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Figure 1. Tree Instance Segmentation. A flyover from a UAV and the corresponding tree instance segmentation during green leaf season
when the tree crowns are most similar to their neighbors, and occlusion is complex adding to the difficulty in segmentation.

Abstract

We present a novel approach to perform instance seg-
mentation and counting for densely packed self-similar
trees using a top-view RGB image sequence. We propose
a solution that leverages pixel content, shape, and self-
occlusion. First, we perform an initial over-segmentation
of the image sequence and aggregate structural character-
istics into a contour graph with temporal information incor-
porated. Second, using a graph convolutional network and
its inherent local messaging passing abilities, we merge ad-
jacent tree crown patches into a final set of tree crowns. Per
various studies and comparisons, our method is superior
to all prior methods and results in high-accuracy instance
segmentation and counting despite the trees being tightly
packed. Finally, we provide various forest image sequence
datasets suitable for subsequent benchmarking and evalua-
tion captured at different altitudes and leaf conditions.

1. Introduction

Trees in forests are tightly spaced, partially overlap-
ping 3D objects with complex boundaries. Tree instance
segmentation is critical in several domains. For exam-
ple, ecosystem services and agriculture need to segment
and count trees in large areas in order to obtain informa-
tion about the ecological balance, environmental health,
and timber inventory. Counting trees from the ground per-

spective is inefficient, does not scale, and is challenging to
automate because of many occlusions with branches and
low accesibility. In this paper, we address tree instance
segmentation and counting using overhead RGB image se-
quences captured by unmanned aerial vehicles (UAVs), es-
pecially during the green-leaf season when trees are most
self-similar; see Fig. 1 for an illustration.

There is significant prior work in segmentation and
counting, particularly in the field of instance segmentation.
While some approaches make use of LIDAR or RGB-D im-
ages (see the survey paper [5]), we focus on using easier-
to-obtain uncalibrated RGB image sequences. Prior works
based on uncalibrated RGB images can be largely organized
into three groups. The first group seeks to count individ-
ual objects. These approaches often use density estima-
tion and do not focus on segmentation [35, 36]. The sec-
ond group of methods relies on convolutional neural net-
works (CNNs) applied directly to image pixels, such as
Mask R-CNN [26]. However, in the case of abutting and
self-similar objects, e.g., trees, distinguishing individual in-
stances is hard. The third group of techniques (e.g., Ke
et al. [28], Newell and Deng [43]) model object contour as
a graph, where each pixel corresponds to a node, and makes
use of graph convolutional networks to complete individual
contours; nevertheless, abutting and self-similar instances
also hinder these methods. Yet other methods, such as those
in digital forestry research, exploit domain-specific features
such as assumed differences between tree species or fall leaf
coloring (i.e., during one brief time period of the year, the
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Figure 2. Pipeline: The input image sequence is analyzed. Initial contours and features are detected and organized into a contour graph
that is refined by merging edges and nodes, resulting in the final output mask.

leaf color of adjacent crowns is often different).

Our approach is motivated by a key observation that two
tree crown leaf patterns tightly packed together are highly
similar, and additional features beyond leaf patterns are nec-
essary to perform segmentation. Hence, we consider fea-
tures based on the tree crown shape because it is unlikely
to observe a rectangular tree crown. Beyond shape features,
we also use the changing self-occlusion patterns captured in
the different frames to aid segmentation.

At a high level, our proposed approach simultaneously
exploits pixel content, shape, and self-occlusion, which
collectively define a graph-based structure that we call a
contour graph. Each node corresponds to an initial over-
segmentation of a tree crown fragment; i.e., each node cor-
responds to a region enclosed by a closed contour. We
then learn features on this contour graph via graph convolu-
tional network (GCN) to determine which nodes should be
merged. Our method decides whether two nearby regions
correspond to the same tree crown. Notably, a tree crown
fragment is subject to various simultaneous features that we
can exploit to discern one tree crown from another, even if
one tree crown is of the same species and has a very similar
leaf pattern and color to an adjacent tree crown. Altogether
this leads to an instance segmentation method that can pro-
cess overhead RGB image sequences of dense forests even
when all leaves are mostly similar in color during summer.
See Fig. 2 for an overview of our approach.

When creating and evaluating model performance, we
are not aware of suitable databases on dense forests with
subsequent frames. To address this: (a) We leveraged devel-
opmental tree models [33, 57] to produce a synthetic dataset
with annotated tree crowns (5,157 trees in total); (b) We
manually labeled real-world image sequences captured by
UAV over three large forests (6,527 trees in total), collec-
tively spanning approximately 3,680,000 m?. We will make
our self-collected datasets publicly available.

On these datasets, we show that the proposed method
achieves a segmentation accuracy of 73.6 and a count accu-
racy of 89.8% on average, which is compared to multiple
recent instance segmentation approaches.

Our main contributions include:
* an instance segmentation method to robustly process
densely packed trees where the instances are abutting,
partially overlapping, and self-similar,

* tree crown counting, which is beneficial to ecosystem
services and digital forestry, and

e a curated dataset of multiple labeled and unlabeled
temporally continuous dense forests suitable for future
research.

2. Related Work

Counting Methods. Instance segmentation and counting
have been pursued by various approaches, including meth-
ods using input data beyond uncalibrated RGB image se-
quences. Counting methods use stochastic mechanisms to
estimate the number of instances. For example, Lian et al.
[35] use RGB-D data and density estimation to distinguish
instances at a relatively low resolution of individuals in
a dense crowd of humans. Firoze et al. [18] perform a
density-based estimation of trees but use 12 months of satel-
lite data. Liu et al. [36] use RGB-thermal imagery to per-
form crowd counting using a multi-modality deep network
and exploiting the thermal signatures of humans. In our
case, each instance is relatively larger (i.e., occupies many
pixels). Thus resolving them is not a challenge because
of limited resolution but rather difficult due to similarity,
semi-transparency, tight spacing, and partial overlaps with
complex boundaries. A density-based method would be too
inaccurate and would not provide a segmentation.

Detection and Instance Segmentation. Object detection
methods largely fall into two-stage and single-stage meth-
ods. Two-stage detection, such as Faster R-CNN [51] and
Fast R-CNN [19], predict object masks based on region pro-
posal and bounding box regression heads using features ex-
tracted from convolutional neural networks (CNN). Single-
stage detection [31, 37, 50, 55, 56], bypasses the regional
proposal stage. Notably, YOLO-based methods [9, 34, 50,
58] achieve efficient detection of objects in real-time. Nev-
ertheless, when applied to abutting and self-similar content,
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Figure 3. Shape Features. Illustration of the extracted shape fea-
tures, including extent, aspect ratio, solidity, and deviation.

e.g., tree crowns, the precision of these approaches is low
for tree counting.

Many instance segmentation methods [10, 11, 20, 25,

26, 30, 32, 62] have been developed. Earlier works use
CNN features and build on the detection methods, e.g.,
Mask R-CNN [26]. More recently, several transformer-
based instance segmentation methods [13, 40, 60] have been
proposed as well, for instance, for instance, SwinTrans-
former [39, 40] uses a transformer-based backbone together
with Mask R-CNN. Some methods use graph convolutional
networks (GCN) to perform instance segmentation [28, 32].
For example, Ke et al. [28] models a graph corresponding
to a sequence of pixels (nodes) defining the contour (con-
nectivity) of object instances aiming to model occlusions
among the objects. Different from our approach, we de-
fine a node to be the “region” enclosed by a contour and
exploit the change in “self-occlusion”, through time, within
each object (i.e., tree crown). In this work, we compare sev-
eral of the recent instance segmentation methods, including
Mask-RCNN with ResNet and Swin-T backbone [26, 40],
TraDes [59], and BoundaryFormer [32].
Digital Forestry and Remote Sensing often use CNNs
(e.g., see summary by Chen et al. [12] on remote sensing)
and exploit domain-specific characteristics. One methodol-
ogy is to acquire LIDAR data from “underneath” the tree
crowns using UAVs [2]. The data can be used to mea-
sure trunk diameter and counts, but unfortunately, it does
not scale as flying through large dense forests is a signifi-
cant challenge. Another strategy is to use NDVI, an image-
based vegetation index, to distinguish vegetation from non-
vegetation. However, this index cannot separate one tree
crown from another. Another application is tree classifica-
tion, which also relies on CNNs [45] and the instance seg-
mentation of trees is suggested as future work.

Other approaches exploit the visual differences between
tree species. For example, Liu et al. [38] uses a CNN and
UAV captured overhead RGB data to segment and classify
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Figure 4. Self-Occlusion. Consecutive frames I, and I,, from
the moving UAV capture slightly different self-occlusion patterns.

trees. However, the segmentation component of this work is
done in the peak fall season (when leaves of adjacent trees
are most likely a different color) and then subject to manual
correction to determine a good set of segmented trees. They
claim accurate instance segmentation of trees as a challeng-
ing task for future work.

Tree modeling has a long history in computer vision and
computer graphics [49]. Early methods focused on fractal-
based approaches [1, 4, 52], and later methods simulate
botanical plant model [16] development [6, 8, 21], in-
cluding competition for resources [42, 46], climbing veg-
etation [24], ecosystems [44], or plants interacting with
wind [47] or fire [23]. Synthetic tree models are per-
ceived as highly realistic [48] and provide sufficient de-
tails to bridge the simulation-to-real gap for vision-based
approaches. We leverage these tree models to help develop
the approach presented in this paper.

3. Tree Crown Instance Segmentation

We formulate our problem as computing a set of in-
stance segmentation masks for an uncalibrated input im-
age sequence. The input image in a sequence is denoted
by I, € (I1,...,Iy) and the corresponding set of pre-
dicted instance segmentation masks for Iy is denoted by
My, = {M, ¥t € Ty} for the tree crowns ¢ € Ty in the
current frame I. Each segmentation mask of a tree crown
is represented by a set of pixels My, = {(u,v)}. Our
approach creates a contour graph representation capturing
an initial over-segmentation of the forest and formulates
the prediction of tree crown masks as merging the over-
segmented regions.

3.1. Contour Graph Creation

We create a graph-based data structure G = (C, £) (con-
tour graph) for assisting with differentiating tightly-spaced
and highly-similar tree crowns. The contour graph readily
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Figure 5. Merging Process: Illustrative presentation of our process to/from contour and graph spaces to merge noisy contours using edge

classification (detailed in Sec. 3.2).

stores different types of feature sets and supports merging
nodes via edge collapse operations.

Contour Graph Construction. We create a graph where
each node corresponds to a closed contour C; = {(u,v)},
i.e., the set of pixels of a tree crown fragment in the image.
Two contours (nodes) have an edge between them (C;, C;) €
&, if they are adjacent to each other in the image.

We extract the initial contours by using deep edge de-
tection [53] that produces an edge map with plausible tree
crown fragments. The extracted edge map is often noisy so
we apply Guo-Hall algorithm [22] to skeletonize the edge
map. Then, a simple polygonal contour can be used to rep-
resent the pixels of each closed region (i.e., each tree crown
fragment). In the following, we discuss how to extract three
feature set types that are stored within each node.

Pixel Features represent the pixel content within a contour.
We use the following features: Patch pixels: we extract the
center p X p RGB image patch within each contour, using
p = 30; Pixel similarity: for a contour, we compute the
similarity of its center patch to the center patches of neigh-
boring contours. We measure similarity using LPIPS [61]
which corresponds highly to human perception.

Shape Features. We capture the geometric shape features
of a contour (see Fig. 3) including its area, i.e., |C;|, extent
given as the ratio of contour area to its bounding rectangle
area, aspect ratio of C;’s bounding box, solidity given by the
ratio of the area to the contour’s convex hull, and deviation
of a contour from its convex hull.

Self-occlusion Features. We capture the self-occlusion pat-
tern of a contour. Fig. 4 depicts a scenario of two adjacent
trees. The pattern of how the leaves and branches of the
left tree exhibit their occlusion relationship as the image se-
quence was captured is likely different than the pattern of
the right tree. This is true for trees of different species but
also for trees of similar species. Although both branching
patterns of adjacent trees originate from approximately the
middle of the tree crown, they are not the same pattern. The
optical flow of the pixels within each tree crown fragment
can be compared and thus used to help differentiate one self-
occlusion pattern from another.

We use the Gunnar-Farneback [17] optical flow algo-
rithm between images I,, and I,,_;. We then extract the
center p X p patch from the flow map to create the flow fea-
ture vector for each contour.

3.2. Contour Merging

With the contour graph constructed, we observe that a

single tree crown is often split into multiple contours. In
other words, to predict accurate instance segmentation, one
would need to merge these contours (Fig. 5). Hence, we
formulate contour merging as an edge classification prob-
lem on a graph.
Edge Classification. For a set of contours C, we represent
whether pairs of contours belong to the same instance via a
matrix Y € {0, 1}/€/*I¢l where Y;; = 1 indicates that con-
tours C; and C; should be merged. Given a contour graph in-
put, we aim to build a model that predicts this merge matrix.
We formulate this task as an edge classification problem of
the contour graph.

We have extracted various features associated with each
node in the graph (Sec. 3.1). We concatenate these features
into a node feature matrix H° € RIC/*4, Next, we repre-
sent the edges via an adjacency matrix A € [0, 1]I¢¥ICI,
Graph Convolution. Using a graph convolution layer [29],
we perform L rounds of message-passing to aggregate in-
formation from each node’s neighborhood:

HOD — O (H0) = 4 (AH(“W(”) 7 (1)

where A denotes the degree normalized adjacency matrix,
o denotes an element-wise non-linearity, and WO denotes
the trainable weights at the /™ layer.

To create the edge features for classification, follow-
ing Mikolov et al. [41], we average the L™ node features
H®) for the pair of nodes in an edge (C;,C;):

1
E; =3 (H}L) + Hj(L)) . 2)
Given the edge features E;;, we predict whether a pair of
nodes should be merged using a multi-layer perceptron, i.e,

Yi; = MLP(E;;) ¥(Ci,C; € &). 3)
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Figure 6. Tree Models. Examples of synthetic trees: a) acacia, b)
apple, c) birch, d) maple, e) oak, f) pine, and g) willow).

To train this model, we minimize the binary cross-entropy
loss between the predicted merge matrix Y and the ground
truth merge matrix Y over the edges:

> Yilog(Vij) + (1 - Yi) log(1 — Yy).
{(4,5):Aq;=1}

L= —

Finally, we merge the contours according to the pre-
dicted merge matrix Y and output an instance mask for
each of the merged contours. In other words, for a tree ¢,
the predicted mask is the union of all pixel locations within
merged contours, i.e.,

M= ] ¢ )

J:Yi=1
3.3. Collection of Datasets

We have prepared four datasets to develop and

evaluate our method. @~ We have made the synthetic
and real-world dataset (with videos) publicly available.
Please visit https://github.com/adnan0819/Tree-Instance-
Segmentation-using-Temporal-Structured-Images.
Synthetic Dataset. A first dataset is created synthetically
and enables us to control the density, species, and coloring
of the trees. We use the algorithm for plant competition for
resources [46] implemented as a developmental model [42]
controlled by user-defined parameters [33, 57] and its re-
alism has been validated by a prior large user study [48].
The trees have been placed by ecosystem simulation [7, 44].
Our implementation supports acacia, apple, willow, maple,
birch, oak, and pine trees (see Fig. 6). We can generate ter-
rains of arbitrary size full of trees.
Real-world Datasets. We have prepared three real-world
forest datasets. Forest A (Martell Foret, West Lafayette,
IN) was collected by our team with a UAV flying over a
large forest and we made this dataset available publicly. To
our knowledge, it is the largest and most comprehensive
UAV-captured overhead image sequence dataset for forest
research. Moreover, although not used here, each image in-
cludes georegistered coordinates of the camera location.

Methods GT Pred. Acc.?
YOLOv7 2172 3442 415
YOLOV7 + Flow 2172 3134 557

YOLOvV7 + Flow (Med.) 2172 3016 61.1
YOLOvV7 + Flow (Mean) 2172 2838  69.3
Ours 2172 2373 90.7

Table 1. Preliminary experiments. Count accuracy on synthetic
forest verifying the effectiveness of capturing self-occlusion using
optical flow. Med. and Mean correspond to thresholding the opti-
cal flow based on the median or mean magnitude.

The UAV was piloted by a trained forestry pilot and used
two cameras: DJI P1 and DJT H20T. Three distinct forest re-
gions were captured using 23 flights and covering approx-
imately 368 hectares (3,680,000 m?) in total. The image
sequences were captured at 80m, 100m, and 120m altitudes
with the camera sensors pointing straight down (i.e., nadir).
The DJI P1 camera had a field of view (FOV) of 63.5°, and
DIJT H20T had a FOV of 82.9°. All flight speeds were Sm/s.
Each image has a resolution of 3,840 x 2,160 pixels and
was captured at the rate of 60 images per second.

To evaluate the generalization capability (i.e., out-of-
distribution), we collected Forest B (Kentucky Ridge State
Forest, KY) and C (Olympic National Forest, WA) from
Google Earth. We annotated twenty images at 832 x 732
pixels with tree crown information. Forest B and C are
only used for validation. Notably, these forests have differ-
ent characteristics. Forest A has a combination of natural
and plantation vegetation and combines both deciduous and
coniferous species like white oak, black cherry, red oak, etc.
In contrast, Forest B contains more color variation with-
out any plantation-type forest with species like sugar maple,
tulip poplar, various oaks, hemlocks, etc. Differently, Forest
C contains both seasonally changing and evergreen species.
These differences in datasets B and C make them suitable
for out-of-distribution evaluation.

4. Results

We evaluate our proposed approach using the Synthetic,
Forest A, B, and C datasets. We report on the task of tree
crown instance segmentation and counting. Note that in-
stance segmentation systems trivially generalize to count-
ing by predicting the number of detected instances. Beyond
quantitative comparisons with baselines, we also conduct
ablation studies verifying the efficacy of our proposed com-
ponents and qualitative demonstrations.

Experiment Setup. For synthetic data experiments, we
use 80% of the data to train and report evaluation metrics
on the remaining 20%. In real-world experiments, we train
on Forest A also using an 80-20 train and validation split.
Using the same model trained on A, we report performance
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Methods Synthetic Forest Forest A Forest B Forest C
APT AP50 1 APrp T | APT APso1T APrpo 1 | APT APsg T APrpo 1 | APT APsq T APro T
Mask-RCNN (ResNet) | 27.1 53.6 50.1 334 573 54.1 39.2 5838 56.1 35.1 57.9 58.4
Mask-RCNN (Swin-T) | 59.8  70.2 68.3 64.6  74.1 70.5 695 773 724 632 726 70.3
TraDeS 61.1 55.2 644 | 58.1 71.3 66.8 63.7 739 70.5 59.6  70.4 64.1
BoundaryFormer 56.3 65.1 57.5 609 729 66.2 64.1 73.4 69.2 589 712 61.8
Mask2Former 624 652 63.9 59.7  64.1 63.2 64.1 67.5 63.8 619  63.1 62.9
MS-RCNN 662 684 65.8 648 713 68.5 66.4 702 69.3 642 693 65.8
OCISIS 59.1 63.5 61.8 55.7  58.6 58.1 60.8  68.2 66.8 60.2 628 60.9
SLIC (Superpixel) 237 273 242 | 207 248 23.6 225 273 23.7 20.1 27.5 24.6
Aerial Laser 71.1 72.9 70.8 704 752 71.1 65.1 68.2 66.8 653  68.7 64.8
Ours 74.6  73.1 69.5 | 745  81.6 72.8 | 698 762 71.5 70.1 754 72.5
Table 2. Segmentation. Comparisons of segmentation performance to prior instance segmentation baselines.
Methods Synthetic Forest Forest A Forest B Forest C
GT Pred. Acc.?T| GT Pred. Acc.tT| GT Pred. Acc.?| GT Pred.T Acc.?

Mask-RCNN (ResNet) | 5157 3291 63.8 | 2314 1691 73.1 | 2041 1281 62.8 | 2172 1403 64.6
Mask-RCNN (Swin-T) | 5157 4275 829 | 2314 1816 78.5 |2041 1655 81.1 |2172 1791 82.5
TraDeS 5157 4131  80.1 | 2314 1987 859 |2041 1596 782 | 2172 1611 74.2
BoundaryFormer 5157 3981 77.2 | 2314 1950 843 | 2041 1549 759 |2172 1713 78.9
Mask2Former 5157 3290 63.8 |2314 1708 73.8 | 2041 1601 784 | 2172 1681 77.4
MS-RCNN 5157 3527 68.4 | 2314 1886 81.6 | 2041 1645 80.6 | 2172 1752 80.7
OCISIS 5157 4373 848 | 2314 1969 85.1 | 2041 1643 80.5 | 2172 1822 83.9
SLIC (Superpixel) 5157 8142 421 | 2314 3566 459 | 2041 3298 384 | 2172 3521 37.9
Aerial Laser 5157 4399 853 | 2314 1960 84.7 | 2041 1639 803 | 2172 1887 86.9
Ours 5157 5636  90.7 | 2314 2510 91.5 | 2041 1771 86.8 | 2172 2384 90.2

Table 3. Counts. Comparisons of tree crown count performance to prior instance segmentation baselines.

on B and C to evaluate out-of-distribution generalization.
Evaluation Metrics. We follow the evaluation protocol
from the prior work [26]. For tree instance segmenta-
tion, we report the mask Average Precision (AP) averaged
over different intersection-over-union (IoU) thresholds and
at IoU thresholds of 0.5 and 0.7, denoted as APsy and AP
respectively. For tree counting, we report the raw number
of counts and the count accuracy, which is expressed as a
percentage denoted by Acc.

Baselines. We compare our approach to the fol-
lowing instance segmentation methods: Mask-RCNN
based on ResNet [26], Mask-RCNN based on the re-
cent transformer backbone (Swin-T) [40], Track-to-Detect-
and-Segment(TraDeS) [59], BoundaryFormer [32] (a re-
cent mask-supervised polygonal boundary approach to in-
stance segmentation using transformers), Mask2Former
[14], Mask Scoring RCNN [27], Object Counting and In-
stance Segmentation with Image-level Supervision [15],
SLIC (superpixels) [3], and Aerial Scanning Using Laser
and Deep Model (a model specific to trees) [54].

4.1. Synthetic Data Experiments

Preliminary Experiments. We used our synthetic data to
aid the development of our method. In particular, we used it
to understand the impact of determining the change in self-

occlusion, and we experimented with several settings using
our synthetic dataset.

First, we varied the density of the tree crowns in the
dataset until YOLOV7 [58] had difficulty in determining the
tree crown count (see Tab. 1).

Second, we used the graphics rendering engine to de-
termine the ground truth optical flow as a virtual UAV
flies over the same dense synthetic forest. We extended
YOLOvV7 [58] to include this flow data as an indicator of
changing self-occlusion patterns. Specifically, we incorpo-
rate flow as additional channels to the input.

We found that different optical flow thresholds led to im-
proved count accuracies. Hence, Tab. 1 reports the counting
performance using flow when not thresholded, thresholded
by the median and the mean. The incorporation of the op-
tical flow improves the performance by 33%. However, the
counting performance of YOLOV7 remains unsatisfactory.

To further improve performance, we developed our
method to include pixel content features, shape features and
changed the underlying model to the graph-based approach
described in Sec. 3 — this produced the highest count accu-
racy of 90.7%, as seen in Tab. 1. In contrast, the next best
model, YOLOv7+Flow(mean), achieves a count accuracy
of only 69.3%.

Quantitative Results. We compared the count accuracy
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Figure 7. Qualitative comparisons. Comparisons of our approach vs. Swin-T and TraDes. We observe that our approach produces
instance segmentation masks that more closely match the human annotation. Comparisons to more baselines are illustrated in the Appendix.

of our method using the synthetic dataset to our baselines
in Tab. 3 (first three columns). We observe that Mask-
RCNN (Swin-T) is the best-performing baseline with a
count accuracy of 82.9%, followed by TraDeS with 80.1%,
BoundaryFormer with 77.2%, and Mask-RCNN (ResNet)
with 63.8%. Our method outperforms all baselines in count
accuracy with 90.7%. We also compared the AP per-
formance of using the synthetic dataset to our baselines
in Tab. 2. Our method again outperforms all the baselines.

4.2. Real-World Data Experiments

We also conducted experiments on our multiple real-
world forest datasets. Tab. 2 contains the AP comparisons to
the baselines. Our approach outperforms all methods in all
forests except for APsy and APy in Forest B. Overall, our
method achieves an AP of 74.5, 69.8 and 70.1 on Forest A,
B, and C respectively.

Tab. 3 reports the counting accuracy comparison to our
baselines. The accuracy metric is defined as 1 — MAFE
(normalized) as a percentage where MAE is the mean ab-
solute error. Our method exceeds the performance of all
prior methods across all forests. On Forest A, our method
achieves a count accuracy of 91.5% compared to the next
best baseline (TraDeS) of 85.9%. On Forest B, our method
achieves 86.8 compared to the next best baseline (Swin-
T) of 81.1%. On Forest C, our method achieves 90.2%
compared to the next best baseline (Aerial Laser Scanning
Model) of 86.9%.

Ablated feature AP AP5y AP75 Acc.
All Features 745 81.6 728 915
All — aspect ratio 67.6 729 684 824
All — solidity 69.2 741 662 80.1
All — self-occlusion | 62.9 773 71.1 782
All — patch 51.3 568 632 71.8
All — deviation 59.8 622 64.1 709
All — area 551 58.8 61.6 683
All — neighbor sim. | 574 61.7 59.6 63.5

Table 4. Feature ablations. Performance of our approach on For-
est A as we ablate each feature (sorted by count accuracy). Fea-
tures with lower accuracy have a higher impact on the prediction.

4.3. Qualitative Study

Beyond the quantitative results, we also qualitatively
study the method’s behavior. Fig. 7 shows the results of
our method and baselines applied to the three real-world
datasets. We generally observe that the predicted instance
segmentation closely matches the ground truth annotations.
On the other hand, we observe that a typical failure case
for TraDes and Swin-T is that they often group multiple
tree crowns into one; See Fig. 7 for regions boxed in red.
—Similar illustrations of qualitative comparisons with more
baselines are given in the Appendix.

Next, we study the merging behavior (Sec. 3.2). Fig. 8
shows the contour map before and after merging. We ob-
served that our approach merged small contours into larger
ones to match the tree crown boundaries more closely.
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Figure 8. Visual illustration of data flow. We visualize the contour map before and after contour merging.

Frame A 1 2 3 4 5 no flow

AP 7T 745 728 68.1 654 64.8 62.9
Acc t 915 86.1 835 829 81.8 78.2

Table 5. Frame-rate ablations. The performance drop as optical
flow is computed at different image intervals.

4.4. Ablation Study

To quantify the importance of features of our con-
tour graph, we perform an ablation study using Forest A.
In Tab. 4, we sort the ablations by descending in count ac-
curacy —i.e., the feature in the top rows are the features that
least impact model performance. We observe that ‘neighbor
similarity’ impacts count accuracy the most, and the patch
feature has the most impact on AP.

The other shape and self-occlusion features contribute
significantly to the segmentation. The ablation shows a
13.3% increase in count accuracy when the self-occlusion
features are used (driven by optical flow). Not using this
feature in dense scale forests, similar to the samples of all
real forest trees reported in Tab. 3, would lead to an over or
underestimation of approximately 868 trees.

Moreover, to test the capability of the optical flow al-
gorithm used [17], we skipped progressively more frames
and recomputed the flow in each case (ablating the self-
occlusion feature). The different flow values were then used
and evaluated in terms of AP (see Tab. 5) and tree count ac-
curacy. We can see in Tab. 5 the largest shift happens from
skipping one frame to two frames, as the granularity of flow
(using motion) halves. The subsequent drops indicate lower

frame rate adversely affects the performance. Notably, even
at lower frame rates, the performance metrics were higher
than having no optical flow. In summary, we observe that
our method generally functions well even for images cap-
tured between 30-60 fps.

5. Limitations & Conclusion

Our method is limited by the quality of the input image.
For example, trees include very high-frequency details, e.g.,
small branchlets, that are below the resolution of the UAV
cameras, which our approach cannot capture. Other image
degradation factors, such as blurring caused by the wind and
the UAV motion, also lead to similar challenges. Also, some
shadows can be identified as trees. An obvious limitation
is that our approach does not work for a single image and
requires an image sequence.

In summary, we introduced a novel approach to instance
segmentation and counting tree crowns in forests. Our
approach uses image sequences from increasingly available
UAVs. Our key contribution is leveraging the partial
occlusion between successive images, shape features of the
contours, and encoding these features into a contour graph
that is updated between successive images. The result is
a method that produces instance segmentation masks that
separate the individual tree crowns. Finally, we provide
synthetic and real-world datasets that can facilitate future
research in tree crown instance segmentation and counting.
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