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Figure 1: An example model (left) is used to learn parameters of distributions of trees, grass, and rocks constrained by the terrain’s slope.
Our model then uses these parameters to create consistent content in a larger region, using copy-paste or with user-controlled interactive
brushes (center). Various adapted editing operations are introduced, inspired by painting tools, such as interpolation of parameters, that
allow for creation of varying islands with trees (right).

Abstract

We present a novel approach for the interactive synthesis and edit-
ing of virtual worlds. Our method is inspired by painting operations
and uses methods for statistical example-based synthesis to auto-
mate content synthesis and deformation. Our real-time approach
takes a form of local inverse procedural modeling based on inter-
mediate statistical models: selected regions of procedurally and
manually constructed example scenes are analyzed, and their pa-
rameters are stored as distributions in a palette, similar to colors
on a painter’s palette. These distributions can then be interactively
applied with brushes and combined in various ways, like in paint-
ing systems. Selected regions can also be moved or stretched while
maintaining the consistency of their content. Our method captures
both distributions of elements and structured objects, and models
their interactions. Results range from the interactive editing of 2D
artwork maps to the design of 3D virtual worlds, where constraints
set by the terrain’s slope are also taken into account.
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1 Introduction

Geometric modeling is one of the fastest developing areas of com-
puter graphics, yet it still presents itself with many open problems.
Among them, the creation of virtual worlds is a very challenging
one. Because of its diversity and specificity, the creation of vir-
tual worlds cannot be easily automatized, while the large number
of elements makes manual editing long and tedious.

Procedural methods have been for long the most popular choice
for the generation of large amounts of consistent data from re-
duced user input [Smith 1984]. While many successful procedu-
ral methods were proposed for different domains (terrains, forests,
cities, etc.) and some were combined to synthesize complex virtual
worlds [Smelik et al. 2011], these methods cannot automatically
respond to the designer’s intent. The user then finds himself in te-
dious trial-and-error sessions, with no guarantee that the intended
result will be finally produced. When a specific virtual world needs
to be created, the user thus ends up manually manipulating a large
quantity of objects, such as trees to compose a forest, or complex
structured objects like houses and street segments to compose vil-
lages. In addition to taking care of scene design, the user must
ensure scene consistency, which potentially breaks the artistic flow.

Just very recently, various approaches for inverse procedural mod-
eling have been introduced [Talton et al. 2011; Vanegas et al. 2012;
Št’ava et al. 2014]. Their common goal is to learn rules, or their pa-
rameters, in order to find a procedural representation of some input
structure. The key observation of our paper is that we do not need to
learn the procedural parameters of a complete scene. This task can
be done instead in an interactive manner, on sub-parts of the scene
or for separate categories of objects. In such a scenario, the user
interactively selects parts of scenes to analyze, their parameters are
learned from intermediate representations such as distributions, and
they are then used to synthesize more content through interactive
operations. This ability to build individual “palettes” of parame-
ters and to reuse them during scene editing brings a simple form of
inverse procedural modeling into an interactive artistic workflow.

We present a novel concept for the interactive design of consistent
virtual worlds. We exploit the intuitiveness of state-of-the-art paint-
ing and editing tools that we combine with the power of procedural
modeling. On the one hand, we overcome the main problem of



procedural modeling by learning parameters for intermediate rep-
resentations of procedural models from examples. This task is done
interactively and locally. On the other hand, we overcome scalabil-
ity issues of interactive methods by incorporating procedural mod-
els into the design process. Using the parameters of an intermediate
representation learned for some example scenes, the user can freely
create consistent distributions of objects and of structured graphs
using procedural brushes, or edit scenes with a variety of opera-
tions such as move, copy-paste, or stretch. This does not prevent
accurate local editing, where we aim at maintaining the manually
specified content when painting other categories of objects on top
of previous ones.

Figure 1 shows an example of the usage of our method. An in-
put scene (left) is used to learn the spatial distribution of the input
objects, which is then fed as parameter values to a paste tool used
to generate a novel scene (center). Note that the scene generation
is environmentally sensitive, i.e., it positions objects while consid-
ering the context and the other exemplars used for the generation.
Our approach comes with several particular usages of the proce-
dural parameter learning. The example in Figure 1 (right) shows
how an interpolation in parameter space is used to generate a novel
distribution of islands populated with trees.

Our main contributions include:
• the interactive synthesis of virtual worlds by using painting-

inspired tools to interactively extract local statistical param-
eters from examples and storing them as distributions in a
palette (Section 3);

• the extension of a form of inverse procedural modeling to
complex content, where both distributions of individual ele-
ments such as rocks, houses, or trees, and structured content
such as roads or rivers, are jointly accounted for, together with
external constraints such as the terrain’s slope (Section 4);

• the extension of state-of-the-art tools provided in interactive
painting systems, such as brushes and pipette tools, copy-
paste, move, stretch, color blend and gradient, to the synthesis
of virtual worlds (Section 5).

2 Related Work

Our work belongs to procedural modeling, and more precisely to
inverse procedural methods that learn parameters from user input. It
is also related to example-based texture synthesis and sketch-based
modeling techniques.

Procedural modeling automates 3D content creation by generat-
ing geometric models from generative rules and processes. It has
been successfully applied to a wide variety of object categories,
such as plants [Měch and Prusinkiewicz 1996], terrains [Génevaux
et al. 2013], buildings [Müller et al. 2006], networks of streets and
roads [Galin et al. 2011], cities [Parish and Müller 2001], and vil-
lages [Emilien et al. 2012]. It is the topic of a recent survey [Sme-
lik et al. 2014]. Yet, specifying generative rules with a new type of
content in mind is difficult, and modifying results usually requires
re-launching the process with different input parameters. This indi-
rect control has prevented a wider use of procedural modeling tools,
despite their efficiency for quickly creating large sets of consistent
content.

Our method uses procedural modeling to generate content, and al-
lows a user to manually modify the generated content. It also uses a
simple form of inverse procedural modeling to learn statistical mod-
els from the generated content, and to adapt new content generation
to these learned models.

Inverse procedural methods aim at easing the use of procedu-
ral models by automatically inferring input parameters from user-

defined output or constraints. Talton et al. [2011; 2012] describe
a statistical approach for learning the parameters of an existing
procedural model by using Metropolis procedural modeling and
Bayesian networks. Unfortunately, this general solution is too slow
for being used in an interactive modeling system. More specific
methods have been proposed for the inverse procedural modeling of
2D vector graphics [Št’ava et al. 2010], man-made objects [Bokeloh
et al. 2010], cities [Aliaga et al. 2008; Vanegas et al. 2012], and
trees [Št’ava et al. 2014]. These methods are restricted to their
specific category of content; they do not enable the inverse mod-
eling of complex scenes where several types of content affect each
other. Close to our work is a recent paper of Xing et al. [2014], who
present an approach for autocompleting stylized repetitions learned
from an input model. However, their approach is limited to 2D
polygons. In image analysis, Lafarge et al. [2010] use point pro-
cesses to learn spatial distributions of points for the extraction of
geometric features. In our work, we also learn spatial distributions
of points, but instead with the objective of a new scene generation.

Our method is related to a simple form of inverse procedural mod-
eling with its statistical models, but in contrast to previous work,
it enables joint statistical models for the generation of procedu-
ral models for structured and unstructured content, while modeling
their interactions. This is done in real time, facilitating the use of the
method in an interactive modeling system. We extend approaches
developed for 2D texture synthesis, presented next.

Example-based texture synthesis methods generate large, self-
similar textures from examples [Ashikhmin 2001; Dischler et al.
2002]. They have been applied to point and 2D element arrange-
ments [Ijiri et al. 2008; Hurtut et al. 2009; Öztireli and Gross 2012;
Landes et al. 2013], to structured content (graphs) such as city lay-
outs [Aliaga et al. 2008; Lipp et al. 2011] and branching struc-
tures [Sibbing et al. 2010], and to terrains [Zhou et al. 2007]. Some
of these methods directly reuse the content in the input examples to
generate their results, as is typically done for terrains. In contrast,
vector texture synthesis methods rely on the statistical analysis of
the input examples to generate visually similar ones.

Our approach belongs to example-based modeling of vector con-
tent, and builds on the methods by Aliaga et al. [2008] and Hurtut
et al. [2009] to respectively handle graphs and point distributions.

Sketch-based modeling methods allow for an intuitive and in-
teractive modeling experience [Olsen et al. 2009]. They have
been applied to various components of virtual worlds, such as ter-
rains [Gain et al. 2009; Tasse et al. 2014] and vegetation [Wither
et al. 2009; Longay et al. 2012], but since they rely on preexisting
procedural models, these methods limit the variety of possible out-
puts. Artistic brushing techniques make sketching more expressive
by enabling the input of complex strokes with width, angle, and/or
pressure. These techniques have been applied to a variety of spe-
cific content, such as pen-and-ink illustrations [Kazi et al. 2012],
textures [Sun et al. 2013], images [Lu et al. 2014], and short anima-
tions [Milliez et al. 2014]. We consider that sketching relies more
on pen-like sketches of 2D lines to control or produce results. In
the context of a painting metaphor, we consider that these methods
rely more on “brushes” used to paint generated content “following”
a given statistical model within the area covered by the brushing
motion. Similar advanced interactions are already available in com-
mercial softwares, such as Adobe Illustrator, which provides a vari-
ety of tools, including “pattern brushes” that create object distribu-
tions. However, they are limited to the parameterization of simple
rules for a unique object category, do not take into account existing
objects, and are not adapted to complex virtual world editing.

Our method reuses content creation through a painting metaphor,
but extends it to complex virtual worlds that include both distribu-
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Figure 2: Method overview. The system takes as input a priority order for categories of scene objects and small scenes exemplars, that
may be either imported or created interactively (left). The algorithm learns parameters from selected exemplars, in the form of pairwise
histograms linking each category of content with all lower-priority ones. The resulting sets of histograms are stored as one new distribution
in a palette (center). Distributions can be interactively applied with brushes to create new content (right), or reused in a variety of other
content editing tools inspired from state-of-the-art painting systems.

tions (trees, houses, etc.) and structured elements (roads, rivers,
etc.), enabling the user to paint consistent complex content.

3 Overview

We introduce an example-based synthesis algorithm for virtual
worlds, embedded within an interactive editing system based on
a painting metaphor. Our algorithm captures distributions of in-
dividual scene objects (e.g., trees, rocks, or houses positioned on
an arbitrary terrain). We also encode more structured content (e.g.,
roads, rivers) that is represented by graphs. These representations
are used to synthesize similar-looking content by analyzing interac-
tions between different categories of content, and their relation with
external data, such as a terrain’s local elevation or slope. The re-
sulting procedural model is embedded within an interactive editing
tool enabling the user to seamlessly paint and edit coherent virtual
worlds.

Figure 2 shows an overview of our method. The canvas of our sys-
tem is a virtual world, from which regions can be selected and used
as exemplars. In a first step, parameters of distributions from the
procedural generation and manual edition are learned from these
exemplars by using statistical models, and each resulting set of pa-
rameters is stored as a distribution in a palette, by analogy to colors
in a painting system. During an interactive session, the user reuses
these distributions to synthesize new content with the current active
distribution, similar to using a brush tool to apply the active color.

Scene objects are generated category by category, generally from
larger ones to smaller ones, so that complex (larger) objects can be
generated with less constraints during the synthesis step. Conse-
quently, we set a predefined category priority order, for instance,
stating that houses are built after roads. This ordering simplifies the
modeling and also reduces computation time during the learning
stage, because only interactions between a category and the preced-
ing (lower-priority) categories in the priority list need to be ana-
lyzed.

The analysis and synthesis steps are interleaved during an editing
session. Distributions are created as needed, and they are updated
and modified from one or multiple previous example worlds, or
from the edited scene at an earlier stage.

Input data. Let Ω denote the virtual world space that is composed
of scene objects positioned on a terrain, each belonging to a spe-
cific category C ∈ {ground, island, mountain, hill, river, lake,
road, castle, house, farm, pine tree, orchard tree}. Depending on
their category, scene objects may correspond to different data types
T ∈ {distribution, graph, external}. Categories corresponding to
sets of individual objects are analyzed and synthesized by using dis-
tribution models. More structured content, such as roads and rivers,

belongs to the graph type. Maps, such as of elevations or slopes,
are assigned to the ground category and their type is called external,
since they define external constraints for scene objects. The object
categories can be grouped into a smaller set of layers L ∈ {terrain,
water, settlement, vegetation}, limiting the editing, if needed, to
specific layers that are shown in Table 1.

Parameter learning. Our method learns from examplars. The user
can either import existing scenes, possibly created from real data,
photos, or artwork, or create scene exemplars by manually position-
ing elements. The user then selects an active region ϕ ⊂ Ω to be
analyzed. In our prototype, we provide three types of regions: axis-
aligned bounding boxes (default), circles, and polygons defined by
sketching a nonintersecting closed contour. The latter eases the se-
lection of complex exemplars from larger scenes.

The statistics learned from an exemplar are pairwise interaction his-
tograms that serve as a set of parameters for a procedural synthesis
method generating visually similar content. Some of the histograms
represent interactions within a given category of content (such as
the ones quantifying spatial distributions of trees), while the other
histograms represent interactions between a category and a preced-
ing category in the priority list. The resulting set of histograms is
called a distribution. A distribution is displayed within a palette
using a drawing of the input exemplar, to ease subsequent user se-
lections.

Synthesis. Distribution parameters serve as input for a procedural
model that generates content sharing the same statistical features as
the exemplar. Distributions can be applied using brushes or reused
within other interactive editing tools, such as the ones enabling dis-
tribution interpolation, distribution gradient, moving or stretching
operations.

An important aspect of the editing tools is that they are environ-
mentally sensitive [Měch and Prusinkiewicz 1996] and they ensure
content consistency with the surrounding. In addition to the user-
defined active region ϕ ⊂ Ω, where the tool is applied, we auto-
matically compute a region of influence I defined as an offset of ϕ,
i.e., I ∩ ϕ = ∅ (see Figure 2 right). The scene objects preexisting
in this region of influence are taken into account when the tool is
applied, ensuring consistency. For instance, graph objects are able
to connect with their surrounding when a brush tool is applied. The
offset radius rI can be interactively changed or disabled.

4 Inverse Modeling of Virtual Worlds

Various inverse procedural modeling methods exist for both point
distributions and for graphs. However, the challenge is to adapt
these methods so that the types of content and their mutual interac-
tions can be jointly considered, as well as their response to external



L terrain water settlement vegetation
C ground island mountain hill river road castle house farm big rock pine tree red tree rock small rock grass
T external dist. dist. dist. graph graph dist. dist. dist. dist. dist. dist. dist. dist. dist.

Table 1: The object categories C used in our examples with their corresponding layers L and types T (“dist.” stands for distribution).

constraints.

4.1 Distributions and Their Interactions

We use Metropolis-Hastings sampling [Geyer and Møller 1994;
Hurtut et al. 2009] for synthesizing distributions of elements from
statistical data learned from examples, because this intermediate
model enables to take several interactions into account at once. Let
f(X) be a known probability density function of a given point
distribution X = {x1, ..., xnX} of category CX . A distribution
matching f in a region ϕ of area A is synthesized by initializing
X as a random distribution. Then a fixed number of iterative birth-
and-death perturbations is performed, with the same probability for
birth or death. A change from X to the new arrangement X ′ is ac-
cepted with probability Rb for a birth, and Rd for a death, where:

Rb =
f(X ′)

f(X)

A
nX

, Rd =
f(X ′)

f(X)

nX
A . (1)

The probability density function f(X) is computed from the sta-
tistical properties of category CX , but also from the interactions
between CX and all preceding categories of elements CYk < CX in
the predefined priority order, where Yk is a distribution of elements
with higher priority. We express it as

f(X) ∝
∏

CYk
≤CX

∏
xi∈X

∏
yi∈Yk

hX,Yk (d(xi, yj)),

where hX,Yk is a probability function set to a normalized histogram
that measures interaction between categories CX and CYk , and d is
the Euclidean distance normalized by the width of the bins used in
the histogram.

We use three ways of computing hX,Yk from the input exemplar,
depending on the types of data in the two categories: if Yk is of
type distribution (and in particular when Yk = X), we use a radial
distribution function hrdf adapted from the work of Öztireli and
Gross [2012]; it was chosen for its ability to capture point clusters.
If Yk is of type graph, we use a new distance-to-graph histogram
hg , and a map sampling histogram hm if Yk is of type external. We
describe these three histograms next.

Radial distribution function. Given two input distributionsX and
Y of respectively nX and nY elements, and the area A of the ana-
lyzed region ϕ, the histogram is computed as follows [Öztireli and
Gross 2012]: For each scene object in X , we count the number of
objects from Y that are in an annular shell of inner radius r = drk
and thickness dr around it, and add this number to hrdf (k) (see
Figure 3 left). The result is multiplied by a normalization factor
(where dA is the area of the annular shell) to get valid probability
values:

hrdf (k) =
∑
xi∈X

∑
yj∈Y

kdr≤d(xi,yj)<(k+1)dr

A

dA nX nY
. (2)

Moreover, we adapted this method to overcome the window-edge
effect. Edges of the selected region often cross the annular shells
when manipulating small regions with few objects (Figure 3, cen-
ter). When hrdf is evaluated for a point near the window border,

fewer objects are accounted for than for a point at the center, be-
cause it can only consider objects in dA ∩ ϕ. Our solution is to
approximate the area dA′ = dA ∩ ϕ by computing for each point
the proportion αxi,r of the outer circle’s circumference that inter-
sects the active region, and by setting:

dA′ = αxi,r dA.

We replace dA by dA′ in Equation (2).

While radial distribution functions (rdf ) are efficient for modeling
isotropic point distributions and point clusters, they are not appro-
priate for anisotropic distributions, such as aligned trees or road
nodes. To capture them, we adapt hrdf to an oriented rdf , hordf ,
by counting points in specific angular ranges in addition to distance
ranges (Figure 3 right), resulting into a 2D histogram.

xi r dr

dA φ
α r

φ

xi xi

dA
φ

dθ

Figure 3: Left: Radial density function. For a point xi and a radius
r = kdr , we count the number of points within a range of distances
d ∈ [kdr, (k+1)dr[ of xi. Center: Window-edge effect correction.
We evaluateα as the circumference of circleC(xi, r) that intersects
the active region ϕ. This value is used to normalize the integration
region dA. Right: Oriented radial density function. The range is
reduced to points with an angle ranging in dθ ∈ [ldω, (l + 1)dω[.

Distance-to-graph is the normalized histogram hg of the minimal
distance from an object in X to all the edges of the graph in Y . For
each scene object in X , we compute the closest distance d to an
edge and add one to the corresponding part of the histogram, i.e.,
to hg(k) such that kdr ≤ min{d(xi, yj), yj ∈ Y } < (k + 1)dr . All
the resulting values are divided by the number nX of objects for
normalization. This probability function enables us to capture the
interaction between distributions of elements (e.g., houses or trees)
and structured content (e.g., roads or rivers). See Figure 4.

dmin
dmin

hg

interaction histogram

φ

Figure 4: Left: A graph and a distribution of points (circles). For
each point we compute dmin, the closest distance to the graph.
Right: Corresponding histogram hg of dmin values.

Map sampling is the histogram hm of the values defined on a given
map, sampled on the distribution X . For each scene object xi, we
look at the map value at the same position m(xi), and add it to
the corresponding part of the histogram, i.e., to hm(k), such that
kdr ≤ m(xi) < (k + 1)dr . The histogram is normalized again by
dividing all values by nX . See Figure 5. The resulting probability



function enables us to analyze, for instance, the positions of trees
and rocks relatively to the local slope of a rugged terrain.

slope

hm

interaction histogram

φ

Figure 5: Left: An elevation map (represented as isocontours) and
a distribution of points (circles). Right: Histogram hm of the slope
values at each point.

4.2 Graphs and Their Interactions

Procedural model. We have modified the inverse procedural
model from the work of Aliaga et al. [2008] for synthesizing graphs
from examples (Figure 6). The synthesis method first generates a
distribution of nodes. Paths are then progressively generated by us-
ing a random walk, where edges are constructed from a node to
its closest neighbors. The connecting node is chosen based on the
statistics of edge lengths and angles along the path.

Graph examplar Paths synthesisNodes synthesis

Figure 6: Procedural graph synthesis. Left: Input graph examplar.
Center: New node distribution. Right: New edge generation.

Graph nodes are generated by using the previously described dis-
tribution synthesis method. This enables us to model interactions
between graph nodes and other categories of content with higher
priorities. First, we add two extra constraints: we do not allow new
edges that would collide with existing content. Second, we do not
allow new edges if they form an angle smaller than the minimal in-
tersection angle of the examplar with the other edges connecting to
the same node, to prevent acute angles at road intersections. Both
the statistics and this minimal angle are extracted from the exemplar
(see Figure 7).

Figure 7: Village synthesis. Distribution from an exemplar (left) is
used to generate a larger village (right).

Parameter learning. Similarly to the histograms computed for
point distributions, we compute normalized histograms of edge
lengths and of angles along a path in the input graph. To be able
to define successive angles along a path, the input graph is repre-
sented as a set of paths that may possibly intersect (such as a set of
intersecting roads in a city layout). Nodes are automatically added
at the intersection points between these paths before computing the
interaction histograms associated to the distribution of graph nodes.

4.3 General Synthesis Algorithm

In the previous steps, we have described how all the histograms are
extracted from an example scene. They are stored as one distribu-
tion in the palette. New content is created within an active region
ϕ using the distribution. We successively generate scene objects in
this region, each category at a time, using our predefined priority or-
der. For distributions generation we use Metropolis-Hastings Sam-
pling (MHS) (Section 4.1), while graphs are created using MHS for
nodes generation and a marching algorithm for edges (Section 4.2).

To enable local synthesis while maintaining consistency with neigh-
boring regions, we apply MHS in the active region ϕ, but include
all the elements in the region of influence I when evaluating f(X)
and f(X ′) in Equation (1). This allows for adding or suppressing
points depending on neighboring data. Moreover, when creating
graph edges, we include nodes in the region of influence as candi-
dates for new neighbors along a path, which avoids the generation
of too many disconnected components.

5 Example-based Editing

In the previous section, we detailed how we analyze and synthe-
size scene elements that are used for the generation of new vir-
tual worlds. In this section, we present new operators that are used
to edit virtual worlds using example-based synthesis. Our opera-
tors are inspired by editing operators commonly used in painting
systems, such as copy-paste, color interpolation, gradient, brushes,
move, and stretch. In fact, our operators can be thought of as a gen-
eralization of those operations, because the common operations are
their special case.

5.1 Copy and Paste

Painting systems use the copy-paste operation to duplicate a portion
of a scene. This is less suitable for randomized parts of virtual
worlds, which usually exhibit statistically similar details, but never
identical arrangements.

Our approach to the copy-paste operation is not to copy the exact
arrangement of elements, but the distribution of elements, i.e., the
interaction statistics computed from the analysis of the underlying
selected part of the scene. When pasting, a new arrangement is
generated, with the statistical properties from the exemplar. In this
way, each region will be unique, but similar to the input.

Figure 8: Pasting without any region of influence results in visu-
ally discontinuous clusters (left), while using a region of influence
achieves consistent blending with the surroundings (right).

To perform the copy-paste operation (see also the accompanying
video), the user first traces the contour of the region ϕc to copy.
The elements in ϕc are analyzed, a new distribution is created, and
stored in a palette. The user then traces a new active region ϕp for
the destination. All the objects in this region are removed, as well
as graph edges that intersect this region, and the synthesis method



from Section 4 generates new objects. This operation is environ-
mentally sensitive, i.e., it takes the region of influence around ϕp
into account for consistency with the surrounding, as illustrated in
Figure 8.

Note that ϕc and ϕp can have arbitrary shapes and sizes. However,
when copying, the size of the selection region ϕc can have a major
impact on the learned histograms, and therefore on the result of a
copy operation, as illustrated in Figure 9.

hrdf

d

hrdf

d

Figure 9: The same input scene can be used to generate a dense
forest (top) or isolated tree clusters (bottom) depending on the se-
lected region (blue contour on the left).

5.2 Distribution Interpolation and Gradients

Following the analogy with painting systems, we provide tools that
blend our procedural distributions and allow creation of gradients
and brushes with opacity masks.

Distribution interpolation. Let us recall that a distribution is a
set of interaction histograms computed by analyzing an exemplar.
Distribution interpolation means an interpolation of corresponding
histograms.

The histogram interpolation is achieved by using optimal mass
transport within the analyzed interaction histograms [Read 1999],
which is based on the inverse cumulative density function. Contrary
to direct value interpolation, this method performs a more intuitive
interpolation of histogram shapes (see Figure 10). Indeed, a naı̈ve
interpolation of two Gaussian shapes does not result in a Gaussian
shape, but in a fade-in-fade-out between the two shapes. In con-
trast, mass transport interpolation results in a Gaussian shape with
parameters being interpolated from the two initial shapes.

Gradients. Our approach to distribution interpolation can be ex-
tended to a gradient tool that takes two distributions as input, and

Distribution 0 Distribution 1Interpolated distributions

t = 0,5 t = 0,75

d

hrdf

d

hrdf

d

hrdf

t = 0,25

d

hrdf

d

hrdf

Figure 10: Interpolation between two distributions using parame-
ter t. Mass transport is used to interpolate between the start and
end histograms (bottom), resulting in the expected visual transition
(top).

generates object distributions with a distribution interpolated at dif-
ferent levels within the active region. Distribution gradient is a
generalization of distribution interpolation with histograms being
interpolated with respect to the position of the evaluated point xi,
i.e., during the synthesis process, f(X) is computed by using a dif-
ferent interpolated distributions for each point xi ∈ X . The value
of the interpolation coefficient t is determined by the position of
xi in the active region ϕ. For instance, for axis-aligned bounding
box regions, t is the projection of xi on the box axis, normalized
by its width; for circular regions it is the normalized distance to the
center.

To speed up calculation we precompute N interpolated distribu-
tions and we select on the fly which of them is to be used depend-
ing on the point position. N can be a fixed value, or be adaptively
calculated from the size of the region. Figure 11 shows an example
of gradient application to tree distribution over isolated islands.

Figure 11: An example of linear gradient operator applied with the
two exemplar distributions in insets.

5.3 Brushes

A key aspect of the interactivity of our method is the ability to paint
distributions and structures directly into a scene. We show in this
section (and in the accompanying video) how to use the operations
presented previously to design a new interactive painting-like tool
for modeling virtual worlds.

We use procedural brushes, where the region for synthesizing
evolves along the brush path. Within the path we compute a number
of synthesis steps, each of them taking into account the previously
synthesized regions, similarly to the gradient tool (Figure 12).
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φk-1φk-2
φk-3

Ω φk-1φk-2
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Figure 12: Two successive steps of a brushing gesture. The blue
points are synthesized in ϕk, while taking into account Ik = Xk ∪
{ϕi, i ≤ k}. The new points respect the distance properties with
the existing ones.



During a single brushing gesture, all synthesis regions {ϕk} are
stored. When the brush moves sufficiently far along the brushing
path (user-defined parameter), we remove all existing objects in ϕk
except those objects in ϕi, for i < k. Then we synthesize new
objects in ϕk while considering the region of influence Ik = Xk ∪
{ϕi, i ≤ k}. See Figure 13.

Figure 13: The brush operator in action (from left to right, top to
bottom): objects are successively created along the path followed
by the brush, while remaining consistent with the objects in the re-
gion of influence, also following the path.

5.4 Move

If the user moves a region to a new location, the displaced objects
should be constrained by the new surrounding objects and by the ex-
ternal constraints of the terrain at the new location, while preserving
as much as possible the original arrangement. For instance, when
moving a forest along a terrain, the underlying slope should affect
the tree arrangement. The copy-paste operator cannot be used, be-
cause it would generate completely new arrangements at each dis-
placement step, resulting in annoying visual flickering.

We provide a new algorithm that allows moving an existing selec-
tion. The goal of the moving gesture is to adapt a set of objects
to a new environment. Our algorithm is based on the Metropolis-
Hastings synthesis method. Starting with the objects within the re-
gion, we randomly choose an existing point p and apply to it small
displacement perturbations, instead of births, to find a new loca-
tion p′. We favor local displacements to preserve the visual ap-
pearance of the original object arrangement that is moved. The new
position is accepted using the standard Metropolis acceptance prob-
ability (Equation (1)). By also performing death steps, objects with
very small probability values are removed from the scene. When
objects cannot be adapted and are removed, we allow the equiva-
lent number of births to preserve the total number of objects that
are being moved. Consequently, this algorithm enables local adap-
tation of scene objects to their new environment and removes in-
consistent ones. We prevent the generation of new objects in order
to best preserve the original arrangement, and to reduce popping of
objects while moving. However, this can lead to a new set of ob-
jects not respecting the exemplar distributions, for instance having
more or less trees than the new environment allows. In such situa-
tion, the user can still edit the results to fix the local appearance, or
use the copy-paste tool to generate new sets of objects respecting
better the exemplar distributions. Figure 14 shows an example of
the translation of a selected region.

Figure 14: Left to right, top to bottom: Moving a selection while
maintaining constraints, and favoring object displacement rather
than births and deaths, to increase temporal coherence.

5.5 Seamcarving-based Stretching

Linear scaling deforms the arrangement of elements. Instead, we
adapted the seamcarving algorithm [Avidan and Shamir 2007], that
seamlessly deforms images, by finding paths (cuts) of least-energy
in the original image (i.e., traversing smoothly varying pixels) and
using these paths to remove pixels (scale down), or add pixels (scale
up) with interpolated distributions. When the user scales a region in
our system, our seamcarving algorithm finds a cut that minimizes
scene deformation. We then only deform the objects near the path,
thus preserving the rest of the scene.

Energy map. To identify the best cut within the scene, we compute
the path of the least-energy within the scene, in the direction per-
pendicular to the main deformation. The energy function expresses
the cost of cutting through the scene at a given location. Our scene
is continuous so we first rasterize it into a 2D grid and calculate a
repulsion energy e(p) that is inversely proportional to the distance
to the nearest objects:

e(p) =

(
min
oi∈O
{d(p, oi)}

)−1

,

where oi ∈ O is an object, i.e., a point in a distribution or an edge
in a graph.

Resizing. To stretch a portion of a scene, we use a move opera-
tion for the objects on one side of a cut, and synthesize new ob-
jects in the free space left (Figure 15 top). To shrink, we fold the
selected region onto itself along a cut by using a move operation
(Figure 15 bottom). Figure 16 shows an example of scene stretch-
ing.

6 Implementation and Results

We developed a prototype of the interactive application that im-
plements the methods and algorithms discussed in this paper. Our
system is implemented in C++ and uses OpenGL. All results were
generated on an Intel R© Xeon R© E5-1650 CPU, running at 3.20 GHz
with 16 GB of memory, and rendered with an NVidia 660GTX
GPU. All analysis and synthesis computations were performed on
a single CPU thread. The terrain geometry and the stylized map are
procedurally generated on GPU using GLSL shaders.

Optimizations and considerations. We have taken advantage of a
few ways to optimize synthesis. First, synthesizing element cat-
egories in order of priority is more efficient than creating them
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Figure 15: Stretching (top, from left to right) and shrinking (bottom). The best cut is first computed. Stretching: the region at the right of
the cut is moved to the right (which removes overlapping objects), and new objects are synthesized in the free space using a distribution
extracted from the moved region. Shrinking: objects within the cut region are removed, those to the right are translated while taking their
new surrounding into account, with the synthesis of new arcs.

Figure 16: Seamcarving-based stretching. Top: Initial arrange-
ment. Bottom: New trees have been seamlessly inserted in the
empty region, preserving the visual appearance of the distributions.

within a single loop, because only interactions with the already-
created categories of elements are taken into account when com-
puting f(X). Second, the acceptation ratio of a birth in the
Metropolis-Hastings algorithm (Equation (1)) can be optimized as
follows. Since f is defined by a product of probabilities, and X
and X ′ = X ∪ {p} are almost identical, the acceptation ratio can
be simplified:

Rb =
A
nX

f(X ′)

f(X)

=
A
nX

∏
CYk
≤CX

∏
xi∈X′

∏
yi∈Yk

hX,Yk (xi, yj)∏
CYk
≤CX

∏
xi∈X

∏
yi∈Yk

hX,Yk (xi, yj)

=
A
nX

∏
CYk
≤CX

∏
yi∈Yk

hX,Yk (p, yj).

A similar simplification applies to the death ratio. Consequently,
when performing a small perturbation of an arrangement (i.e.,
adding or removing a few elements), only the probability associ-
ated to these elements need to be computed, which greatly reduces
computation time.

Since islands are modeled using dense point clusters in our method
(see Table 1), while they are generally represented as closed con-
tours in the input scenes, we provide an automatic method for creat-
ing dense point clusters from closed contours: we generate a dense

set of points in the region within the contours using a jittered grid.
Although computed as new dense clusters of particles, synthesized
islands and lakes are rendered as contours by tracing a contour
around dense clusters. This keeps our model transparent to the user.

Our implementation achieves interactive feedback for example-
based synthesis of virtual worlds that include various types of ob-
jects, structured or not, while capturing their interactions. While
using this inverse method alone would only generate homogeneous
scenes, the way we embed it within an interactive painting system,
provides the user with a variety of intuitive editing tools, enabling
both coarse and fine scene editing.

Examples. Figures 1, 18, and 19, as well as the accompanying
video show examples generated with our prototype modeling sys-
tem. We applied our methods to several example scenes, includ-
ing 2D scenes built from imported artworks in the form of ancient
maps, and 3D vector virtual worlds composed of a variety of ele-
ments. Each tool was used on several occasions on several exam-
ples.

The large scene synthesis in Figure 18 applies our system to the de-
sign in a style of an ancient map. The user imported a vector map
(top left) into our system (top right), from which several distribu-
tions were created and were then used for editing the map (bottom).

Figure 19 shows an example of a virtual world fully created and
edited with the methods presented in this paper. For instance, we
used gradients to create tree and island distributions, some larger
islands were generated with brushes, while roads and small settle-
ments were created using example-based copy-paste. The entire
scene (more than 4000 objects) was created in less than two hours.

User evaluation. Our system was tested by fourteen users, includ-
ing three professional computer artists, one of which with experi-
ence on designing ancient-looking vector maps with standard soft-
ware. Each session started with a 5-minute introduction to the sys-
tem and its tools. After a short training each subject was asked to
recreate an existing scene, composed of mountains, lakes, forests,
houses, and orchards in an allocated time of 20 minutes. Then we
presented to the users a scene with mountains, and asked them to
reproduce a given pattern of trees, rocks, and grass on a large part
of the terrain. We asked them to first place each element manu-
ally and then using our tools. We measured both times to evaluate
the efficiency of our method. After, we asked the users to answer
a questionnaire that evaluated the tools and we asked them to pro-
vide their general experience. We used four-value scale (1-strongly



disagree, 2-disagree, 3-agree, 4-strongly agree).

The results confirmed the ease of use of the different tools and the
potential for high impact of our concept. The users enjoyed us-
ing the tool, and confirmed that it was easy to use. Moreover, they
felt that the tools helped them to be more creative. They appreci-
ated the scene editing efficiency. Their creation task took around
1.9 minutes with our tool and 3.7 minutes manually. The experi-
enced artists declared that our method outperforms classical mod-
eling techniques and would be a great integration in editing sys-
tems. More precisely, the users enjoyed the variations produced
by our synthesis process, where objects are not copy-pasted, but
their statistical properties are used to create new content. They also
enjoyed the automatic slope consistency respect when groups of
objects are moved over a rugged terrain. The results of the ques-
tionnaire were: “I enjoyed using the method”: 3.5, “The method
is easy to use”: 3.5, “The method helped me to be creative”: 3.0,
“The method allowed me to create content efficiently”: 3.4. More-
over, the experienced artists claimed about the map editors: “This
method outperforms classical modeling techniques/editors”: 3.8.

Our ability to capture interactions between categories of objects
rather than only distributions (enabling for instance to create rocks
surrounded by grass) was noted as really useful. The map-
specialized artist, who used to manually compose maps with Adobe
Photoshop, was quite impressed. She thought that our system can
be a very good tool for composing complex maps. With Adobe
Photoshop, she had to spend hours designing small islands along
a continental coast; she could do it within a few minutes with our
tools.

Performance. The analysis of a complex scene is fast, and gener-
ally takes less than a few milliseconds. Synthesis, even for large
scenes with dense distributions, is usually completed under a few
seconds, thus allowing for interactive design. Because objects in-
teract only with other objects of a higher priority, the complexity is
O(m(m + 1)/2) = O(m2) for m categories. The actual detailed
complexity of each operation depends on the number of objects in-
teracting and on the actual algorithm.

We observed that in general, thanks to our extension to radial ba-
sis functions (Section 4.1) to overcome window-edge effects, our
method is robust to exemplars with only a few (about 10) objects.
However, the more complex the interactions between objects of dif-
ferent types, the more cases in exemplars are needed to capture their
joint distributions.

To improve computational time, we have used the density of a given
category of objects to parameterize the number of iterations for syn-
thesis: small groups of objects can be created in a few iterations,
while a dense set of objects may require many iterations. This so-
lution proved to be a good trade-off between accuracy and speed.
However, it sometimes fails when objects distributed with low den-
sity have complex behaviors due to many interactions over a large
region. In this case, more iterations would be needed. The number
of iterations could alternatively be controled as a user parameter, to
better match the artist’s needs.

Table 2 shows statistics of the computation time for the examples
from the paper.

Limitations. One limitation of our method is that the object types
and categories need to be preset. A more flexible approach would
be to analyze and synthesize scenes without a priori knowledge,
similar to recent example-based synthesis techniques [Hurtut et al.
2009] or inverse procedural methods [Yeh et al. 2012]. The environ-
mental sensitivity could go further into implementing more intricate
relations. For example the egress rule for each house is hardcoded
in our implementation, but could be learned from the context.

Figure m n Synthesis Terrain
Fig. 1 (center) 4 83209 13.9 –
Fig. 1 (right) 3 522 0.16 0.35
Fig. 7 4 235 0.13 –
Fig. 11 2 3936 0.71 0.42

Table 2: Computation times (in sec) of our example-based synthe-
sis algorithm, where m is the number of categories, and n the total
number of synthesized objects. Terrain is the generation time of the
heightmap or the stylized map, each of resolution 2048× 2048.

Another limitation is the fact that object distributions may have var-
ious properties within the same analyzed scene. Adding more gran-
ularity to the method would automatically segment the scene into
cells and compute independent distributions in each cell. This ap-
proach would be particularly useful for the seamcarving operation:
the latter currently computes a single distribution to fill the new part
of the scene, while this region should rather been filled with several
different distributions.

Last, our synthesis algorithms work well for natural scenes with
chaotic arrangements, but are not adapted to complex scenes with
lots of semantics in the arrangements, such as 2D vector art, or
streets and other urban scenes. An example of this arrangement
where the trees follow a curve is shown in Figure 17).

Figure 17: An example of a failure case. The spiral arrangement
of trees (left) cannot be reproduced by our system (right), since we
only capture pairwise distributions of distances and orientations.

7 Conclusion

We presented a framework for the interactive design of consistent
virtual worlds. We exploit the intuitiveness of state-of-the-art paint-
ing and editing tools that we combine with the power of procedural
modeling. We overcome the main problem of procedural model-
ing, by learning parameters of procedural models into statistical
models from examples, and we overcome scalability issues of in-
teractive methods by incorporating procedural models into the de-
sign process. Using the parameters learned from some example
scenes, the user can freely paint consistent distributions of objects
and structures using procedural brushes, or edit scenes with a vari-
ety of adapted operations such as move, copy-paste, or stretch. We
demonstrate our framework on a variety of examples ranging from
simple scenes edited with consistent procedural content generation,
to the creation and reuse of large scenes.

Possible avenues for future work include a better model for inverse
procedural modeling, where structures can be synthesized as gram-
mars, or the integration of semantics to better synthesize complex
scenes with meaningful arrangements, such as houses facing roads
or gardens behind houses. The Metropolis-Hastings algorithm is
the most time-consuming part of our implementation; it could be
further optimized with a parallel implementation. Last but not
least, virtual worlds are multi-resolution by nature: an interesting



Figure 18: Top: An example using vector input data (left) was im-
ported in our system and rendered as an ancient map (right). Bot-
tom: Manual editing by using our painting system enabled seamless
insertion of the new content, with a perfect match between the new
and the old parts.

direction of research would be to generalize our concept to a multi-
resolution framework, where the user could perform the operations
at different levels of details, such as painting village distributions
over a map, then zooming in to create distributions of streets and
houses, and finally zooming out to again modify consistently entire
villages.
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