, U, V and W, as shown in Figure 6. The analysis
concludes by merging the three clusters into one. O

3.1 Correctness

In [8], we considered clusters as sels and studied their structure under reduction.
Given the constraint graph G = (V, E), we deline the set of clusters

Ce = {{u,v} : (n,v) € E}

Cluster sets arc rewrillen using a reduction —. The reduction — is formally
defined as follows:

Definition 5 Let C be a set of clusters C in which therc are three clusters S,
52, &3 such that

5105 = {g}
Sz n 53 = {gz}
93N 5 {g;;}

where ¢y, g2, g3 are distinct, then

C—=C

where
C = (C U {.5'] USa U 53}) - {51,52,53}




Figure 6: Finding the clusters ol the graph

We proved first a weak nolion of correciness:

If the constraint grapl is not structurally overconstrained, then our
method reduces the initial set Cg to the same (irreducible) normal
[orm, no matter in which order the reduction steps arc applied. That
is the set Cg and the reduction — are a terminating, confluent
rewriting system (see e.g., {26]).

Here, confluent means that if a set A can be reduced to two different sels /3
and By, then there are two reduction sequences, one reducing By, the other /3,
to the same set 7,

Notice, however, that a well-constrained geometric problem las in general
several incongruent solulions (see Section 2.2). In [8], we proved therefore a
slronger unigueness theorem:

IT the constraint graph is well-constrained and our algorithm reduces
the initial set Cg to a single cluster using, in the construction phase,
the placcment rules given in Section 2.2, then the solutions derived
by different reduction sequences place a fixed set of triples of geo-
metric clements in the same relative position.

This result implies that different reduction sequences must produce geometric
solutions that are congruent.
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3.2 An Efficient Reduction Algorithm

In this seclion, we provide an algorithm that runs in time quadratic in the num-
ber of geometric elements and constraints and realizes correctly the reduclion
analysis.

Let G = (V, ) be the constraint graph. Let » = |V| and ¢ = |£|. The
algorithm has a O(n?) worst case time complexity for constraint grapls that arc
not structurally overconstrained. We can also show thal we can test, in the same
time bound, whether the graph is structurally overconstrained (see Section 3.3).
For Lhe purposes of the algorithm we will also consider an undirected cluster
graph Il whose vertices arc the edges and vertices of G. H has an cdge (¢, v) iff
there is an edge ¢ € E and e is incidenl Lo v in . Note that H is bipartile.

The initial cluster graph H records of clusters of size 2 in G. H is bipartite,
with one set of vertices corresponding to clusters, initially the edges of C, the
other corresponding to the geometric elements of the constraint problem, the
vertices of G. There is an edge in A il a vertex of G belongs to a cluster.

In this section we will assume thal G is not structurally overconstrained thus
every subgraph G; = (V;, E,) of ( satisfies | E;] < 2|G,| — 3.

3.2.1 Overview

The algorithm [or solving the constraint graph is as lollows:

l. Construct initial clusters of size 2, each consisting of two adjacent vertices

of G.
2. Construct the cluster graph H.
3. Find all triangles in G.

4. Successively rewrile H by replacing a 6-cycle in Jf by a [our-node structure
as explained below. Record a cluster merging operation for each such
rewriting step,

5. If # can be rewritlen into a final graph that is a star with center a cluster
and periphery the vertices of G, then G is solvable; otherwise it is not
solvable.

A G-cycle in H corresponds to three clusters that pairwise share an ele-
ment {a vertex of &). The rewriting step corresponds to a cluster merge. Lot
(w, U, v, V,w, W) be such a 6-cycle, where u, v, w € . We replace the three ver-
tices U, ¥V and W with a new vertex X. Then X will be incident to all vertices
that U/, VV and W are adjacent to. That is, the nodes U, V, W are combined into
a single node. See also Figure 7.
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Figure 7: Rewriting a 6-Cycle in the Cluster Graph
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A 4-cycle in Il corresponds to two clusters that share two elements. If a
4-cycle exists, the graph G is structurally overconstrained. Thus, the shortest
possible cycle in H has length 6.

3.2.2 Details

The main work of Lhe algorithm is to find and reduce 6-cycles. Finding triangles
in Step 3 identifies all 6-cycles in /7, and the algorithm will find other 6-cycles
that are formed by rewriting in Step 4. Those two steps must be implemented
carefully, and we explain how they are done.

Step 3: We assume that G is represented both by adjacency lists and by the
adjacency matrix. We find all triangles in G, using the method of [17]:

Build a depth-first search tree. T"hree types of triangles arc possible, involv-
ing two, one, or no tree edge; Figure 8. Triangles that involve one or two tree

¥ e \} v o‘_‘:
h W AR
% LY ~ A Y L
1 * 1 ~
\ N v
‘I L 1 e 1
father{u) p father(u) ()’ ; futher{u) Cy :
! I
! l ,I §\ '
! s 1 r
: - ;7
’ - e
4 e s
u L&) O’
1) A iriangle conlsining two trez edges  b) A wriangle conlaining one res edge ©} A nanple withour bree cdpes

Figure 8: Three cases for a triangle in a depth first search

edges are found uniformly as follows: Let (u,%) be a back edge. I ( father(u), v)
is an edge in G, we have a triangle with one or two tree edges, because in that
case either (v, father(u)) is a tree edge or ( falher(u),v) is a back edge.

Next, we remove all tree edges, and repeat the above scarch for all connected
components of the remaining graph. This is repeated until there are no more
cdges. Clearly, all triangles that do not have tree edges in the first depth-

12




Figure 9: Finding a 6-cycle by doing a breadth first scarch

first search eventually become triangles involving tree edges in later depth-first
searches.

Step 4: A triangle in the constraint graph G corresponds to a G-cycle in the
cluster graph H and vice versa. Having found all triangles in &, we now know
all six cycles of H.

When rewriting a 6-cycle, new G-cycles could be created. They are found
by a limited-depth breadth-first search that originates at the new vertex X sce
also Figure 9. In {22] limited depth-first search has been used to find cycles of
minimum length. To find all such 6-cycles, begin a breadth-firsl search at X.
Each vertex at level 3 that is reached twice in the breadth-first scarch closes a
6-cycle. Note that the search is done only to level 3.

3.2.3 Time Analysis

Steps 1 and 2 require O(e) steps in all. Since G is not structurally overcon-
strained, this is linear in the number of vertices 7.

Step 3 repeatedly performs depth-first search. It requires the adjacency
matrix of G which costs O(n?) if constructed with standard data structures.
The first depth-first scarch now requires O(e) steps, because the test whetler
(father(u), v} is a graph edge can be done in constant time using the adjacency
matbrix.

Let Gy be a connected component of (¢ with m verlices. After a depth-
first scarch of G, m — 1 edges are removed from the adjacency lists. This is
more than hall the edges in Gy because G is structurally not overconstrained.
Consequently, the next depth-first search examines less than half the number of
edges. The total time for Step 3 is therefore O(e) which is O(n), excluding the
time for Lhe adjacency matrix construction.

[n Step 4, each reduction of a G-cycle Lakes time O(e): We go through all the
adjacency lists and replace cach of the three vertices I/, ¥V and W with vertex X.
Every new 6-cycle must involve the new node X. We do a breadth-first search
beginning at X to depth 3, looking for new 6-cycles. This again takes again

13




time O(e¢). Imlially, H contains al most 2n — 3 verlices representing clusters.
Each 6-cycle replacement reduces this number by 2, thus in Step 4 we may have
al most n reductions. And since each breadth [irst scarch corresponds to one
reduction, Siep 4 Lakes time Q(ne) = O(n?).

3.3 Structurally Overconstrained Problems

We first show thal we can test, in the same time bound as before, whether the
graph is structurally overconstrained.

With some extra checking the algorithm of Section 3.2 can detect an over-
constrained subgraph in the same time bound. For Step 1 before doing a depth
first search in a connected component graph Gy = (V, E}) we check whether
| £1] < 2[V1| = 3, il yes we go on, olherwise we terminate the algorithm and
relurn the graph (. Since this step is perlormed on the initial graph as well
we have ensured that the original graph has less than 2n — 3 edges. Stop 2 takes
again time O(n), and Step 3 takes time O(n?). For Step 4, we keep reducing
until we meet a 4-cycle, then we terminate the algorithm and return the 4-cycle,
the time complexity is again O(n?). The returned graph is used for interactive
editing.

'To handle consistently overconstrained problems we introduce a new reduc-
tion operation thal merges two clusters sharing two or more geomctric elements.
This corresponds to checking in the construction phase whether the relative po-
sitioning of the shared geometric elements in the Lwo clusters is consistent. I[ it
is consistent, then the two rigid bodies are merged into one. A cluster configu-
ration derived from a structurally overconstrained problem is depicted in Figure
10. In this cluster conliguration, C;, C; and C3 are merged into a cluster C’,
and Cy, C5 and Cg into a cluster C”. €’ and C" have two common elements: py
and pp. In the analysis phase we merge the two clusters and in Lhe construclion
phase we first check whether the distance between py and p; in €’ malches the
dislance between py and p; in C¥. H so, we rotate and translate, e.g. C’ to
match C”. We can prove that by adding this new reduction, we get a confluent
rewrite syslems for all cluster configurations {overconstrained or nonovercon-
strained). Ilowever, congruence cannot be proved by the Lechniques of [§], since
different reduction choices will result in different sets of geometry triples.

We assume Lhat in the initial constraint graph there may be no more than
one edge between any two vertices. Otherwise we can find such multiple edges
in time linear to the tolal number of edges and reduce Lthem. Then the only
modification to the algorithm of Section 3.2 is Lo add to Step 4, that if we meet
a 4-cycle in a breadth first search we reduce it as if it was a 6-cycle and we go
on. To derive the time bounds note that the number ol reductions is always
linear in the number of nodes in H. Also recall that each iteration of Step 4
takes only O(e). Steps 1 and 2 take time O(e). Step 3 becomes O(e\/e} (sce
[17]), and Step 4 becomes O(e?). This gives an overall O(e?) worst case time

14




Figure 10: A cluster configuration derived from a structurally overconstrained
problem.

complexity for the general case.
If the original graph has ¢ = O(n) then Steps 1 and 2 Lake O(n) time, Step
3 takes O(ny/n) and Step 4 takes time O(n?).

4 The Decomposition Analysis

The bottom-up reduction analysis of Section 3 works well with overconstrained
and well-constrained problems. However, it has dilliculties when dealing with
underconstrained problems, because there appears Lo be no reliable way to lo-
cally add constraints deduced from the input sketch to transform an undercon-
strained problem to a well-constrained one.

Example 3 Tigure 11 shows the constrainl graph of an underconstrained
geometric problem, that nceds the addition of Lhree constrainls to become
well-constrained and solvable. The v in the graph represent points, and Lhe
edges distance constraints between them. Adding distance constraints between
(v1,v3), (v7,ve} and (v)3, v15) make the problem well-constrained and solvable.
However, if we add a dislance constraint for (v16, v10) Lo trigger a local clus-
ter merging, then any addition of two more distance constraints will make the
problem nonsolvable. Thus the local reduction analysis is insufficient for under-
constrained problems. A global analysis is needed. O

We present now a global, top-down decomposition analysis that does es-
pecially well for underconstrained problems. The decomposition analysis also
handles well-constrained problems efficiently, but does not do well on overcon-
strained problems, nor does it make it casy Lo include the angle transformations,
described in Section 5.2. Note that a top-down decomposilion analysis was first
proposed by Owen [24]. His algorithm runs in quadratic time and uses the linear
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Figure 11: A structurally underconstrained graph where adding edges (clusters)
to trigger local cluster merging doecs not always work.

algorithm for finding triconnected components presented in [15].

The decomposition analysis presented now analyzes the cluster conliguration
derived by the reduction analysis and is proved to handle all underconstrained
problems that can become well-constrained and solvable by adding constraints.
Our decomposition algorithm has quadratic worsl case time complexily and uses
the classical lincar deplh-lirst search algorithms for finding split commponents and
articulation nodes [15, 33).

4.1 A Conceptual Algorithm

Initially, all clusters found by the reduction analysis are considered to be in a set
S. The set S is partitioned inlo Lwo or thrce subsets Si. Let S; and S; be two
such subsets. We require that there is at most one geometric element shared by
the clusters in the two sets. That is, let G, = {g| g € C,C € S} be the geomet-
ric elements that are in clusters of the sel Sy, and let G, = {¢ | g € C,C € S},
Then we require that |G; N G| € 1. At each decompaosition slep, we so subdi-
vide a set of clusters § into two or three disjoint cluster sets. The elementary
decomposition steps arc shown in Figure 12. In the figure, S;, denotes a set of
clusters, and C; denotes an individual cluster. A decomposition of type (a) is a
stmple set partition. In the case of a decomposition of type (b), a new cluster
C is crealed, corresponding to adding a constraint. A decomposition step of
type (c) creates three additional clusters. "I'he corresponding added constraints

16
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Figure 12: The three basic cases for decomposing the clusters into sets.
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can be formulaled from the relalive position of the geometric elements in the
mputl sketch. Decomposition continues until every cluster of the original set S
is in a singleton set Sg.

A decomposition step corresponds to a cluster merge in cases (a) and (b),
and to two cluster merges in case (c). These cluster merge operations will
be execuled in reverse order of the decomposition and are done when a single
cluster is obtained for the enlire graph, corresponding to the set S with which
decomposition began.

We avoid sclecting a partition where all three shared geometric elements are
lines in case (a). In case (b), when the shared clement is a line we cloose to
add a cluster €' that does not consist of two lines. The restriction avoids a cor-
responding merge of three clusters with lines as the shared geometric clements,
for such a merge is geometrically undetermined. A similar restriction is placed
on the clusters (', C; and Cj in decompositions of type (c).

In case that S; and S; are singleton sets whose clusters consist of lines only,
Lhen a virtual point is added as shown in Figure 13.

Figure 13: Decompositions (b) and (c) for clusters containing only lines. A
virlual point p is added plus constraints to form the clusters Cy.

The reduclion analysis has no effect on the underconstrained graph of Figure
I1 because therc are no triangles. The decomposilion analysis, however, can
successfully solve the underconstrained problem and identify three additional
constraints thal will make it solvable. For inslance, the clusters formed initially
(one for each edge) can be split into three sets that share geometric elements
¥, v7 and vy3.

Decomposition cannot handle problems thal are consistently overconstrained,
such as the one shown in Figure 10. There is no decomposition of the clusters
into two or three scts that pairwise share at most one geometric element. How-
ever, the reduction analysis can efficiently handle such geometric constraint
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problems.

4.2 Correctness

Let C be a sct of sets S. Each sel S is a sct of cluslers €. We assume that the
cluster scts S of € are disjoinl. Initially,  contains only one set whose elements
arc the clusters derived by the reduction analysis.

The type (a) decomposition of Figure 12 is denoted —2(2}, and is formally
defined as follows:
Definition 6 Let C be a collection of sets of clusters in which there is a set
of clusters S8 whose clements can be partitioned in three nonempty sets S, S,
and Sj such that:

(UCGSJ ayn (UCeS,_ C) = {n}
(Uces, €)N(Uges, €) = {92}
(Uces, C)0 (Upes, €) = {93}

where g1, g2, g3 are distinct and are not all lines, then
I _,FD(a] C.l'

where
¢’ =(Cu{8S,,S2,85}) - {S}

The type (b) decompeosition of Figure 12, denoted —P®), is formally defined
as follows:
Definition 7 Lel € be a collection of sets ol clusters in which Lhere is a set of
clusters S whose elements can be parlilioned in two nonempty scts S; and S,
such that:

(Uges, €)N(Uces, €) = {g}

then

C _’D(b] c!

where

C'=(CU{S:,S.}) ~ {8}

Finally, the type (c) decomposition of Figure 12 which we denote by —2()
is formally defined as follows:
Definition 8 Let € be a collection of sets of clusters in which there is a set of
clusters 8 whose clements can be partitioned in two nonempty sets S; and S,
such that:

(Uces, €)N (Uces, €) = @

then,
c . D(c) c!
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where

C'=(CU{8:,8:}) - {S}

Definition 9 A decomposition —2 applied to a collection € is one of —P(a)
—.D() op —D(e),

We will show that the rewrite system (Cg,—%) has a unique normal form
that is oblained after finitely many steps.
Definition 10 The collection £’ of cluster sets is derived from C, if €/ can be
obtained by applying a finite sequence 7 of decompositions to C. We denote this
by

c-P¢!

Definition 11 A colleclion C of cluster sets Lo which —2 js not applicable is
called nondecomposable. II C is nondecomposable and can be derived from ¢/,
then C is called a normal form of C’'. A collection of cluster sets whose normal
form contains only singleton cluster sels is called solvable.

We will show that a collection of cluster sets has a unique normal form and
is derived by a firite sequence of decomposition sleps.

Lemma 1 A normal form ol a collection of cluster sets is derived by a decom-
position sequence whose length is bounded by ¢ — 1 where ¢ is the total number
of clusters.

Proof

(By induction on the number of clusters). For e = 1, C = {S} and S = {C},
which is alrcady in normal form. Assume the lemma holds for all sets with
fewer than ¢ > | clusters, and let C be such thal therc are ¢ clusters in all
in the element sets of C. If € has more than | element, then cach set S € C
has fewer than ¢ elements. By the induction hypothesis, C can be brought into
normal form in at most ¢ — 1 steps. Otherwise, C = {S}. If € is not in normal
[orm already, then S can be decomposed in one step into two or three sets Sy,
each with fewer than ¢ elements. By the induction hypothesis, therelore, normal
form is reached in at most 14+ (¢; — 1) + (¢2 — 1) = ¢ — 1 steps or in at mosl
I+{(ey=1)+(ez—1)+(es—1) = ¢~ 2 steps. O

Theorem 1 The rewrite system (C, ="} is confluent.

Proof
Let C be a collection of cluster sets. Assume that Lwo different decomposition
steps , C =¥ Cyand C —P C,, are applicable to C. We will prove that ¢; —P ¢’
and Cp =2 ¢,

If =% and —2 partition two different scts S; and S, of C, then C; —r‘;) C’
and C; —& C'. So, we assume that —D and —¥ partition the same sel S of
clusters. Without loss of generality we assume that = {S}.
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Assume that —2 and —£ are both of type (a) and partition S into Syp,
S12, Si3 and into Sg;, Sus, Saa, respectively. Intuitively, the collection €' is
C' = {S[.}, where 8!, = S1; NSy, 1 <4,k < 3and S, # 0.

We want to decompose S, into the sets 81, S|, and S,, assuming that all
three sets arc not emply. Since the decomposition —‘«? requires that Sa;, Sag
and Sgy pairwise share one geometric element, the sets §1;, 81, and 845 pairwise
share at most one geometric clement. Therefore, the decomposition of 815 can
be done by in one of lour ways, depending on ithe number of shared geometric

elements:

(3) — by a single step ol type (a)

{2) — by two steps of type (1)

(1) — by one step of type (b) and one step of type (c)
(0) — by two steps of type (c)

If one or more of the S, are empty, a similar case analysis establishes the
decomposition of S1;. By symmetry, S|3 and S3 are decomposed into the sets

S5, and S5,. Therelore,
c—7P =2

il both reductions are of type (a). Again, by symmelry, we also have
C—P Cp =P

It is now routine Lo argue conflucnce in the cases where one, or hoth, of —:-{)
and —% are of type (b) or type (c). O

Corollary 1 (Normal Form Theorem)
A collection C has a unique normal form under —® that is oblained by finitely
many decompaosition steps.

Proof
Immediate from Theorem 1 and Lemma 1. O

Note that Lwo decomposition sequences need not result in congruent geomet-
ric solutions, since different decompositions may determine different choices of
constraint additions. An example is shown in Figure 14. The user specifies the
underconstrained problem in (a). Assume that the distance between Ptl and
P12 is 13.738, and between P15 and Pt6 is 17.000, in the input sketch. Then,
depending on the decomposilion sequence, solutions (b) or (c) may be obtained.

4.3 An Efficient Algorithm

The conceplual decomposition method just described can be implemented to run
in time guadratic in the number of clusters and geometric elements. It can also
be combined with the reduction analysis of Section 3 because the decomposition
only requires abstract clusters that are scts of geometric elements whose relative
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Figure 14: Getting two geometrically incongruent solutions, (b) and (c), [rom
the same underconstrained draft (a).

position is known. Thus, the sel of clusters obtained by the reduction analysis
is the initial set S of the decomposition analysis.

For the implementation of decomposilion we will make use of the graph
GR = (VR, Ep) derived by the reduction analysis. Recall that this graph is
bipartite, and the partition is Vg = VU Vi, where V§ are Lhe clusters and 174
are the gecometric elements. The graph edge (C, ¢) means that the geometric
elemen! g belongs to the cluster C.

We construct a graph Gp = (Vp, Ep) from the graph Gr = (Vg, £R), where

Vb= VU {o!,%,0° | v € G})

consists of the nodes of V3 plus three nodes v* for every node v in V§. The
edges of Gp are

Ep = {(u, vl),(u, vz), (u, 113) | (v,0) € Ep, u € G, v € GR}

We will use a DIS algorithm for finding Lhe split components ol a biconnected
graph. We recall some terminology from [15].

Lel G be a connected undirected graph. Then a is an articulation node of G
iff there are two vertices © and ¢ different from @ such that a is on every path
connecting v and v. A graph witl no articulation nodes is called biconnected.
Let @ and b be two vertices in a biconnected graph G. The edges of G are divided
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into separalion classes [iy, By, ... E. Two edges are in the same separation class
E if there is a path using both edges and not containing a or b except, possibly,
as endpoints.

If the two vertices @ and b divide the edges into more than Lwo separation
classes, then {a, b} is an arliculation pair of G. Moreover, if {a,b} divides the
edges into two separation classes, each containing more than onc edge, then
{e,b} is also an articulation pair. If G has no articulation pairs then G is
iriconnected.

Assume there is an articulation pair {a, b} that induces the separalion classes
E\, Ey,...Ey. Let B' = U2, Ei and B = (J£_ ., Ei, such that |E'|, |E”| > 2,
and let G’ = (V(E'), E'U {(a,b)}) and G" = (V(#£"), E"U {{a,d)}). Then the
graphs G’ and G” are called split graphs ol G. In this case we say that G las
been split into G’ and G”. The added edge (a,b) is labeled to denole the split
and is called a virtual bond. By merging G' and G* we mean the reconstruction
of ¢ from the Lwo graphs.

Assume thal we recursively split G and its split graphs unlil we obtain graphs
that cannot be split further. The set of these (triconnected) graphs is called a set
of split components of G. The decomposition of a biconnected graph  into two
split components is not unique because the partition of the separalion classes
is arbitrary. By merging the split components pairwise we recover the original
graph. We distinguish three types of split components: triple bonds, triangles
and other triconnected graphs.

I we perform all merging operations between bonds and all merging oper-
ations between triangles, then the resulting graphs will be bonds ard polygons
plus the nontrivial triconnected split components. It is a standard result that
the decomposilion of a graph G into Lriconnected components is unique [21).

The algorithm presented in this section is based on the following lemma.

Lemma 2 A cluster configuration with 2 biconnected graph Gp as defincd
above, is type (a) decomposable il and only if every set of split components of
the graph contains at least one triangle whose edges are all virtual bonds, and
whose verlices are not all lines.

Proof
Assume that among the split components of Gp there is a triangle (a, b, ¢) whose
edges are virtual bonds, and whose vertices are not all lines. Then, since we have
replicated each cluster node and all the adjacent edges, we are certain that no
articulation node or arliculation pair will conlain any cluster nodes. Thus, all
three articulation pairs (a, b), (b,¢) and (¢, ¢) correspond to gecometric elements,
and Gp can he decomposed into Lthree sets of clusters, sharing pairwise a single
geometric element. These sets can be found if we follow the labels of the virtual
bonds (see Figure 16).

Now assume that the cluster configuration can be decomposed into three sets
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of clusters pairwisc sharing exactly one geometric clement. Let (a,b,c) be the
shared geometric elements, and assume without loss of generality that vertex a
corresponds to a poini. We can find al least one decomposition of G'p into split
componenls containing the trtangle: ({a,b,c}, {(g,b),(},¢c),(c,a}}). We know
however (see e.g. [21]), that the decomposilion of any graph in triconnected
components is unique. We also know [rom [15] that merging split componenls
that are triangles as much as possible, will give us a number of polygons which
are triconnected components of the original graph. Since polygons occur as tri-
connected components only as a result of two or more triangles being merged
(otherwise they would split), we conclude that every decomposition of G into
split components will conlain a triangle graph where one vertex is @ and the
edges are virtual bonds (there are no edges between geometric elements and all
articulation pairs consist of geometric clements). O

By the above lemma and by obsecrving that a cluster node cannot be an ar-
ticulation node, we can show that the following algorithm correctly implements
the decomposition analysis described earlicr.

1. I the graph is not connected then split it into connected components. If
the graph has ! connected components then there are / — 1 decomposilions
of type (c) that split the original graph. Apply Step 2 Lo each of the
connccted components.

2. If the graph is not biconnected then split it into biconnected components.
If the graph has k biconnected components, then k — 1 decompositions of
type (b) split the graph into those components. Apply Step 3 to each of
tlte biconnected components.

3. I'ind all split components of the graph. I there is no articulation pair
slop.

If among the split components there is a triangle whose edges arc virtual
bonds and wlose vertices are not all lines, then the overall graph is type
(a) decomposable and the separation triple consists of the vortices of the
triangle. Find the three component graphs by following the virtual bonds.
Then apply the algorithm recursively to the three components.

When the algorithm terminates, every cluster represents a triconnected com-
ponent of the constraint graph that cannot be split further.

Figure 15 shows an underconstrained cluster configuration that is missing
one constraint. The corresponding graphs for a cluster with two and three
elements are shown on Lhe right. A decomposition sequence of Lhe sct of clusters,
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Figure 15: (left) A cluster configuration that is derived [rom an underconstrained
system of geometric constraints, (right) the graphs representing a cluster with
two and a clusler with three gcometric elements.

is the following:

{C1,C2,C3,C4,C5,C5,C7,Cs)  —

{C1},{Ca}, {Cs5, €y, Cs, Cs, Cr,Cs}} —

{{C1},{C2},{C5}, {C4}, {C5, Co, €7, Cs}}

{{C1}1:{C2} {C5},{Ca}, {Cs}, {Ce}, {Cr Cs}} —
{{C1}1.{C2}, {C3}, {C4}, {C5}, {C6}, {C7}, {Cs}}

The configuration is solvable, and the last decomposition is a type (b) decom-
position and means Lhat we have to add a cluster (constraint) belween ps and
p7 or alternatively, between ps and py.

In Figure 16 we see a decomposition into split components of the graph Gp
for the cluster conliguration of Figure 15. The edges inside the clusters are
omitted and Lthey are as in Figure 15 (left). The existence of the triangle,

{{r1, 12, I3}, {(p, 2), (12, 83), (fa, 1))}

means that there is a decomposition of the cluster in three sets that pairwise
share a single geometric element, and that one of them represents a point.

The first step of the algorithm takes time O(|Ep| + |Vp|) [33). Finding the
split components each lime the second siep is exccuted takes time O(|Ep| +

!
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Figure 16: A decomposition in split components of the graph that corresponds
to the cluster configuration of the previous figure. T'he edges inside cach cluster
arc omitted, only the virtual bonds are sho wn.

[Vpl) [15]. The number of times thal we need to decompose the components
is bounded by |Vp|, since cach time we decompose the graph, the number of
cluster nodes at each component is reduced by onc.

Thus the algerithm takes at most O({| E|+|V])?) time. If we assume that the
number of cdges |E|= O(n) then the decomposition analysis of the algorithm
takes time O(n?).

5 Extending the Scope of the Analysis Phase

We present Lwo extensions of the scope of Lhe analysis phase. Both cxtenstons are
incorporaled in the reduction analysis, do not affect the overall time complexity
and can be used also in conjunction with the methods of Section 3.3 for solving
consistently overconstrained problems.
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5.1 Extending the Repertoire of Reductions

The reduction analysis can be extended to include more complicated reductions,
as the one depicted in Figure 17 for which the constructions are presented in
[1]. We replace the DIT'S of step 3 of the reduction analysis algorithm (Section
3.2), for finding the triangles in graph G, with a BFS. The BFS begins from
every cluster node of the bipartite graph I, to find a 4-cycle or a G-cycle. If
neither can be found, we search [or an 8-cycle with exaclly 3 incoming edges al
the cluster-node of level 4; see also Figure 18. We modify step 4 of the reduction
analysis algorithm analogously.

An 8-cycle with exactly 3 incoming edges corresponds to the cluster config-
uration of Figure 17. In figure 18 we have started a BI'S [rom C; and at level 4
we detect Lhat the node that corresponds to cluster C; has exactly 3 incoming
edges. Recall that all geometry nodes g1,...¢s, and cluster nodes Cs, (4 and
Cs have only one incoming edge, since there are no 6-cycles and no 4-cycles by
assumplion. However, having more than 3 incoming edges to a cluster node
of level 4 means that we have an overconstrained conliguration. In that case,
we can either return the overconstrained subgraph or treat it as a consistently
overconstrained configuration by taking into account only three incoming edges,
merge Lhe 5 clusters into one and check for consistency using the remaining
clusters. Although step 3 is now computationally more expensive, the overall
worst-case time complexity remains O((| E| + [V|)?).

Figure 17: A well-constrained cluster configuration that cannot be solved by the
basic method

5.2 Incorporating Angle Derivations

By exploiting geometric thcorems, we perform certain graph iransformations
that may convert a constraint graph that is unsolvable by our basic method into
an equivalent, solvable constraint graph.
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Figure 18: Detecting the cluster configuration of the previous figure during the
reduclion analysis, by a BFS rooled at .

o nt n2

Figure 19: Two constraint conligurations that can be solved only if we utilize
angle derivations.
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A powerful graph transformation rule can be based on the following simple
observalion: il we have three lines {;, I, and /3 and the angles a(ly,l;3) and
B(l2,13), then the angle between 4(!y,l3) must be 7 — (@ + 3). This implies that
we can substitute for any tree representing » lines and n — | angle constraints
between them, by any spanning tree of the complete graph with those n nodes.

In Figure 19 (left) we sec a constrainl graph that is not solvable by our basic
reduction analysis, but it becomes solvable if we replace edge (I;,/3) with edge
(f1,13) applying the graph transformation rule described above. This rule can
e generalized to apply in cases where there are no explicit angles initially be-
tween lines, yet implicit angle constraints arise laler as a consequence of cluster
merging. Figure 19 (right) shows an example.

T'his graph transformation can be implemented cfficiently as follows. We
partition all nodes that correspond to line geometries into a number of angle
classes. Two vertices belong Lo the same angle class il and only if the angle
between them is known. The binary relation known angle belween two lines
is reflexive, transitive and symmetric. We can find the angle classes formed
by the initial angle constraints in time O(|Z| + |V|), maintaining with each
line geometry a bidirectional poinler to its angle class, which is initially set to
conlain only the line itsell. Then we traversc the original constraint graph (e.g.
by a DFS), and every time that we find an edge between two lines representing
an angle constraint we merge the two corresponding angle classes. All lines in
the same cluster belong to the same angle class, we say that the corresponding
cluster node belongs to the angle class.

We now modify step 3 of Lhe reduction analysis Lo check, in addition, whether
some angle class triggers a cluster merging. In the graph H, this is done by
checking which cluster nodes belonging to the angle class have a point vertex
in common. This can be done in time O((|E| + |V])?). When clusters are
merged, the associated angle classes arc also merged, and the links to and from
Lhe clusters and the corresponding line vertices are updated in time O(| %] +
|V|). Finally when we perlorm a BFS from a cluster vertex upon merging three
clusters, we also check whaether the associated angle class triggers any further
cluster merging, also in time O(|E| + {V|). Thus, the overall worst case time
complexity remains O((|E| + |V])?)-

In Figure 19 (left), there is initially only one angle class {{1,!s,13}, whereas
in Figure 19 (right) there are initially three angle classes {§;}, {l2}, and {I3}.
In Figure 20 (left) we have the cluster configuration of the constraint problem
of Figure 19 (left) alter the first two clusler merges have occurred. We check
lo see whether the angle class triggers some additional cluster merging and find
that C and Cs have a common point vertex p3. Thus clusters Cy and Cs can
be merged.

In IMigure 20 (right) we have the cluster configuration of the constraint prob-
lem of Figure 19 (right) after four cluster merges. The two angle classes and
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Figure 20: Cluster configurations for the geomelric constraint problems of the
previous figures after some initial cluster merging has occurred. The correspond-
ing information for Lhe angle classcs is also shown.

their links to the clusters are also shown. When clusters C5, Cs and (5 are
merged, the corresponding angle classes are also merged. Now the problem
becomes similar to the one in Figure 19 (left).

6 The Construction Phase of the Algorithm

The graph analysis produces a sequence of insiructions to Phase 2 of the con-
straint solver in which coordinates for the various geometric elements are com-
puted based on the repertoire of construction steps. The geometric construction
involves cluster creation and cluster merging. During cluster creation, we place
two geometric elements that have a constraint between them with respect to
each other. The construction is obvious, since it is a direct interpretation of the
equalions for distances and angles [8].

In the cluster merging phase we repeat the following: three clusters with
three pairwise common geometric elements g1, go and gz are merged into a
single cluster, as shown in Figure 21. We place the three common geomelric
elements, noting that their relative positions are known [8]. Having positioned
the shared geometric elements, we translate and rotate the three clusters so that
the three geometric clements are in the required location. Note that cluster
merging cannot be done when the shared geometric elements are three lines.
The constructions for the cxtension of Section 5.1 is described in [4).
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Figure 21: Cluster Merge

6.1 Complexity of the Construction Phase

Cluster formalion takes time O(e), where e is the number of edges of the con-
siraint graph. The sequence of cluster mergings, derived by the analysis phase,
can be done in time O(eclog,). This is seen as follows.

The rigid motion positioning a cluster, by moving every geometric element of
the cluster, requires O(m) steps, where m is the number of geometric elements
in the cluster. We consider the largesl of the three clusters lixed, and apply the
required motion to the two smaller ones. If the largest cluster has m elements,
at most O(m) steps are required for the merge. Observe that with this heuristic,
the size of the largest cluster is at least 1/3 the size of the combined clusters.
Tlws, if a geometric element is in a cluster that is moved, then it becomes part of
a new cluster at least twicc as large. Consequently, a geometric element cannot
be moved more than log(r) times, where r is the sum of the cardinalities of the
clusters and is bounded, by 2e. Sirce the number of merge operations is O(e),
the construction phase takes at most Q(elog,) steps.

6.2 The Real Solution Problem

We have shown thal we can check whether a given geometric constraint problem
is solvable by our method in a generic sense in time quadratic in the number
of geometric objects. However, computing a real solution for a solvable well-
constrained problem will be shown to be NP-hard in a strong combinatorial
sense. Although finding a real solution is central to geometric constraint solv-
ing, the problem seems to have been neglected in the literature and we are not
aware of any results other than a theorem by Hilbert for ruler-constructible con-
figurations. [4, 13]. The following example illustrates the problem of finding a
real solution for a constraint configuration.

Example 4 Given Lhe live points A, B, C, D, E and the following set of
geometric constraints:
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Figure 22: Four discrete solution for placing the four points A, B, C and D
with respect to cach other

A distance 3 from B

C distance 4 from A C distance 3 from B
D distance 3 from A D distance 4 {from B
E distance 2 [rom C E distance 2 from D

find a placement of the points that satisfies the above geomelric constraints. T'he
placement of the points is with respect to each other, so the derived solution is
invariant up to translalion and rotation. Ore placement sequence that salisfies
the imposed constraints is the following:

(i) posilion A and B with respect to each other
(ii) construct C from A and B as the interscction of two circles
(ili) construct D from A and B as the intersection of two circles

(iv) construct E from C and D as the intersection of two circles

Step (i) has only one solution, and for Steps (ii), (jii} and (iv) there arc 2
solulions each. Thus, we have eight distinct solution in the complex space.
There are four ways in which the points A, B, C, and D may be placed; TFigure
22. Solutions (c) and (d) do not extend to a real solution for E, since the
circles of step (iv) do not intersect. Solutions (a) and (b) each extend to Lwo
real solutions for E, resulting in a total of four real solutions of the constraint
problem. O
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Figure 23: Constructing an instance of the real solution problem

6.2.1 NP-hardness

We reduce the following version of 3SAT to the geometric real solution problem.

One-in-three monotone 3SAT (1IN3-M35AT)[11, 27): Given a set U
of variables, a collection C of clauses over U/, such that each clause
¢ € C has three literals, none of them negated. Is there a truth

assignment {or ¥, such that each clause in ¢ has exacily one true
literal?

We will prove that [or each instance of 1IN3-M3SAT we can construct, in poly-
nomial time, a solvable gcometric constraint problem that has a real solution iil
the corresponding instance of 1IN3-M3SAT is satisfiable.

Let {z1,Z2,...24} be the set of literals used in C. Lel A be the line z = 1
and L be the line z = 2. For cach literal z;, i = 1...%, we construct a point p;
on the z-axis at distance 1 from A; see also Figure 23. Tor cach point p; we can
choose independently, one of two solutions, namely (0,0) or (2,0), which will
correspond to the variable z; being assigned false or true, respectively.

For the clause ¢ = (z,, 23, 2. ), we introduce the points p., p}, %, Pas, Poc, Pea
and the lines {,,{;,1.. The following constraints are imposed:

#; on z-axis p; distance 1 from A

P, distance 0 [rom !, l, angle 0 with the y-axis
pp distance 0 from { [y angle 0 with Lhe y-axis
pe distance 0 from [, [ angle 0 with the y-axis
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pl, distance 2 from O(0,0) p, distance 0 [rom I,

p,, distance 2 from O(0,0) p;, distance 0 from {,
pt distance 2 from O(0,0) pL distance 0 from [,
Pab distance 3 [rom p, Pas distance 2 from p|
Pec distance 3 from p Poc distance 2 from pl,
Pea distance 3 from p Pee dislance 2 from pf,

Thus, the lines I, arc parallel to the y-axis through p{,. The points p!, are at
distance 2 from the points p,. Note thal to each point p, there correspond
several p!, one for each occurrence of z,, in a clause of C.

Lemma 3 There is a truth assigmment for I wilth exactly one true literal in
cach clause ifl the system of geometric constrainls described above has a real
solution.

Proof

=>:  Assumec thal there is a truth assignment for U with exactly one true
literal in each clause. We set p,, = (2,0) whenever z,, =true, and the value
P = (0,0) whenever z,, =false for a solution of U. Since a solution of I/ requires
that cxactly one literal in cach clause ¢ = (z,, zs, z.) is lrue, exactly one of the
points pq, s, or P is at (2,0), say ps. Then Iy coincides with 7 and I, and /.
coincide with the y-axis. Consequently, p} has a unique solution: (2, 0), and for
each of the points p, and p; therc are two solutions, namely: (0,2) or (0, —2).
If we choose the value (0,2) [or p) and the value (0, —2) for p! we see that the
points pap, Ppe, and pg; are real. Thus the geomelric constraint problem has a
real solution.

<=: Clearly, every poinl p; must be at the origin or at (2,0), and these position
can be interpreted as a truth assignment to Lhe varizbles z; of the formula.
Assume that (2,0) is interpreted as true, and there is no truth assigment for U
with exactly one true lileral in cach clause. Let ¢ = (24, 24, %) be a clause that
does not have cxactly one frue literal. We distinguish two cases:

(i) 2o = zp = 2. =true, or z, = 5 = z. =false: Then the lines i, I, and I,
coincide, hence so must at least Lwo of the points pl, pj or p., say p. and p}.
But then we cannot place p,; with real coordinates.

(i) . = z =true: Then the lines I, and J; coincide with L, hence p, = Py =
(2,0). Again, p,s cannot have real coordinates.

Now assume that (0,0) is interpreted as {rue. By the above argument, there
is a real solution of the constraint problem only if every clause of U has exactly
two Irue literals. Bul thenr the complement assignment solves {/. Hence there
cannot be a real solution of the constraint problem.O
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Proposition 1 The problem of finding a real solution of a system of geometric
constraints solvable by a constructive method is NP-hard.

The problem may not even be in NP, since it involves real arithmetic. How-
ever, it naturally falls in DNPx(see e.g., [3, 6]), where the guess is polynomial
to the size of the input bui the checking procedure nceds infinite precision to
give an answer in polynomial time.

6.2.2 Discussion

We have proved that the problem of finding a real solution for a system of
geomelric constraints that is solvable by our constructive method is NP-hard
in a strong combinatorial sense. lrom the nature of the proof we conclude
that several specialization of this problem are also NP-hard. In particular, all
subproblems derived by imposing any combination ol the following restrictions
are also NP—hard:

the set of gcometric objects consists only of lines and points.

the sct of geometric constraints consists only of distances and angles.
the domain of the value of the geometric constraints is {0, 1,2}.

the geometric problem is well-constrained.

Furthermore, if we restrict the geometric objects to be points only and the
geometric constraints to be distances only, then we can prove that the problem
remains NP-hard.

When the geometric problem is underconstrained, we have argued in this
paper that additional constraints should be added to make the problem well-
constrained and solvable. It remains to be investigated whelher the addition of
consiraints can facililate finding real solutions.

7 Remarks

We have prescnted a quadratic algorithm that solves a system of geometric con-
straints using a graph constructive approach. The bottom-up analysis algorithm
ol [4] has been augmented with a top-down decomposition algorithm and so not
only solves consistenlly overconstrained problems but underconstrained prob-
lems as well. Both over- and underconstrained problems occur in practice and
it is important to handle them.

It should be possible to speed up the analysis and the decomposition to take
only O(nlog(n)) time for constraint graphs with O(n) edges. Such an improve-
ment would be important in applications where large constraint problems are
not uncommeon.
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