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Abstract

A graph-constructive approach to solving systems of geometric con
straints capable of efficiently handling well-constrained, overCOllslrainc.d
and lwdcrconstraincd configurations is presented. The geometric constraint.
solver works in two phases, in the analysis phase the constraint graph is
analyzed and a sequence of elementary construction steps is derived, and
then in the construction phase the sequence of construction steps is ac
tually carried out. The analysis phase of the algorithm is described in
detail, its correctness is proved, and an efficient algorithm to realize il is
presented. The scope of the graph analysis is then extended by utilizing
semantic inrormalion in the form of angle derivations, and by extending
the repertoire of the construclion steps. Finally the construclioIl pha.'ie is
briefly discussed.
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1 Introduction

The problem of solving systems of geometric constraints is central to computer
aided design and manufacturing [14, 25J, stereochemistry [7J, and robot motion
planning. In CAD/CAM applications the user draws <:L sketch and annotates it
with geometric constraints. Overconstrained and underconstrained configura
tions may accenT, deliberately or erroneously_

In numerical constraint solvel'S [31, 12, 23, 28, 20] the constraints are trans
lated into a, system of algebraic equations and are solved IIsing iterative Iuelhods.
To handle the exponential number of solutions and the large number of param
eters iterative methods require sharp 'Initial guesses. Most iterative methods
have difficulties handling overconstrained or underconstrained instances. A so
phisticated use of the Newton-Raphson method was developed in [20], where an
improved way for finding the inverse Jacobian matrix is presented. When the
Jacobian matrix is singular Light and Gossard use a modified version of Doolit
tle's method. Rule-constructive solvers [5,2,32,30,35,3/1,18] usc rewrite rules
for the discovery and execution of the construction steps. In this approach,
complex constraints can be easily handled, and extensions to the scope of the
method arc straightforward to incorporate. Although it is a good approach for
prototyping and experimentation, the extensive computations involved in the
exhaustive searching and matching make it inappropriate for real world applica
tions. A method is presented in [32J, where handling of overconstrained and un
derconstrained problems is given special consideration. The graph-constructive
[24, 19, 1J approach has two phases. During the first phase the gmph of con
straints is analyzed and a sequence of construction steps is derived. During
the second phase these construction steps are followed to place the geometries.
These approaches are fast and more methodlcal. [IJ decomposes the system of
geometric constraints in polynomial time in llnder-, over-, and well-constrained
irreducible subsystems by an analysis of the bipartite graph of equaflons and
vari;:Lbles. For a more extensive review the reader is referred to [10J

Comparison with "elated work, .<;pecijically with 1'ule constructive, numerical
and owen on how they treat over and under.

Figure 1 illustrates ;:L case, where one of the four 900 angles and one of
the two distances (length of c and length of a) arc redundant. However, the
configuration is not well-constrained since the length of b is not well specified
or derivable.

The above considerations motivate the following technical contributions our
paper makes:

• We extend our approach to solving systems of geometric constraints based
OIl an analysis of the constraint graph that derives a sequence of elementary
construction steps.
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Figure 1: A system of geometric constraints defining a rectangle that is consis
tently ovcrconstralned but is not well-determined since its height is not specified.

• The method can handle Qver-, under-, and well-constrained configllrations.

• Efficient algorithms to analyze the constraint graph arc presented.

• The method is formally studied a'i a rewrite system of sets and its corred

ness is proved. Note, that the behavior of the analysis for well-constrained
problems has been reported before in [8J-

• Extensions are presented that increase the scope of the core analysis tech
niques.

• The construction phase is briefly presented, its algorithmic compexity is
studied and the problem of avoiding complex coordinates is discussed.

Section 2 provides an overview of our approach. lb make the paper sclf
contained, Section 3 describes the reduction analysis for solving well-constrained
and overconstrained configuraUons. The decomposition analysis for handling
underconstrained configurations is presented in Section 4. Section 5 presents
extensions tlutt increase the scope of the core reduction analysis. Section 6
briefly describes the construction phase, derives its complexity and discusses
the problem of soluUon with real number coordinates. Finally, Section 7 offers
conclusions and future work.

2 An Overview

A geometric constraint problem is given by a set of points, lines, rays, cir
cles with prescribed radii, line segments and circular arcs, called the geometric
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elements, along with required relationships of incidence, distance, angle, paral
lelism, concentricity, tangency, and perpendiculmity between any two geometric
elements, called the constraints. As it is explained in [9] with an approprhLte
representation and some preprocessing we may restrict ourselves to points, lines,
with pairwise distance imd angle constraints. The geomet.ric constraint problem
is then formulated as follows:

Given a sel 17 of n points and lines and a set E of pairwise con
straints among them, find an int11itive solution that sati,r;fies the given
constraints. A pairwise constraint may be one of: point-point dis
tance, point-line distance and line-line angle. More formally E is a
partial mapping E : V x V ~ a?

The problem can be coded as a constraint graph G = (V, E), in which the
graph nodes are the geometric elements and the constraints are the graph edges.
The edges of the graph are labeled with the values of the distance and angle
dimensions.

Example 1 Figure 2 shows a dimensioned sketch defming a constraint problem
involving 4 lines and 6 points. We have 8 implicit point-line distances that are
0,2 explicit point-line distances, 3 angles and 4 point-point distances. Figure 3
shows the corresponding constraint graph. 0

2.1 A Graph-constructive Method for Geometric Constraint
Solving

Our constraint solving method first forms a number ofrigid bodies with three de
grees of freedom, called cl11sters. For simplicity we will assume that a maximum
number of clusters is formed, each cluster consisting of exactly two geometric
elements between which there exists a constraint. Geometrically, such a clus
ter corresponds to a pair of geometric elements whose position and orientation
relative to each other is known.

Three clusters can be combined into a single cluster if they pairwise share <L

single geometric element. Geometrically, the combination corresponds to placing
the associated geometric objects with respect to each other so that the given
constraints can be satisfied.

The constraint solving method works in two conceptual phases:

• Phase 1 (analysis phase): The constraint graph is analyzed and a
sequence of constructions is stipulated. Each step in this sequence corre
sponds to positioning three rigid geometric bodies (clusters) which pair
wise share a geometric element (point or line).

1
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Figure 2: A well-constrained sketch defining a constraint problem with 10 geo
metric elements and 17 constraints .

• Phase 2 (construction phase): The actual construction of the geomet
ric clements is carried out, in the order determined by Phase 1, by solving
certain standard sets of algebraic equations.

'1'0 illustrate the process, consider three points A, 11, and C between which
distances have been prescribed, as shown in Figure t11efL. The associated c:ou-
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0 0

S,s '" '""
"" S"

0

'" ",
0 "

'"'" PlIO

Figure 3: The constraint graph of the previous sketch
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Figure 4: Constraint problem (left), and associated constrain graph (right)

straint graph is shown on the right. In Phase 1 of the constraint solving, WI;';

determine first that every pall' of points C;:Lll be constructed separately, resulting
in three clusters. Moreover, the three clusters can be combined into a single
cluster since they share pairwise a geometric element. 'fhe combination merges
the three clusters into one. As soon as a single cluster is obtained, Phase 1
considers the c.onstralnt problem solvable.

Phase 1, the analysis phase, consists of two parts:

• the reduction analysis (Section 3) that produces a sequence of local cluster
merges and handles well-constrained and overconstrained problems, and

• the (iecomposition analysis (Section 1) that produces a sequence of decom
positions (that correspond to a reverse sequence of cluster merges) and
handles underconstra.ined r.ases. The outcome of lhe reduction <Lnalysis is
fed as input to the decomposition analysis.

Phase 2, the construction phase, is briefly discllssed in Section 6.

2.2 Multiple Solutions and Root Identification

It is well known tllat a well-constrained geometrk prohlem can have many incon
gruent solutions. Recall thal at each construction step we may have to choose
one of several solutions. Different choices may lead to incongruent sohttions,
each ID<Llhematically satisfying the given constraints.

In order to select a solution at each step, a number of heuristics are applied
that make sense if the skelch with which the geometric problem has been spec
ified has the same topological order type as the intended solution. This is an
<Lpplication-specific issue that is further discussed in [01].

We a.<;sume that the geometric problem has been specified by a user-prepared
sketch. The point-line dislances, and the angles between oriented lines are
assumed to be signed quantities. The correct sign is determined from the original
input sketch. Observing the sign conventions, all constmctiou steps have a
unique solution except in two cases, which are solved as follows:



(i) The relative placement of three points in a construction step has the same
cyclic ordering in the plane as the ordering of the points in the original
drawing.

(ii) The relative placement of two points and an oriented line is such that the
inner product of the direction vector of the points and the line is sign
invariant between the original sketch and in the chosen solution.

The geometric construction first places three geometric elements in this man
ner, and then applies a rigid-body transformation to align the three clusters
accordingly. In particular, placing clusters by the slULred geometric elements
does not involve a reflection. We will prove later that no matter in which order
the clusters are combined, the same set of triples is used to select the geometric
solution, and that this implies congruence.

Note that the heuristics only imply the existence of a solution in a generic
sense. Specific mmenS·lons of distance and angle could be such that the solution
selected by the heuristics would require complex coordill<Ltes. If this possibility
is to be systematically excluded, some strategy would be required that searches
the solution space in a canonical order. As the space of possible solutions may
be exponential in the number of geometric elements, tIlls is not an attractive
prospect. Tn the case of ruler-constructible configurations, there is a theorem
by Hilbert stating that if one solution has only real coordinates, then all of
them must have real coordinates [13]. TIllS means that for such configurations
the heuristics will never fail to deliver a solution if one exists. The theorem
does not generalize to ruler-and-compass constflu.:tible problems, and we know
of uo results that make progress beyond Hilbert's theDrem. The problem of
finding a real solution of a system of geometric constraints is further considered
in Section 6.2.

2.3 Well-constrained, Overconstrained and Underconstrained
Problems

Each line or point on the Euclidean plane has two degrees of freedom. Each
distance Dr angle corresponds to one equation. If we have no fixed geometric.
elements (geometric elements whose absolute coordinates have been specified
explicitly by the user) then we expect that

lEI ~ 21V1- 3, w1lm IVI = n

Recall that IVI is the number of geDmetric clements and that lEI is the number
of constraints. Note that the solutiDn will be a rigid body with three remaining
degrees offreedDm, because the constraints determine only the relative position
of the geometric elements. We use this argument tD define a technical notion
of well-constrained sketches in which no attempt is made to account for the

7
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Figure 5: Degenerate Configuration (right) for a + 13 = 900
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possibility that for special dimension values an otherwise well-constrained prob
lem may happen to be unclercollslrained. An example is shown in Figure 5. In
the figure, the vertex P of the quadrilateral has a well-defined position when
a + j3 f: 900

• But for a + f3 = 900 the position of P is not determined. This
"semmltic" notion of well-constrained problems is too specific for the constraint
graph analysis bccallse there the generic problem of constructing a solution is
considered independent of dimension values.

Intuitively a dimensioned sketch is considered to he well constrained if it
has a finite number of solutions for nondegenerate configurations. Similarly a
dimensioned sketch is considered to be underconstrained if it has an infinite
number of solutions for nondegenerate configurations. Finally a dimensioned
sketch is considered to be ovcrconstrained if it has no solutions for nondegenerate
configurations.

The intuitive notions above can be made technically precise as follows:
Definition 1 A graph with n nodes is stillcturally ove1'constr(Lincd if there is
an induced su bgraph with m :::; n nodes and more than 2m - 3 edges.
Definition 2 1\ graph is structurally undcrconstminerl if it is not overcon-
strained, and the number of edges is less than 2n - 3.
Definition 3 A graph is structurally well-constraincd if it is not overcon
strained, and the number of edges is equal to 2n - 3.
Definition 4 A geometric constraint problem with a structurally over-, under
or well-constrained constraint graph is called a structurally over-, under- or well
constrained problem, respectively.

For an algorithm to test whether a graph is structurally well-constrained see,
e.g. [16, 29]. Note th;:Lt a structurally well-constrained graph can be overcon
strained in a geometric sense, for example if there are three lines with pairwise
angle constraints.

The core reduction analysis handles structurally well-constrained and over
constrained problems. Section 3 presents this method in detail, together with a
correctness proof and an efficient algorithm to realize it. Section 4 presents the
decomposition analysis that handles structurally underconstrained problems.
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3 The Reduction Analysis

We are given a constraint graph G = (V, H) whose nodes V are geometric
elements, and whose edges E are the geometric constraints. Without loss of
generality, the geometric elements consist only of points and lines, and the
constraints are only of distance and angle.

We consider sets C whose clements are sets S tluLl in turn have as clements
nodes of G. Each set S represents a cluster. Intuitively, a duster S consists
of geometric elements whose position rehttive to each other has already been
determined. A cluster thus can be considered <L rigid geometric structure that
has three degrees of freedom, two translational and one rotational.

Initially, we form a set CG from G. For each edge c = (U,1J) in G, there is
a duster B" = {u, v}. The construction steps that solve the constraint problem
amount to one reduction step that merges three dusters whose pairwise iIller
section is it singleton. The reduction is denoted by ---;. The process of finding a
seqllence of reductions that derives a single set of clusters, and thus determines,
it sequence of construction steps that posilions the geometric elernenls to satisfy
the initial set of constraints, is called red11ction analysis.

Example 2 To lllustrate better the process of the reduction analysis, consider
lhe constraint graph of Figure 3. After detecting a sequence of cluster merges,
we end up with three clusters, D, V and W, as shown in Figure 6. The analysis
concludes by merging the three clusters into one. 0

3.1 Correctness

In [8J, we considered clusters as sels and studied their structure under reduction.
Given the constraint graph G = (V, E), we define the set of clusters

Ca ~ {{u,v} , (u,v) E E)

Cluster sets arc rewritten using a reduction ---;. The redUClioIl - is formally
defined as follows:
Definition 5 Let C be;:L set of clusters C in which there are three clusters 81 ,

,)2, 83 such that

51 n 5, {gd

5, n 53 {g,}

53 n 51 {g3}

where 91, 92, 93 are distinct, then

C-+ C'

where
C' ~ (CU {5, U5, U53}) - {5"5,, 53}

9
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Figure 6: Finding lhe clusters of the graph

We proved first a weak Dotion of corredness:

If tile constraint graph is not structurally ovcrconstrained, then our
method reduces the initial set Cc to the same (irreducible) normal
form, no matter in which order the reduction steps arc applied. That
is the set Co and the reduction --' are a terminating, confluent
rewriting system (see e.g., (26]).

Here, confluent means that if a set A can be reduced to two different sets HI
and B'}" then there are two reduction sequences, one rcdllcing Btl the other JJ2
to the same set C.

Notice, however, that a well-constrained geometric problem has in general
scverallncongrucnt solutions (see Section 2.2). In [8], we proved therefore a
stronger uniqueness theorem:

If the constraint graph is well-constrained and our algorithm reduces
the initial set C c to a single cluster using, in the construction phMe,
the placement rules given ln Section 2.2, lhen the solutions derived
by different reduction sequences place a fixed set of triples of geo
metric clements in the same relative position.

Thls result implies that different reduction sequences must produce geometrlc
solutions that are congruent.

10



3.2 An Efficient Reduction Algorithm

In this section, we provide an algorithm that runs in time quadratic in the num
ber of geometric elements and constraints and realizes correctly the reduction
analysis.

Let G = (V, E) be the constraint graph. Let n = IVI and c = IEI- The
algorithm has a O(n2 ) worst case time complexity for constraint graphs that arc
not structurally overconstrainecl. We c,tn also show that we can test, in the same
time bound, whether the graph is structurally overconstrained (see Section 3.3).
For the purposes of the algorithm we will also consider an undirected cluster
graph If whose vertices arc the edges and vertices of G. H has an edge (c, v) iff
there is an edge c E E and e is incident to v in C. Note th;:tt H is bipartite.

The initial cluster graph H records of dusters of size 2 in G. H is bipartite,
with one set of vertices corresponding to dusters, initially the edges of G, the
other corresponding to the geometric elements of the constraint problem, the
vertices of G. There is an edge in H if a vertex of G belongs to a cluster.

In this section we will a.<;sume that G is not structurally overconstralned thus
every subgraph Gs = (Vs,Es) of G satisfies IE.• l :::; 21Gs l- 3.

3.2.1 Overview

The algorithm for solving the constraint graph is as follows:

I. Construct initial clusters of size 2, each consisting of two adjacent vertices
of G.

2. Construct the cluster graph H.

3. Find all triangles in G.

4. Successively rewrHe H by replacing a 6-cycle in II by a four-node structure
as explained below. Record a cluster merging operation for ead such
rewriting step.

5. If H can be rewritlen into a final graph that is a star with center a cluster
and periphery the vertices of G, then G is solvable; otherwise it is not
solvable.

A G-cycle in H corresponds to three clusters that pairwise share an ele
ment (a vertex of G). The rewriting step corresponds to a cluster merge. Let
(1l, U, v, 1', w, lV) be such a 6-cycle, where 1l, v, w E G. We replace the three ver
tices U, l' and W with a lIew vertex X. Then X will be incident to all vertices
that U, V and tV are adjacent to. That is, the nodes U, V, Ware combined into
a single node. See also Figure 7.

11
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Figure 7: Rewriting a 6-Cycle in the Cluster Graph

1\ 'I-cycle in JI corresponds to two clusters that share two elements. If i:L

4-cycle exists, the graph G is structurally overconstrained. Thus, the shortest
possible cycle in H has length 6.

3.2.2 Details

The main work of the algorithm is to find and reduce 6-cydes. Finding triangles
in Step 3 identifies all 6-cydes in lJ, and the algorithm will fi nd other 6-cycles
that arc formed by rewriting in Step 4. Those two steps must be implemented
carefully, and we explain how they are donc_

Step 3: We assume that G is represented both by adjacency lists and by the
adjacency matrix. We find all triangles in G, using the method of [17]:

Build a depth-first search tree. Three types of triangles arc possible, involv
ing two, one, or no tree edge; Figurc 8. Triangles that involve one or two tree

• ·O~

" 1",
• • ,, , ,
, , ,
, , ,

rnlher(u) , rnlhec(u) 0' ,,,

t),,,,,
" "0'

:r) A lriLlllgle conL:l;n,ng lWo lrce edge. b) A lriOllgleeonL:lin;ng one Ire: edge

yo~

'" --, ,, ,, ., ,, ,
rnlhec(u) a r

~, ",
, "
"<-

"0'

c) A lri:mgle Wj~'OUlII1:<: edges

Figure 8: Three cases for a triangle in a depth first search

edges arc found uniformly as follows: Let (U, V) be a back cdge. If (Jather( u), v)
is an edge in G, we have a triangle with one or two tree edges, because in that
case either (v, [athcr(u)) is a tree edge or (Jalher(u), v) is a back edge.

Next, we remove all tree edges, and repeat the above search for all connected
components of the remaining graph. This is repeated until there arc no more
edges. Clearly, all triangles that do not have tree edges in the first depth-
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Figure 9: Finding a 6-cycle by doing a breadth first search

first search eventually become triangles involving tree edges in later depth-first
searches.

Step 4: A triangle in the constraint graph G corresponds to a G-cycle in the
cluster graph H and vice versa. Having found all triangles in G, we now know
aU six cycles of H.

When rewriting a 6-cycle, new G-cycles could be created. They are foulld
by a limited-depth breadth-first search that originates at the new vertex X; sec
also Figure 9. In [22] limited depth-first search has been used to find cycles of
minimum length. To find all slIch 6-cycles, begin a brcadth"firsl search at X.
Each vertex at level 3 that 1s reached twice in the breadth-first search closes a
6-cycle. Note that the search 1s done only to level 3.

3.2.3 Time Analysis

Stcps 1 and 2 require O(e) steps in all. Since G is not structurally overCOll
strained, this is linear in thc number of vertices n.

Step 3 repeatedly performs depth-first search. It rcquires the adjacency
matrix of G which costs O(n2 ) if constmcted with standard data structures.
The first depth-first search now requires O(e) steps, because the test whether
(Jather(1L), v) is a graph edge can be done in constant time llsing the adjacency
matrix.

Let G 1 be a connected component of G with m vertices. After a depth
first search of G1 , m - 1 edges are removed from the adjacency lists. This is
more than hill the edges in G1 because G is structurally not overconstra,ined.
Consequently, the next depth-first search examines less th;:m half the number of
edges. The total time for Step 3 is therefore O(e) which is O(n), excluding the
time [or the adjacency matrix construction.

In Step 4, each reduction of a 6-cycle takes time O(e): We go through all the
adjacency lists and replace each of the three vertices U, T7 and H' with vertex X.
Every new 6-cycle mllst involve the new node X. We do a breadth-first search
beginning at X to depth 3, looking for new 6-cycles. This again takes again

13



time O(c). Initially, H contains at most 2n - 3 vertices representing clusters.
Each 6-cycle replacement reduces this number by 2, thus in Step 4 we may have
<:tt most n reductions. And since each breadth first search corresponds to one
reduction, Step 4 takes time O(ne) = 0(n2 ).

3.3 Structurally Overconstrained Problems

We first show that we can test, in the same time bound as before, whether the
graph is structu rally overconstrained.

'With some extra checking the algorithm of Section 3.2 can detect an over
constrained subgraph in the same time bound. For Step 1 beforo doing a depth
first search in a connected component graph G1 :::: (VI, E l ) we check whether
IE11~ 2IVII - 3, if yes we go on, otherwise we tennin<:Lte the algorithm and
return the graph C1 • Since this step is performed on the initial graph as well
we have ensured that the original graph has less than 211. - 3 edges. Step 2 t.akes
again time 0(11.), and Step 3 takes time 0(n2 ). For Step 4, we keep reducing
until we meet a 4-cycle, then we terminate the algorithm and return the 4-cycle,
the time complexity is again 0(11.2 ). The ret.urned graph is used for interactive
edit.ing.

To handle consistently overconstrained problems we introduce a new reduc
tion operation that merges two clusters sharing two or more geometrlc elements.
This corresponds to checking in the construction phase whether t.he relative po
sitioning of the shared geomet.ric elements in the two clusters is consistent. If it
is consistent, then the two rigid bodies are merged into one. A cluster configu
ration derived from <:L structurally overconstrained problem is depicted in Figure
10. In this cluster configuration, CI , C2 and C3 are merged into a duster C I

,

and C4 , Gs and C6 into a cluster C". C' and Gil have two common elements: P4

and ]J2. In the analysis phase we merge the two clusters and in the constmction
phase we first check whether the distance between ]J4 and P2 in C' matches the
distance between ])4 and P2 in CII. If so, we rotate and translate, e.g. C' to
match C". We can prove that by adding this new reduction, we get a conflltent
rewrite systems for all cluster configurations (overconstrained or nonovercon
strained). However, congruence cannot be proved by the techniques of [8J, since
different reduction choices will result in different sets of geometry triples.

'VVe assume that in the initial constraint graph there may be no more than
one edge between any two vertices. Otherwise we can find such multiple edges
in time linear to the total number of edges and reduce them. Then the only
modification to the algorithm of Section 3.2 is to add to Step 4, that if we meet
a <I-cycle in a breadth first search we reduce it as if it was a 6-cycle and we go
on. To derive the time bounds note that the number of reductions is always
linear in the number of nodes in H. Also recall that each iteration of Step 4
takes only O(e). Steps 1 and 2 take time O(e). Step 3 becomes O(e.je) (sec
[17]), and Step 4 becomes 0(e2 ). This gives an overall 0(c2 ) worst case time

14



C5

Figure 10; A cluster configuration derived from a structurally overconsLrained
problem.

complexity for the general case.
I[ the original graph has c = D(n) then Steps 1 and 2 lake D(n) time, Step

3 takes O(n.JU) and Step 4 takes time O(n2 ).

4 The Decomposition Analysis

The bottom-up reduction ;malysis of Section 3 works well with ovcrconstrained
and well-constrained problems. However, it has diIncultics when dealing with
underconstrailled problems, because there appears to be no reliable way to lo
cally add constraints deduced from the input sketch to transform an unclercon
strained problem to a well-COIlStrained one.

Example 3 Figure 11 shows the constraint graph of an underconstrained
geometric problem, that needs the addition of three constraints to become
well-constraIned and solvable. The Vk in the graph represent points, and lhe
edges distance constraints between them. Adding distance constraints between
(VI, Vii), (Vi, Vg) and (VIii, VIS) make the problem well-constrained and solvable.
However, if we add a distance constraint for (VI6' VlO) to trigger a local clus
ter merging, then any addition of two more distance constraints will make the
problem nonsolvable. Thus the local reduction analysis is insufficient for under
constraIned problems. A global analysis is needed. 0

We present now a global, top-down decomposition analysis that does es
pecially well for underconstrained problems. The decomposition analysis also
handles well-constrained problems efficiently, lmt does not do well on overcon
strained problems, nor does it make it easy to include the angle transformations,
described in Section 5.2. Note that a top-down decomposition analysis was first
proposed by Owen [24J. His algorithm runs in quadratic time and uses the linear

15



Figure 11: A structurally underconstrained graph where adding edges (clusters)
to trigger loca! cluster merging docs not always work.

algorithm for finding Lriconnected components presented in [15].
The decomposition analysis presented now analyzes the cluster configuration

(Jerived by the reduction analysis and is proved to handle all underconstrained
problems that can become weU-constrained and solvable by adding constraints.
Our decomposition algorithm has quadratlc worst case time complexity and uses
the dassicallincar depth-lirst search algorithms for finding split components and
a.rticulation nodes [15, 33].

4.1 A Conceptual Algorithm

Inilially, all clusters found by the reduction analysis are considered to be in a set
5. The set 5 is partitioned into two or three subsets 5 k • Let 51 and 52 be two
such subsets. We require that there is at most one geometric element shared by
the dllsters in the two sets. That is, let G1 :::: {g IU E e,e E 51} be the geomet
ric elements that are in dusters of the set 51, and let G2 :::: {g IgEe, e E 52}.
Then we require that IGI n Gzi ~ 1. At each decomposition step, we so subdi
vide a set of dusters 5 into two or three disjoint duster sets. The elementary
decomposition steps arc shown in Figure 12. In the figure, 5i, denotes a set of
dusters, and C,. denotes an individual cluster. A decomposition of type (a) is a
simple set partition. In the case of a decomposition of type (b), a new cluster
C1 is created, corresponding to adding a constraint. A decomposition step of
type (c) t:re;:Ltes three additional dusters. The corresponding added constraints
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Figure 12: The three basic cases for decomposing the clusters into sets.
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can be formulated from the relalive position of the geometric elements in the
input sketch_ Decomposition continues until every cluster of the original set S
is in it singleton set Sk.

A decomposition step corresponds to a cluster merge in cases (a) and (b),
and to two cluster merges in case (c). These cluster merge operations will
be executed in reverse order of the decomposition and are done when a single
cluster is obtained for the entire graph, corresponding to the set S with which
decomposHion began.

We avoid selecting a partition where all three shared geometric elements arc
lines in case (a). In case (b), when the shared element is a line we choose to
add a c111ster C 1 that does not consist oftwo lines. The restriction avoids a cor
responding merge of three clusters with lines as the shared geometric elements,
for such a merge is geometrically undetermined. A similar restriction is placed
on the clusters CI , C 2 and C3 in decompositions of type (c).

In case that 51 and 52 are singleton sets whose dusters consist of lines only,
then a virtual point is added as shown in Figure 13.

,
J~'- - - - - - - -_--_~ 82,r, ->_ ~

P ,t,.' ~- ,~ C6
,~, ,~~ ~,-,

, .....;:\--~--- .......-;:- ...... ::_ • ,I
I}, ' , ,

, ", C4 \' C7 "14
'C5" , '
, I ~,' 12 ~'

" ~.'\ ,.. ~ ~

'I 81'
,~' II

,,,,
, ~' II

----

'- 82,,

s

C3
~, 13

,

Figure 13: Decompositions (b) and (c) for clusters containing only lines. A
virtual point p is added plus constraints to form the clusters Ck.

The reduction analysis has no effect on the underconstrained graph of Figure
11 because there are no triangles. The decomposition analysis, however, can
successfully solve the underconstrained problem and identify three additional
constraints that w.ill make it solvable. For instance, the clusters formed initially
(one for each edge) can be split into three sets that share geometric elements
VI, V7 and VI3·

Decomposition cannot handle problems that are consistently overconstrained,
such as the one shown in Figure 10. There is no decomposition of the clusters
into two or three sets that pairwise share at most one geometric element. How
ever, the reduction analysis can efficiently handle such geometric constraint
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problems.

4.2 Correctness

Let C be a set of sets 5. Each set 5 is a set of clusters C. We assume that the
cluster sets S of C are disjoint. Initially, C contains only one set whose elements
are the clusters derived by the reduction analysis.

'I'he type (a) decomposition of Figure 12 is denoted _D(a), and is formally
defined as follows:
Definition 6 Let C be a collection of sets of dusters in which there is a set
of clusters 5 whose clements can be partitioned in three nonempty sets 51, 52
and 53 such that:

(UeES, C) n (UeES, C) {g,}

(UeES, C) n (UeES, C) {g,}

(UeES, C) n (UeES, C) {g3}

where g}, 92, 93 arc distinct and are not all lines, then

C -;-D(a) C'

where
C' = (C Uis" S" S3}) - is}

The type (b) decomposition of Figure 12, denoted -;-D(b) , is formally defined
as follows:
Definition 7 Let C be a collection of sets of clusters in which there is a set of
clusters 5 whose elements can be partitioned in two nonempty sets 51 and 52
such that:

(UeES, C) n (UeES, C) = {g)

then
C ----,.D(b) C'

where
C' ~ (CU {S"S,})-{S}

Finally, the type (c) decomposition of Figure 12 which we denote by _D(c)

is formally defined as follows:
Definition 8 Let C be a collection of sets of clusters in which there is a set of
dusters 5 whose clements can be partitioned in two nonempty sets 51 and 52
such that:

(UeES' C) n (UeES, C) ~ 0
then,

C -;-D(c) C'
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where
C' = (C U is" S2}) - is}

Definition 9 A decomposition --;.D applied to a collection C is one of --;.D(I1),

-,.D(b), or -,.D(c).

We will show that the rewrite system (CG, --;.D) has a unique normal form
that is obtained after finitely many steps.
Definition 10 The collection C' of cluster sets is derived from C, if C1 can be
obtained by applying a finite sequence T of decompositions to C. We denote this
by

C----tl} C'

Definition 11 A collection C of cluster sets to which ---+D is not applicable is
called nondecomposablc. If C is nondecomposable and can be derived from C',
then C is called a normal form of C'. A collection of cluster sets whose normal
form contains only singleton cluster sets is called solvable.

We will show that a collection of cluster sets has a unique normal form and
is derived by a finite sequence of decomposition steps.

Lemma 1 A normal form of a collection of cluster sets is derived by a decom
position sequence whose length is bounded by c - 1 where c is the total number
of clusters.

Proof
(By induction on the number of clusters). For c = 1, C = {5} and 5 = {e},
which is already in normal form. Assume the lemma holds [or all sets with
fewer than c > I clusters, and let C be sllch that there are c clusters in all
in the element sets of C. If C has more than 1 element, then each set 5 E C
has fewer than c elements. By the induction hypothesis, C can be brought into
normal form in at most c - 1 steps. Otherwise, C = {5}. If C is not in normal
form already, then 5 can be decomposed in one step into two or three sets 5 k ,

each with fewer than c elements. By the induction hypothesis, therefore, normal
form is reached in at most 1 + (C1 - 1) + (C2 - 1) = c - 1 steps or in at most
1+ (c, - I) + (C2 - 1) + (C3 - 1) = c - 2 steps. 0

Theorem 1 The rewrite system (C, _l)) is confluent.

Proof
Let C be a collection of cluster sets. Assume that two different decomposition
steps, C _P C1 and C _? C2 , are applicable to C. We will prove that C1 _~ C'
and C2 _:' C'.

If ---+P and -? partition two different sets 51 and 52 of C, then C2 ---+F C'
cLnd C. -,.? C/. So, we assume that _p and ---+¥ partition the same set 5 of
clusters. Without loss of generality we assume that C = {5}.
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C DC DC'->1 1-.

Assume that ----'op and .....".q are both of type (a) and partition 5 into 5 11 ,

S12, 5 13 and into 5 21 , 5 22 , 5 23 , respectively. Intuitively, the collection C1 is
C' = {5~,J, where Sh = Sli n 52k, 1 ::; i, k ::; 3 and S~k :/; 0.

We want to decompose Sil into the sets Sil, Sb and 5b, assuming lhat all
three sets arc not empty. Since the decomposition -';of' requires thal 5 21 , S22
and 5 23 pairwise share one geometrlc element, the sets 5i1' 5i2 and Sb pairwise
share at most one geometric clement. Therefore, the dec.omposilion of SIl can
be done by in one of four ways, d(!pending on the number of slmred geometric:
elements:

(3) - by a single step of type (a)
(2) - by two steps of type (b)
(1) - by one step of type (b) and one step of type (c)
(0) - by two steps of type (c)

IT one or marc of the 5ik are empty, a similar case analysis establishes the
decomposition of SIl' By symmetry, 5 12 and 513 are decomposed into the sets
S;I.. and S;k' Therefore,

if both reductions are of type (a). Again, by symmelry, we also have

C -f' C2 ---,.~) C1

It is now routine to argue confluence in the cases where one, or bOlh, of.....".P
and -!J are of lype (b) or type (c). 0

Corollary 1 (Normal Form Theorem)
A collection C has a unique normal form under _D that is oblained by finitely
many decomposition steps.

Proof
Immediate from Theorem 1 and Lemma 1. 0

Note that lwo decomposition sequences need not result in congruent geomet
ric solutions, since different decompositions may determine different. choices of
constraint additions. An example is shown in Figure 14. The user specifies the
underconstrained problem in (a). Assume that. the distance between Ptl and
Pt2 is 13.738, and between Pt5 and PtG is 17.000, in the input sketch. Then,
depending on the decomposilion sequence, solutions (b) or (c) may be obtained.

4.3 An Efficient Algorithm

The conceplual decomposition method just described C,tll be implemented to run
in time qttadratic in the number of clusters and geometric elements. It can also
be combined with the reduction analysis of Section 3 because the decomposition
only requires abstract clusters lh;:Lt are sets of geometric elements whose relative
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Figure 14: Getting two geometrically incongruent solutions, (b) and (c), from
the same underconstrained draft (a).

position is known. Thus, the set of clusters obtained by the reduction analysis
is the initial set S of the decomposition analysis.

For the implementation of decomposition we will make use of the graph
Gn ::::: (VR, En) derived by the reduction analysis. Recall that this graph is
bipartite, and the partition is V/l::::: VRU V~, where V,q are the clusters and VA
are the geometric elements. The graph edge (C,g) means that the geometric
element 9 belongs to the duster C.

We construct a graph CD ::::: (VlJ. ED) from the graph Cn ::::: (VR•En), where

VD::::: VA: U {vt,v2,v31 v E Gn}
consists of the nodes of VA plus three nodes v k for every node v in Vk The
edges of GDare

We will use a DFS algorithm for findlng the split components of a biconnected
graph. We recall some terminology from [15].

Let G be a connected undirected graph. Then a is an articulation node of G
iff there are two vertices 1t and v different from a such that a is on every path
connecting u and v. 1\ graph with no articulation nodes is called biconnected.
Let a and b be two vertices in a biconnected graph C. The edges of G are divided
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into separation classes E l , E 2 , ••• Ek. Two edges are in the same separation class
E if there is a path using both edges and not containing a or b except, possibly,
as endpoints.

If the two vertices a and b divide the edges into more than two separation
classes, then {a, b} is an articulation pair of G. Moreover, if {a, b} divides tile
edges into two separation classes, each containing more than one edge, then
{a,b} is also an articulation pair. If G has no articulation pairs then Gis
i.riconnected.

Assume there is an articulation pair {n, b} that induces the separation classes
E I ,E2 , •.• Ek. Let E' = U::lEI and Ell = U7:=m+lEi, such that IE'I,IE"I;:: 2,
and let G' = (V(E'), E' U {(n, b)}) and G" = (V(1;"), E" U {(n, b))). Then the
graphs G' and G" are called split graphs of G. In this case we say that G has
been split into G' and Gil. The added edge (a,b) is labeled to denote the split
,md is called a Vil't1Wl bond. By merging G' and Gil we mean the reconstruction
of G from the two graphs.

Assume that we recursively split G and its split graphs until we obtain graphs
that cannot be split further. The set of these (triconnected) graphs is called a set
of split components of G. The decomposition of it biconnected graph G into two
split components is not unique because the partition of the separation classes
is arbitrary. By merging the split components pairwise we recover the original
graph. We distinguish three types of split components: triple bonds, triangles
and other triconnected graphs.

If we perform all merging operations between bonds and all merging oper
ations between triangles, then the resulting graphs will be bonds and polygons
plus the nontrivial triconnected split components. It is a standa.rd result that
the decomposition of a graph G into triconnected components is unique [21J.

The algorithm presented in this section is based on the following lemma.

Lemma 2 A cluster configuration with a biconnected graph CD as defined
above, is type (a) decomposable if and only if every set of split components of
the graph contains at least one triangle whose edges arc all virtual bonds, and
whose vertices are not all lines.

Proof
Assume that among the split components of CD there is a triangle (a, b, c) whose
edges are virtual bonds, and whose vertices are not all lines. Then, since we have
replicated each cluster node and all the adjacent edges, we are certain that no
articulation node or articulation pair will contain any cluster nodes. Thus, a.ll
three articltlation pairs (a, b), (b, c) and (c, a) correspond to geometric elements,
and CD can be decomposed into three sets of clusters, sharing pairwise a single
geometric element. These sets can be found if we follow the labels of the virtual
bonds (see Figure 16).

Now assume that the cluster configuration can be decomposed into three sets
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of clusters pairwise sharing exactly one geometric clement. Let (a,b,c) be the
shared geometric elements, and assume without loss of generality that vertex a
corresponds to a point. We can find at least one decomposition of GD into split
components containing the triangle: ({a,b,c},{(a,b),(b,c),(c,a)}). We know
however (see e.g. [21]), that the decomposition of any graph in trkonnected
components is unique. We also know from [15] that merging split components
that are triangles as much as possible, will give us a number of polygons which
are triconnected components of the original graph. Since polygons occur as trl
connected components only as a result of two or more triangles being merged
(otherwise they would split), we conclude that every decomposition of Cf) into
split components will contain a triangle graph where one vertex is a and the
edges are virtual honds (there arc no edges between geometric elements and all
articulation pairs consist of geometric clements). 0

By the above lemma and by observing that a cluster node cannot be an ar
ticulation node, we can show that the following algorithm correctly implements
the decomposition analysis described earlier.

1. If the graph is not connected then split it into connected components. If
the graph has l connected components then there arc I-I decompositions
of type (c) that split the original graph. Apply Step 2 to each of the
connected components.

2. If the graph is not biconnected then split it into biconnected components.
If the graph has k biconnected components, then k - 1 decompositions of
type (b) split the graph into those components. Apply Step 3 to each of
the biconnected components.

3. Find all split components of the graph. If there is no articulation paIr
slop.

If among the split components there is a triangle whose edges arc virtual
bonds and whose vertices are not all lines, then the overall graph is type
(a) decomposable and the separation trlple consists of the vertices of the
triangle. Find the three component graphs by following the virtual honds.
Then apply the algorithm recursively to the three components.

When the algorithm terminates, every cluster represents a triconnected com
ponent of the constraint graph that cannot be split further.

Figure 15 shows an underconstrained cluster configuration that is missing
one constraint. The corresponding graphs for a cluster with two and three
elements are shown on the right. A decomposition sequence of the set of clusters,



• pI C2 •

---~~Cj
pi

cl
12

cl

Figure 15: (left) A cluster configuration that is derived from an underconstrained
system of geometric constraints, (right) the graphs representing a duster with
two and a cluster with three geometric elements.

is the following:

{Cl,C2,C:i,C,,,CS,C6,C7,CS} -----Jo

{{C,), {C,}, {C" Ci> C" CG, C" Cg)) -

{{C,), {C,}, {C3 }, {C,}, {C" CG, C" Cg}} 

{{C,}, {C,}, {C,}, {C,}, {C,}, {CG}, {C,Cg }} _

{{CI }, {C,}, {C3 }, {C.I}, {C5 }, {CG}, {C,}, (Cg) )

The configuration is solvable, and the last decomposition is a type (b) decom
position and means that we have to add a cluster (constraint) between Ps and
])7 or alternatively, between ]JS and P4·

In Figure 16 we see a decomposition into split components of the graph GD
for the cluster conIiguration of Figure 15. The edges inside the clusters are
omitted and they are as in Figure 15 (left). The existence of the triangle,

{{PI, I" 13}, {(Ph I,), (I" 13), (13, PI)}}

means that there is a decomposition of the cluster in three sets that pairwise
share a single geometric element, and that one of them represents a point.

The first step of the algorithm takes time O(lEDI + IVDI) [33]. Finding the
split components each time the second step is executed takes time O(lEDI +

25



," "•• - - • pJ

.,,

EY
~-------

p~ _____ E___ -.11

~
,., , ,,
,: /p . ."", ",E . . <.>, ., , 0: '",

: ,
" ., ,

"II ~, -----;: '!..- '"..

Figure 16: A decomposition in split components of the graph that corresponds
to the cluster configuration of the previous figure. The edges inside each cluster
arc omitted, only the virtual bonds are sho wn.

IVDI) [15]. The number of times that we need to decompose tIle components
1s bounded by )Vnl, since each time we decompose the graph, the number of
cluster nodes at each component is reduced by onc.

Thus the algorithm takes at most O«IEI+IVI)2) time. If we assume th<:LL the
number of edges IEI= O(n) then the decomposition analysis of the algorithm
Lakes time O(n2 ).

5 Extending the Scope of the Analysis Phase

We present two extensions of the scope of the analysis phase. Both extensions arc
incorporated in the reduction analysis, do not affect the overall time complexity
and can be Ilsed also in conjunction with the methods of Section 3.3 for solving
consistently overconstrained problems.
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5.1 Extending the Repertoire of Reductions

The reduction analysis can be extended to inclllde more complicated reductions,
as the one depicted in Figure 17 for which the construe:tions are presented in
[~J. We replace the DFS of step 3 of the reduction analysis algorithm (Section
3_2), for finding the triangles in graph G, with a BPS. The BFS begins from
every cluster node of the bipartite graph IJ, to find a 4-cycle or a G-cycle. If
neither can be found, we searcll for an 8-cycle with exactly 3 incoming edges <:Lt
the cluster-node oflevel4j see also Figure 18. We modify step Ij of the reduction
analysis algorithm analogously.

An 8-cycle wHh exactly 3 incoming edges corresponds to the cluster config
uration of Figure 17. In figure 18 we have started a BIo'S from C1 and at level 4
we detect that the node that corresponds to cluster C2 has exactly 3 incoming
edges. Recall that all geometry nodes gl, .. .g6, and cluster nodes C3, C<1 and
Cs h<:we only one incoming edge, since there arc no 6-cycles and no 4-cydes by
assumption. However, baving more than 3 incoming edges to a cluster node
of level 4 means that we have an overconstrained configuration. In that case,
we can either return the overconstrained subgraph or treat it as a consistently
overconstrained configuration by taking into account only three incoming edges,
merge the 5 clusters into one and check for consistency using the remainlng
clusters. Although step 3 is now computationally more expensive, the overall
worst-case time complexity remains O((lEr + W[)2).

c,

CJ • &~

Figure 17: A well-constrained cluster configuration that cannot be solved by the
basic method

5.2 Incorporating Angle Derivations

By exploiting geometric theorems, we perform certain graph transformations
that may convert a constraint graph that is unsolvable by our basic method into
an equivalent, solvable constraint graph.
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Figure 18: Detecting the cluster configuration of the previous figure during the
reduction analysis, by a BFS roo led at Cl -
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Figure 19: Two constraint configurations that can be solved only if we utilize
angle derivations.
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A powerful graph transformation rule can be based on the following simple
observation: if we have three lines 11 , 12 , and 13 and the angles 0:(11,lz) and
/3(1z, 13 ), then the angle between ,(II, 13 ) must be 1r - (n +,13). This implies that
we can substitute for any tree representing n lines and n - I angle constraints
between them, by any spanning tree of the complete graph with those n nodes.

In Figure 19 (left) we sec a constraint graph that is not solvable by our basic
reduction analysis, but it becomes solvable if we replace edge (It, lz) with edge
(11,13 ) applying the graph transformation rule described above. This rule can
be generalized to apply in cases where there are no explicit angles initially be
tween lines, yet implicit angle constraints arise later as a consequence of cluster
merging. Figure 19 (right) shows an example.

This graph transformation can be implemented efficiently as follows. We
partition all nodes that correspond to line geometries into a number of angle
classes. Two vertices belong to the same angle class if and only if the angle
between them is known. The binary relation known angle between two lines
is reflexive, transitive and symmetric. We can find the angle classes formed
by the initial angle constraints in time 0(1 EI + lVI), maintaining with each
line geometry a bidirectional pointer to its angle class, which is initially set to
contain only the line itself. Then we traverse the original constraint graph (e.g.
by a DFS), and every time that we nnd an edge between two lines representing
an angle constraint we merge the two corresponding angle classes. All lines in
the same cluster belong to the same angle class, we say that the corresponding
duster node belongs to the angle class.

vVe now modify step 3 of the reduction analysis to check, in addition, whetller
some angle class triggers a cluster merging. In the graph II, this is done by
checking which cluster nodes belonging to the angle class have a point vertex
in common. This can be done in time D((IEI + WI)2). When clusters are
merged, the associated angle classes arc also merged, and the links to and from
the clusters and the corresponding linC! vertices are updated in time D(IEI +
IVI). Finally when we perform a BF'S from a cluster vertex upon merging three
dusters, we also check whether the associated angle class triggers any further
cluster merging, also in time D(IEI + IVI). Thus, the overall worst case time
complexity remains O((IEI +IVI)')·

In Figure 19 (left), there is initially only one angle class {l"lz,13}' whereas
in Figure 19 (right) there are initially three angle classes {11}' {lz}, and {13}.
In Figure 20 (left) we have the cluster connguration of the constraint problem
of FigurC! 19 (left) after the first two cluster merges have occurred. We check
to see whether the angle class triggers some additional cluster merging and find
that Cz and Cs havC! a common point vC!rtex P3. Thus clusters Cz and Cs can
be merged.

In Figure 20 (right) we have the cluster configuration of the constraint prob
lem of Figure 19 (right) after four cluster merges. The two angle classes and
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Figure 20: Cluster configurations for the geometric constraint problems of the
previous figures after some initial cluster m(!rgiug has occurred. The correspond
ing information for the angle classes is also shown.

their links to the clusters are also shown. When clusters Cs, C6 and Cs are
merged, the corresponding angle classes are also merged. Now the problem
becomes similar to the one in Figure 19 (left).

6 The Construction Phase of the Algorithm

The graph analysis produces a sequence of instructions to Phase 2 of the con
straint solver in which coordinates for the various geometric elements are com
puted based on the repertoire of construction steps. The geometric construction
involves cluster creation and cluster merging. During cluster creation, we place
two geometric elements that have a constraint between them with respect to
each other. The construction is obvious, since it is a direct interpretation of the
equations for distances and angles [8].

In the cluster merging phase we repeat the following: three clusters with
three pairwise common geometric elements 91, 92 and 93 arc merged into a
single cluster, as shown in Figure 21. We place the three common geometric
elements, noting that their relative positions are known [8]. Having positioned
the shared geometric elements, we translate and rotate the three clusters so that
the three geometric clements are in the required location. Note that cluster
merging cannot be done when the shared geometric elements are three lines.
The constructions for the extension of Section 5.1 is described in [4].
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"
Figure 21: Cluster Merge

6.1 Complexity of the Construction Phase

Cluster formation takes time D(e), where e is the number of edges of the con
straint graph. The sequence of cluster mergings, derived by the analysis pha."ic,
can be done in time G(clog,,). This is seen as follows.

The rigid motion positioning a cluster, by moving every geometric clement of
the cluster, requires Oem) steps, where m is the Dumber of geometric elements
in the cluster. We consider the largest of the three dusters fLXed, and apply the
required motion to the two smaller ones. If the largest cluster has m elements,
at most Oem) steps are required for the merge. Observe that with this heuristic,
the size of the largest cluster is at least 1/3 the size of the combined clusters.
Thus, if a geometric element is in a cluster that is moved, then it becomes part of
a new cluster at least twice as large. Consequently, a geometric element cannot
be moved more than log(r) times, where r is the sum of the cardinalities of the
clusters and is bounded, by 2e. Since the number of merge operations is O(e),
the construction phase takes at most O(elogc) steps.

6.2 The Real Solution Problem

'We have shown that we can check whether a given geometric constraint problem
is solvable by our method in a generic sense in time quadratic in the number
of geometric objects. However, computing a real solution for a solvable well
constrained problem will be shown to be NP-hard in a strong combinatorial
sense. Although finding a real solution is central to geometric constraint solv
ing, the problem seems to have been neglected in the literature and we are not
aware of any results other than a theorem by Hilbert for ruler-constructible con
figurations. [4, 13]. The following example illustrates the problem of finding a
real solution for a constraint configuration.

Example 4 Given the five points A, B, C, D, E and the following set of
geometric constraints:
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Figure 22: Four discrete solution for placing
with respect to each other

the four points A, B, C and D

A distance 3 from B
C distance 4 from A
D distance 3 from A
E distan ce 2 [rom C

C distance 3 from B
D distance 4 from B
E distance 2 from D

lind a placement of the points CIUtt satisfies the above geometric constraints. The
placement of the points is with respect to each other, so the derived solution is
invariant up to translation and rotation. One placement sequence that satisfies
the imposed constraints is the following:

(i) position A and B with respect to each other

(ii) construct C from A and B as the intersection of two circles

(ill) construct D from A and B as the intersection of two circles

(iv) construct E from C and D as the intersection of two circles

Step (i) has only one solution, and for Steps (ii), (iii) ':Llld (iv) there are 2
solutions each. Thus, we have eight distinct solution in the complex space.
There are four ways in which the points A, B, C, and D may be placed; Figure
22. Solutions (c) and (d) do not extend to a real solution for E, since the
circles of step (iv) do not intersect. Solutions (a) and (b) each extend to two
real solutions [or E, resulting in a total of four real solutions of the constraint
problem. 0
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Figure 23: Constructing an instance of the real solution problem

6.2.1 NP-hardness

We reduce the following version of 3SAT to the geometric real solution problem.

One-in-three monotone 35'AT (1IN:J-M3SAT) [11, 27]: Given asel. U
of variables, a collection C of clauses over U, such that each clause
c E C has three literals, none of them negated. Is there a truth
assignment for U, such that each clause in C has exactly one true
literal?

We will prove that [or each instance of lIN3-M3SAT we can construct, in poly
nomial time, a solvable geometric constraint problem that ha.') a real solution if[

the corresponding instance of lIN3-M3SAT is satisfiable.
Let {XI,X2, ... xd be the set of literals used in C. Let A be the line x = 1

and L be the line x = 2. For each literal Xi, i = 1 .. . k, we construct a point Pi
on the x-axis at distance 1 from A; see also Figure 23. For each point Pi we can
choose independently, one of two solutions, namely (0,0) or (2,0), which will
correspond to the variable Xi being Msigned false or true, respectively.

For the clause c = (X,,,Xb,X,,), we introduce the points P~,Pb,P~,Po.b,Pb",P<:a

and the lines la, h, I". The following constraints are imposed:

Pi on x-axis
Po. distance 0 from 10.
Pb distance 0 from h
p" distance 0 from Ie

Pi distance 1 from A
10. angle 0 with the y-axls
h angle 0 wlth the y-axis
l" angle 0 wi th the y-axis
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P~ dlstance 2 from 0(0,0)
P~ distance 2 from 0(0,0)
P~ distance 2 from 0(0,0)
Pab distance 3 from p~

Pbc distance 3 [rom pI,
Pca distance 3 from P~

p~ distance 0 from fa

pI, distance 0 from h
p~ distance 0 from ic
pab distance 2 from pI,
Pbc distance 2 from p~

Pca distance 2 from P~

Thus, the lines iu are parallel to the y-axis through p~. The points P~ are at
distance 2 from the points pu. Note that to each poInt Pu there correspond
several p~, one for each occurrence of Xu in a clause of C.

Lemma 3 There is a truth assigmment for U with exactly one true literal in
each clause ilf the system of geometric constraints described above has a real
solution.

Proof
===?: Assume that there is a truth assignment for U with exactly one true
literal in each clause. We set Pm = (2,0) whenever Xm =t"lLC, and the value
Pn = (0,0) whenever X n =/afsc for a solution of U. Since a solution of U requires
that exactly one literal in each clause c = (xa, Xb, xc) is true, exactly one of the
points Pa, Pb, or Pc is at (2,0), say Pb. Then lb coincides with ~ and ia and lc
coincide with the y-axis. Consequently, pI, has a unique solution: (2,0), and for
each of the points P~ and P~ there are two solutions, namely: (0,2) or (0, -2).
If we choose the value (0,2) for P~ and the value (0, -2) for Pc we see that the
points Pab, Pbc, and Pca are real. Thus the geometric constraint problem has a
real solution.

<:::=: Clearly, every point Pi must be at the origin or at (2,0), and these position
can be interpreted as a truth assignment to the variables Xi of the formula.
Assume that (2,0) is interpreted as true, and there is no truth assigment for U
with exactly one true literal in each clause. Let c = (xa, Xb,X c) be a clause that
does not havc exactly one true literal. We distinguish two cases:
(i) Xa :::: Xb = Xc =truc, or Xa = xb = Xc =false: Then the lines la' lb, and lc

coincide, hence so must at least two of the points p~, pI, or p~, say p~ and P/'.
But then we cannot place Pab with real coordinates.
(ii) Xa= Xb =true: Then the lines fa and lb coincide with L, hence Pa :::: lIb =
(2,0). Again, Pab cannot have real coordinates.

Now assume that (0,0) is interpreted as true. By the above argument, there
is a real solution of the constraint problem only if every clause of U has exactly
two true literals. But then the complement assignment solves U. Hence there
(annat be a real solution of the constraint problem.O

34



Proposition 1 The problem of finding a real solution of a system of geometric
constraints solvable by a constructive method is NP-hard.

The problem may not even be in NP, since it involves real arithmetic. How
ever, it naturally falls in DNP1l.(see e.g., [3, 6]), where the guess is polynomial
to the size of the input but the checking procedure needs infinite 1) recision to
give an answer in polynomial time.

6.2.2 Discussion

We have proved that the problem of finding a. real solution for a system of
geometric constraints that is solvable by our constructive method is NP-hard
in a strong combinatorial sense. .From the nature of the proof we conclude
that several specialization of this problem are also NP-hard. In particular, all
subproblems derived by imposing any combination of the foHowing restrictions
aTe also NP-hard:

the set of geometric objects consists only of lines and points.

the set of geometric constraints consists only of distances and angles.

Ute domain of the value of the geometric constraints is {D, 1, 2}.

the geometric problem is well-constrained.

Furthermore, if we restrict the geometric objects to be points only and the
geometric constraints to be distances only, then we can prove that the problem
remains NP-hard.

V\'hen the geometric problem is underconstrained, we have argued in this
paper that additional constraints should be added to make the problem well
constrained and solvable. It remains to be investigated whether the addition of
constraints can facililcLte finding real solutions.

7 Remarks

We have presented a quadratic algorithm that solves a system of geometric con
straints IIsing a graph constructive approach. The bottom-up analysis algorithm
of [4] has been augmented with a top-down decomposition algorithm and so not
only solves consistently overconstrained problems but underconslrained prob
lems as well. Both over- and underconstrained problems occur in practice and
it is important to handle them.

It should be possible to speed up the analysis and the decomposition to lake
only O(n log(n)) time for constraint graphs with O(n) edges. Such an improve
lllent would be important in applications where large constraint problems are
not uncommon.
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