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(a) Input urban Area

(b) Initial segmentation (c) Our decomposed roofs and roof ridges

Figure 1: Our method automatically generates procedural roofs for an input urban area. (a) An input urban area from SpaceNet dataset
[VLBI18]. (b) The initial segmentation (Mask R-CNN [HGDGI17]) of (a). (c¢) Our decomposed roof parts and predicted ridges. (d) Our
generated procedural roofs rendered on top of real image (a).

Abstract

Urban procedural modeling has benefited from recent advances in deep learning and computer graphics. However, few, if any,
approaches have automatically produced procedural building roof models from a single overhead satellite image. Large-scale
roof modeling is important for a variety of applications in urban content creation and in urban planning (e.g., solar panel
planning, heating/cooling/rainfall modeling). While the allure of modeling only from satellite images is clear, unfortunately
structures obtained from the satellite images are often in low-resolution, noisy and heavily occluded, thus getting a clean and
complete view of urban structures is difficult. In this paper, we present a framework that exploits the inherent structure present in
man-made buildings and roofs by explicitly identifying the compact space of potential building shapes and roof structures. Then,
we utilize this relatively compact space with a two-component solution combining procedural modeling and deep learning.
Specifically, we use a building decomposition component to separate the building into roof parts and predict regularized
building footprints in a procedural format, and use a roof ridge detection component to refine the individual roof parts by
estimating the procedural roof ridge parameters. Our qualitative and quantitative assessments over multiple satellite datasets
show that our method outperforms various state-of-the-art methods. (see https://www.acm.org/publications/class-2012)

CCS Concepts
» Computing methodologies — Shape analysis; Image-based rendering;

1. Introduction shapes. By having the ability to quickly and automatically model
real world urban areas, and to easily edit them, procedural model-
ing enables many what-if scenario tools as well as flexible content

creation.

Urban procedural modeling has had great success in computer
graphics due to its ability to generate detailed 3D content for a va-
riety of applications including animation and games, city planning,

autonomous driving, and urban sustainability. Procedural modeling
methods exploit man-made patterns and their regularity (in our case
of urban structures: walls are straight and parallel, corners have pre-
determined angles, etc.) in order to succinctly express the possible
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Since the seminal paper of Parish and Miiller [PMO1], numer-
ous works have concentrated on city-scale modeling [VABW09;
AFS*11], road modeling [CEW*08; GPMG10], parcel modeling
[VKW#*12], building modeling [MWH*06; WWSRO03], and facade
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Figure 2: Pipeline. Our approach consists of a building decomposition component and a roof ridge detection component. A single satellite
image gets segmented by a building instance segmentation model (e.g., Mask R-CNN [HGDG17]). And our components directly work on the

initial segmentation image and generate procedural urban output.

modeling [BSW13; MZWGO07; SHFH11; ZXJ*13]. Since it is dif-
ficult to define and cumbersome to write detailed procedural mod-
els of large areas, many works have focused on automatic cre-
ation of procedural models, or inverse procedural modeling, of-
ten starting from one or more photographs; for example, city-scale
modeling [VGA*12; KFWM17; ZSBA20], tree creation [SPK*14;
HBDP17], building modeling [NGA*16; NBA18; ZWF18], and fa-
cade generation [ZMA20]. However, few works have focused on
automatically generating procedural roofs from images and almost
none from a single image. In this paper, we address automatic
generation of procedural roofs using only a single satellite image.
Hence, the approach is highly scalable and can be used to create
content representing roofs from many cities worldwide, thereby
enabling large-scale content creation, supporting urban planning
applications such as for solar panels, heating/cooling design, and
more.

Our key inspiration is that while a single image does not contain
significant z-values (i.e., 3D) information, we can exploit that the
space of possible man-made building roofs in typical urban settings
is constrained. In particular, we identify that the space of potential
building shapes and roofs (PBSR) can be explicitly enumerated,
enabling > 90% coverage as observed in our preliminary experi-
ments. Hence, together with the aforementioned regular properties
of man-made structures, we can robustly infer urban geometrical
details from a single satellite image, despite noise and occlusions.
With the help of a deep learning framework, we demonstrate cre-
ating accurate procedural models of roofs exceeding the ability of
prior methods.

Our automatic procedural modeling approach consists of two
main components. First as a preprocess, we take advantage of re-
cent deep segmentation models (e.g., Mask R-CNN [HGDG17]) to
produce an initial building instance segmentation of the input area
(Figure 1 (b)). Then, our building decomposition component parti-
tions the building image according to the PBSR space (i.e., a deep
learning framework exploiting the potential building shapes and
roofs space). This results in a regularized building footprint (e.g.,
straight walls, parallel walls, corners with predetermined angles,
symmetrical arrangements) represented as a parameterized proce-
dural building footprint and a set of initial procedural roof parts
(Figure 1 (c)). Further, our roof ridge detection component refines
the procedural roof structure by inferring ridge parameter values of
individual roof parts (Figure 1 (c)). The final output is a synthetic

procedural generation of the initial input area, as shown in Figure 1

(.

Our framework yields both improved results over prior meth-
ods and produces discrete vector-based procedural structures, all
from a single satellite image without the need of high-resolution
aerial images, LiDAR or point-cloud data. In our comparisons to
multiple techniques used well-established datasets, our method is
consistently better than prior work both quantitatively and qualita-
tively. As far as we know, our work is the first pipeline to handle
building footprint regularization, building decomposition, and roof
ridge prediction all together given a single un-annotated satellite
image. We anticipate our work will inspire various future directions
for urban structure modeling at a large scale.

Our approach is summarized in Figure 2. As a preprocessing
step, individual building images {b1,...b;,...} and corresponding
segmentations {si,...s;,...} are extracted from the input satellite
image B and the segmentation image S (e.g., s; is cropped from §
based on a loose oriented bounding box of the building instance).
These are then given to the building decomposition D and roof
ridge detection R components to yield the procedural output P. In
summary, our main contributions are as follows:

e anovel potential building shape and roof space (PBSR) which is
relatively compact and able to express over > 90% of the roofs
found in the well-known datasets used (Section 3.1),

o aframework to generate regularized building footprints (Section
3.2) and roof parts (Section 3.3) in a parameterized procedural
representation, and

e a synthetic training dataset which provides a flexible combi-
nation of building shapes and roof types suitable for various
deep learning networks and avoids time-consuming and expen-
sive data annotations.

2. Related Work

Our work builds on procedural and inverse procedural modeling,
generative modeling (e.g., deep learning), and building footprint
extraction and roof reconstruction in order to automatically produce
procedural roofs from a single satellite image.
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2.1. Procedural and Inverse Procedural Modeling

One popular method that offers an effective way of generating
complex, parameterized 3D urban models is procedural and in-
verse procedural modeling [PMO1; MWH*06; WWSRO03; VAB10;
VGA*12; BYMW13; RMGH15; DAB16; NGA*16; KFWM17;
NBA18; ZSBA20]. Procedural programs generate high-quality and
human-editable urban geometry when executed. Inverse procedural
modeling finds a procedural representations of provided input data.
Demir et al. [DAB16] used similarities in architecturals models to
inversely generate procedural models. Kelly et al. [KFWM17] de-
scribed a method to fuse street-level imagery, GIS footprints, and
a coarse 3D mesh to produce 3D urban building mass and facade
models. Nishida et al. [NBA18] present an interactive tool that al-
lows users to automatically generate a procedural building from
a single image of the building. Zeng et al. [ZWF18] trains deep
neural networks to procedurally apply shape grammar rules and re-
construct CAD-quality models from 3D points. Nevertheless, none
of these methods focus on roof reconstruction from a single (over-
head) satellite image. More recently, Zhang et al. [ZSBA20] intro-
duced an automatic approach to generate a 3D urban procedural
model, based on a segmented and labeled satellite image. However,
this work focuses on low-resolution satellite imagery (> 3m per
pixel) and aims to generate statistically and visually similar. Be-
sides, it requires additional population, elevation, and Open Street
Maps datasets.

2.2. Generative Modeling

In contrast, the recent explosion of research in deep learning
has led to deep generative models [RMC16; KGS*18; KALLI18;
MKKY18; XZH*18; KLA19; NCC*20; QZF20] which can be ap-
plied to 3D modeling. Given enough training data, theoretically
they can learn to generate plausible urban structures with broad
variability. In particular, Kelly et al. [KGS*18] introduce a pipeline
to automatically and realistically decorate building mass models
by adding semantically consistent geometric details and textures.
House-GAN [NCC*20] employs a generative adversarial network
for floor-plan generation, while requiring room adjacency relations
as input. Subsequently, Roof-GAN [QZF20] presents a novel gen-
erative adversarial network that generates structured geometry of
residential roof structures as a set of roof primitives and their rela-
tionships. However, these approaches are aiming to generate plau-
sible urban structures with broad variability, and not focusing on
accurate reconstruction. Their outputs often yield unrealistic out-
comes and representations that are challenging to further edit, es-
pecially when considering intricate structural details and structural
regularities of urban spaces. Besides, the aforementioned methods
typically depend on a set of well-annotated datasets to train deep
neural models, and none of them works on a single satellite image.

2.3. Building Footprint Extraction

Many state-of-the-art deep segmentation networks (e.g., [LSD15;
RPB15; CPK*15; BKC17; CPK*17; ZDS*18; CZP*18; TAJF19])
can be applied to building footprint extraction. Specifically, Fully
Convolutional Networks (FCNs) [LSD15] introduce deconvolution
via upsampling operations and provide an alternative to fully con-
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nected layers in classification models. U-Net [RPB15] infers high-
resolution feature maps by joining the top-down and bottom-up
pathways with lateral connections. DeepLab [CPK*15; CPK*17;
CZP*18] maintains high-resolution by replacing strided convolu-
tion with atrous convolution. However, these approaches include
many more content pixels than boundary pixels. This imbalance
causes them to produce inaccurate building/roof edges.

To solve this challenge, polygon-based building boundary de-
lineation work has been proposed. These methods focus mainly
on active contours and on edge (point) assembling. In [MTK*18;
CLFU19], they present frameworks which utilize the strengths of
both CNNs and active contour models [KWT88] to produce an end-
to-end polygon-based output model. Although the active contour
approaches improve mask coverage compared to the aforemen-
tioned CNN-based semantic segmentation, blob-like contours that
do not match building boundaries are produced. In [LWL19; NF20;
ZNF20], these approaches start with detecting/extracting build-
ing primitives (e.g., corners, edges or regions) using CNNs and
then employ other techniques (e.g., RNNs, integer programming
or Graph Neural Networks) to assemble them leading to polygon-
based building outputs. However, the usability of these methods
is limited because they cannot predict complex shapes because of
deficiencies in primitive feature extraction and detection modules.
Moreover, the RNN and GNN modules are computationally expen-
sive and [NF20; ZNF20] require extra building corner and edge an-
notations. Recently, Li et al. [LLM20] design an algorithm pipeline
ASIP to improve the work of [LWL19] by extracting and vectoriz-
ing objects in images with polygons — we compare to this method,
amongst others, in our results section.

2.4. Building and Roof Reconstruction

Building and roof reconstruction is an active research area. How-
ever, it usually requires multiple data sources (e.g., LIDAR, DSM,
DTM, point clouds, etc.) and few works focus on reconstruction
from a single satellite image. Arefi and Reinartz [AR13] directly
detect roof ridges utilizing high resolution DSMs and orthorecti-
fied satellite images. Zheng and Zheng [ZZ17] propose a hybrid ap-
proach, combining the data- and model-driven approaches to gener-
ate LoD2 building models by using LiDAR, 2D building footprints
and high resolution orthophoto images. Li et al. [LYT*20] present
a novel approach to segment the roof planes from airborne LiDAR
point clouds using hierarchical clustering and boundary relabeling.
Ywata et al. [YDSdO21] introduce a method to extract building
roof boundaries in object space by integrating a high-resolution
aerial images stereo pair and three-dimensional roof models re-
constructed from LiDAR data. In [AAT19; AAH20], they work
on a deep learning-based approach to detect and reconstruct roof
parts of buildings from a single image. However, they require high
resolution aerial images and annotate the dataset for roof ridges
and building boundaries. In [MPBF20; WZB21], they present deep
learning based approaches for automatic 3D building reconstruc-
tion. However, they need elevation data (e.g., DSM) for training and
their results are not regularized. None of the mentioned approaches
automatically reconstruct roofs using only a single satellite image
as input.


xwzha
Highlight

xwzha
Highlight


X. Zhang & D. Aliaga / Procedural Roof Generation From a Single Satellite Image

3. Procedural Generation

In this section, we first give a general overview of the potential
building shapes and roofs space, and then describe the building de-
composition component including the processing details, synthetic
data creation and training of neural models. Then, we present the
roof ridge detection component in a similar manner. Note: Having
building decomposition component and roof ridge detection com-
ponent separate can significantly reduce the required training data
(i.e., if not, each building part must support diverse roof types with
different roof ridge configurations) and makes training more effi-
cient.

Table 1: Variables and their meanings.

variable | meaning

B an input satellite image of an urban area
bi a building image of B

S the segmented image of B

Si the segmentation of b;

m; the edge map of b;

D building decomposition component
P the building shape family of b;

c,-D the building configuration of b;

Tij the j,;, rectangle in cf)

R roof ridge detection component

ejj the edge map of 7;;

t,R the roof shape family of r;;

cflej the ridge configuration of r;;

To assist with terminology, we provide a table summarizing the
subsequent variables (Table 1).

3.1. Potential Building Shapes and Roofs (PBSR)

The PBSR is an approximation to represent all possible building
and roof structure combinations. For this purpose, we propose a
graph representation: each node stands for a singular roof and each
edge signifies the connection of adjacent roof parts.

3.1.1. Building Shape Families.

Considering the number of nodes (or roof parts see Figure 3) and
the different connection scenarios of roof parts, the number of pos-
sible building shape families is:

zl:Fz and Fz:;TU )

where F; is the i;;, building shape family defined according to the
number of nodes. T;; is the j;;, topology of F;, and T;; is defined
by the connections within F;. For example, the building shape fam-
ilies of Fj, F,, F3 and Fj in Figure 4 consist of one, two, three
and four roof parts respectively. By means of graph isomorphism
and the assumption of the graph being connected, F; and F, can
only have one topology, F3 can have two topologies, and F; can
have up to four topologies. Intuitively, the building shape "L" and
"T" belong to T»;. T3, includes "U" and "Z" building shapes (see
Figure 3). A closed four-side building shape is in T43. However,
131, 141, Tap and Ty4 are possible shapes but not common in the real

world. In summary, we can theoretically grow the space of possible
building shape families to larger values for i and account for any ac-
tual building. However, as discussed later, by limiting the possible
set of building shape families, and their configurations, to a rather
compact number, we can practically capture most buildings in our
datasets. For example, considering i up to 4 results in 8 possible
parameterized building shape families.

Figure 3: Roof parts. We show roof parts of certain building shapes
(I, L, T, U, and Z). For each, i) one or more roof parts in different
colors. ii) the corresponding building image.

Figure 4: Potential building shape families. We show building
shape families of F|, F», F3 and Fy. See main text for more details.

3.1.2. Roof Families.

As for roof families, we consider two edge types appearing in
typical roofs: external edges (e.g., eaves) and internal edges (e.g.,
ridges and hips). We assume the perimeter of a single roof part are
the external edges and the internal ridges follow the main direction
of the roof (e.g., parallel or perpendicular to eaves). Hips are the
internal edges that connect ridges to corners. In our current imple-
mentation, we support flat, gable, hip, pyramid and half-hip roof
families (see Figure 5) which includes most common types accord-
ing to [ZW15; PHK*15; PFA*17].

3.2. Building Decomposition Component

In this part, we describe the processing details of our building de-
composition component D, and also how we create a synthetic
dataset and train the classifier. As shown in Figure 6, the component
D consists of three parts: the previous described PBSR, a building
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(a) Flat (b) Gable (c) Hip (d) Pyramid  (e) Half-Hip

Figure 5: Potential Roof Families. We show our supported roof
families.

shape family classifier, and a building family configuration recog-

nizer.

Building Decomposition Component (D)

CNN Classifier —» C;gi’ggu:fzt:;n
f—l—f E—

PBSR

Figure 6: Building decomposition component.

3.2.1. Classifier

Taking the segmentation image s; as input, the CNN-based classi-
fier predicts the building shape family tl-D . The classifier network is
a ResNet [HZRS15] with a modification of the last fully-connected
layer to having the number of supported building shape families.
We train the classifier with 185,700 synthetic images (see Sec-
tion 3.2.3) and achieve 96.5% classification accuracy when testing
on segmentation images s;.

3.2.2. Configuration Recognizer

Next, we need to recognize the precise configuration of the deter-
mined building shape family. This enables producing a specific pa-
rameterized procedural output for the building footprint and subse-
quently for estimating roof parameters.

The configurations are determined by the arrangements of pa-
rameter values of roof parts. The parameters for each single roof
part (or node) is » = {x,y,w,h} (assuming it’s a rectangular roof)
where (x,y) is its top-left corner and (w, h) is its size. Thus, for all
building shape families, the total number of possible configurations
is

YY Y G and  Ci={rijrijias s Tijn )
i j ok

where Cjj is the ky, configuration of T;; and contains n(n > 1)
roof parts. However, this exhaustive list has redundancies that we
seek to omit to achieve better performance (e.g., faster search). We
ignore configurations that are affine transformations of other con-
figurations (e.g., translation, flip, mirror, etc.). Further, we split the
image into grids (setting grid size to 2 pixels) and iterate parame-
ters in the grid space. Additionally, according to our preeliminary
analysis of our used portion of SpaceNet [VLB18], roughly 90%
of building shapes are covered by I, L, T, U, and Z (see Figure 3) .
Hence, we only consider the families 77,731, 73, and Ty3. In sum-
mary, we support 4520 configurations in total.
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To search for the configuration of the current building shape
family t,D , we apply the following strategies. Since the configura-
tions only consists of canonical instances without those generated
by transformations, we apply a series of image processing meth-
ods to s;; e.g., cropping the s;, resizing the s; to size (120,120),
centering the s; with 4 pixels margin, and then applying transfor-
mations including flipping s; horizontally or vertically, and rotating
s; (e.g., 90, 180, 270 degrees) before searching for the configura-
tion. Eventually, we find the best match ch = {rit,-rij,Tig; }
using intersection-of-union (IOU) (the best IOU of transformed s;
and the generated footprint image based on a configuration). The
matched ciD will be passed to the roof ridge detection component
for subsequent processing.

3.2.3. Synthetic Data Creation and Training

While assuming building image inputs (e.g., b;) is an option, it re-
quires to manually annotate a large set of real-world training im-
ages for both building footprints and roof ridges. Instead, we lever-
age synthetic dataset to avoid labor-intensive annotations and thus
can do self-supervised training more easily.

Regarding the creation of a synthetic dataset, we consider build-
ing structure regularities. Buildings exhibit properties such as
straight walls, parallel walls, walls meeting at one of a set of pre-
determined angles (e.g., 90 or 135 degrees), symmetrical arrange-
ments, and other features. For the sake of simplicity, we focus on
straight walls, parallel walls and right angle regularities meaning
a rectangle represents each single roof part. Our synthetic dataset
consists of all the configurations of building shape families dis-
cussed previously. Additional types can be added to our dataset
easily.

Moreover, in order to handle noisy and irregular building foot-
print segmentation, aside from typical data augmentation tech-
niques (e.g., flip, translation, rotation, etc.), we add noise to our
clean/regularized synthetic images (see Figure 7 (a)). We apply ran-
dom occlusion or bumps (e.g., different shapes and sizes) around
the footprint boundaries. Based on preliminary experiments, we
furthermore include different levels of transformations (e.g., low-
noisy, medium-noisy and high-noisy: see Figure 7 ii) from left to

right) when training the classifier.
i)
A

(a) (b)

Figure 7: Data Transformation. We show (a) building footprints,
and (b) roofs. For each, i) clean and regularized synthetic images.
ii) Images after corresponding transformations.

3.3. Roof Ridge Detection Component

In the following, we provide details about estimating procedural
roof parameters, creating synthetic roof dataset, and training the
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roof family classifier. The component R (see Figure 8) also has
three parts: the previously used PBSR, a roof type classifier, and
a roof ridge configuration recognizer.

Roof Ridge Detection Component (R)

Configuration
Recognizer

=
i

CNN Classifier —

Figure 8: Roof ridge detection component.

3.3.1. Classifier

Given a building image b;, we first apply histogram equalization
to adjust color contrast, and then make use of an edge detector
([Can86] as default) to generate an initial edge map m;. m; is sub-
sequently cropped into an edge set {e;1,...¢;},...¢;q } following the
aforementioned configuration c,-D of b;. For any e;;, the classifier
predicts the roof family type for the corresponding roof part (or
node). The classifier network is a ResNet [HZRS15] with modifi-
cation of the last fully-connected layer to the number of supported
roof family types. We train the classifier with 119,500 synthetic
images and achieve 95.6% classification accuracy when testing on
edge maps e;;.

— o R
T &y

€i2

Figure 9: Roof Processing Step. We show an example to illustrate
how our recognize roof ridges and refine roof parts.

3.3.2. Configuration Recognizer

Given an edge set {¢;1,...¢;},...ejg, } of b;, the goal is to detect and
estimate the roof structures for the whole building. For example,
if g; = 1, b; consists of a single roof. We recognize the roof fam-
ily type and find the best matched configuration cﬁ by maximizing
supporting points in ¢;; and the candidate ridge coverage. The sup-
porting points are those edge points of e;; whose distance to the
candidate ridge line is smaller than a threshold value (e.g., setting
to 5% of the length of the candidate). If g¢; > 2, we need to refine
the sizes of roof parts (see roof part r;; in Figure 9). We start with
recognizing the roof family type for each e;;. Based on the result,
we decide the main roof part (e;; in Figure 9). Afterwards, we fo-
cus on iteratively refining the rest of the roof parts. We start with
decreasing the overlap area by half each time (binary search by
following the direction perpendicular to the main roof). For each
iteration, we predict the roof family type and and find the corre-
sponding best matched configuration until we find the best match-
ing (e.g., setting candidate ridge coverage to 90% and maximizing

the number of supporting points). In the end, it leads to the final
roof set ¢P; = {1,..7;j, ...Fig; } with their corresponding ridge con-
figuration set {c®;y,..cR;;,...cRig }.

Finally, we collect the roof set and roof ridge configurations of
each b;, and combine them into procedural output for B.

3.3.3. Synthetic Data Creation and Training

We generate synthetic roof images to support the roof family types
in Section 3.1. For the purpose of representing noisy and irregular
edge maps e;;, aside from typical data augmentation techniques, we
further transform the synthetic roof images by adding random noisy
curve lines and randomly removing small parts of the edges (see
Figure 7 (b)). During training, similarly we apply different levels
of transformations.

4. Implementation And Results

Our method is implemented in Python and we train our neural
network models using PyTorch. The weights of our classifiers are
trained by the SGD optimizer where initial learning rate is set to
le-3. Our typical input image sizes are (H,W,C) = (128,128,1).
It runs on an Intel 19 workstation with NVIDIA RTX 2080 8GB
cards. We quantitatively and qualitatively evaluate our approach on
multiple satellite datasets.

4.1. Datasets

We test our components on three satellite datasets across different
regions in the world and at different spatial resolutions (30 cm and
50 cm).

SpaceNet: This dataset [VLB18] contains building footprints in
five cities across the world. In our experiments, we use the Las Ve-
gas region (because it has small off-nadir angle which minimizes
foreshortening effects) which contains over 3,800 tiles of 200m x
200m areas with a spatial resolution of 30 cm. Each tile comes
with an 650 x 650 pixel RGB satellite image, a high-resolution
panchromatic image, a low-resolution multi-spectral image, and
ground truth building footprint annotation. For our purposes, we
only use the RGB satellite image, and we train a footprint segmen-
tation model based on Mask R-CNN [HGDG17] as the benchmark.

CrowdAI: The CrowdAl dataset{ MCK*20] contains 340,000 to-
tal tiles with 300 by 300 pixel RGB images at a 30 cm spatial reso-
Iution. Building footprint annotations are also provided. Regarding
the segmentation model, we directly use the provided Mask R-CNN
to generate the initial segmentation results.

Urban3D: Urban3D dataset contains 236 tiles of 2048 x 2048
pixel images and annotations with a spatial resolution of 50 cm.
Each RGB tile in this dataset is accompanied by its Depth Surface
Model and Digital Terrain Model (DSM and DTM), which provides
high-resolution building height information. We train a segmenta-
tion model based on DeepLabv3+ [CZP*18] to achieve the initial
segmentation.
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4.2. Evaluation Metrics

We rigorously evaluate our outputs from both building decomposi-
tion component and roof ridge detection component. In particular,
we evaluate both pixel-wise correctness and structure regulariza-
tion for building footprint. For roof ridges, we assess the perfor-
mance in terms of a hit ratio, completeness, and correctness metric.

4.2.1. Building Footprint

For pixel-wise correctness evaluation, we use the following statis-
tical measures:

A TP+TN

ccuracy = ———
YT AL
Precisi TP

recision = ————

TP+FP

Recall — — P 3)
TP+FN
Fl—2x Precision * Recall

Precision+ Recall

with true positives TP, false positives F P, true negatives TN, and
false negatives F'N for building and non-building.

For building footprint regularization evaluation, we follow the
observation that building walls are typically parallel or meet at cor-
ners of predetermined angles (90, 45 or 135 degrees). Hence, for
the polygonal outline of a building footprint, we compute the in-
terior angles in degrees (within [0, 180]) for each vertex. Then, we
cluster corners of similar angles into a group g; and all groups form
part of the set G. The regularization error of E; is defined as:

E— Z stdvar(g;)

scale(g;) +wrllGl, )

8i
where stdvar(g;) measures the standard deviation of angles in g;,
scale(g;) is used to approximately normalize the error — we set
scale(g;) to 5 in our experiments. ||G|| is the number of corner
groups. We add ||G]|| to encourage fewer and thus larger groups.
wy is a weight that balances the two aforementioned terms — we set
wr = 0.1 in our tests. It’s easy to recognize that a rectangular build-
ing footprint whose walls are parallel and corners are all 90 degrees
has E, = 0.1 since the stdvar(g;) = 0 and ||G|| = 1.

4.2.2. Roof Ridges

With regard to roof ridge evaluation, we adapt and modify the rele-
vant definitions of correctness and completeness from [HMWJ97].
Correctness represents the percentage of the predicted roof ridge
which lies within a rectangular buffer around the ground truth ridge.
We set the buffer width to be 0.1 times the length of ground truth
roof ridge (which results in a width of typically 2-4 pixels). Using a
similar strategy, completeness is the percentage of the ground truth
which lies within the buffer around the predicted ridge. Hence, we
define correctness and completeness for roof ridges as follows:

length of matched prediction

Correctness =

length of prediction )
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length of matched ground truth

Completeness =

length of ground truth ’ ©

In order to be consistent with footprint evaluation, we also eval-
uate ridges per entire building. Since a single building commonly
contains more than one roof ridge, we apply weights to balance
the importance of the multiple ridges based on their length. For
easy illustration, we assume the building has a set of ridge lines
{li,...,1;,....} and the corresponding weight set is {w1,...,w;,....}.
We define:

zl ||l |y\| if i, ridge is found (predicted)
wi =< Lillli
0 otherwise

where [|/;|| is the length of the ridge /;. "Found" means that both
correctness and completeness of the ridge are bigger than a thresh-
old (setting to 0.3 in our experiments). Hence, the correctness and
completeness per building is

Correctness per building = Z wj * correctness(l;)
i

o (N
Completeness per building = Z wi * completeness(l;)
i

Additionally, we define another term to represent how many of
the ridges have been "hit" (or found) by our method. This term
also considers the relative importance of each ridge, and thus is
computed as a percentage by summing the aforementioned weights
of the (found) ridges:

Hit Ratio =Y ||wil, (8)
i

4.3. Building Footprint Comparison

Although our approach aims to generate procedural roofs, regu-
larized and parameterized procedural building footprint are pro-
duced by our building decomposition component as an interme-
diate output. We compare this intermediate result to the outputs of
other methods. We selected tiles at random but that are at least al-
most orthorectified. To be specific, we test on 7 random tiles of
SpaceNet (which corresponds to 180 buildings), 10 random tiles
of CrowdAl (resulting in another 65 buildings), and 1 random tile
of Urban3D (producing another 415 buildings). We compare our
generated building footprints to the initial segmentations of each
dataset (see Section 4.1) and a state-of-the-art building footprint
delineation method ASIP [LLM20]. The initial segmentation for
each of the datasets is in the first row in each group of Table 2. For
ASIP, we set p = 1072 and A = 107> as recommended by their
paper and apply their tool to generate results in a polygon format.

As shown in Table 2, our method is slightly less in accuracy and
precision, but always achieves better recall (meaning our results
are more complete) and F1 score performance (Note: only F1 of
CrowdAl is not the best) for all three datasets compared to the best
model in terms of footprint correctness (e.g., for SpaceNet, our ac-
curacy and precision is 0.5% and 1.1% lower, but our recall and
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Table 2: Quantitative Comparison. We compare our building foot-
prints with the initial footprint segmentations and the ASIP method
[LLM?20] for SpaceNet, CrowdAl and Urban3D datasets. For foot-
print correctness, higher is better. For regularization error, lower
is better. Note: our E; of our approach is 0.1 which has been ex-
plained in Section 4.2.1.

Footprint Correctness

Dataset Method A, Pre. Roc. B E,
Mask R-CNN | 89.5% | 95.1% | 86.9% | 90.4% —

SpaceNet ASIP 89.0% | 94.6% | 86.4% | 90.0% | 1.79
Ours 89.0% | 94.0% | 88.6% | 90.8% | 0.1

Mask R-CNN | 944% | 92.3% | 89.8% | 90.8% —

CrowdAl ASIP 93.9% | 92.0% | 88.7% | 90.0% | 1.52
Ours 93.1% | 88.9% | 91.9% | 90.2% 0.1

DeepLabv3+ | 86.4% | 81.0% | 85.3% | 81.6% —

Urban3D ASIP 85.8% | 80.3% | 84.2% | 80.7% | 1.60
Ours 85.5% | 79.4% | 88.1% | 81.8% | 0.1

F1 score is improved by 1.6% and 0.4%). Regarding regulariza-
tion error E, defined in Equation 4, we compare to the polygonal
output of the ASIP method. For the initial segmentation (e.g., Mask
R-CNN or DeepLabv3+) and the corresponding ground truth, the
polygonal representations don’t exist and simply computing the E;
term would provide a very large error for those methods. Never-
theless, it is obvious to recognize that there is no regularization for
the segmentation (Figure 10 (c)), and the ground truth (Figure 10
(b)) is regularized and its E; is close to 0.1. As clearly observed,
our results significantly improve building footprint regularization
(e.g., for SpaceNet, the regularization error is reduced by 94.4%).
Further, as illustrated in Figure 10, the outputs of our method are
visually appealing as well.

Figure 10: Qualitative Comparison. (a) Real images. (b) Ground
truth footprints. (c) Initial building footprint segmentations. (d)
ASIP results. (e) Our results.

4.4. Roof Ridge Comparison

We compare our procedural roofs to three methods which approx-
imately perform the same task as us — these are the most similar
works we could find that operate on a single image, though two of
these use aerial images at 6 times higher resolution. Since annota-
tions of roof ridges for our test datasets are not available, we man-
ually create them by using an image annotator tool VIA [DZ19].
We randomly chose 83, 21 and 26 buildings from SpaceNet, Crow-
dAl, and Urban3D, respectively, and annotated the roof ridges. We
compare our predicted roof ridges to the state-of-the-art method
Conv-MPN which predicts building edges [ZNF20] (we only eval-
uate the roof ridges in Conv-MPN for fairness). As shown in Ta-
ble 3, our method consistently achieves better performance com-
pared to Conv-MPN (e.g., hit ratio improved by 31.8%, correct-
ness improved by 27.7%, and completeness improved by 45.4%
for SpaceNet). Yet more, as demonstrated in Figure 11, our results
are qualitatively preferable.

In addition, we compare to the methods in [AAT19; AAH20].
These approaches reconstruct roofs from a single aerial image at
a 5 cm spatial resolution using the Potsdam dataset provided by
[ISP19]. We compare to these methods by first down-sampling the
aerial image to 30 cm resolution (- the resolution of our tested satel-
lite images —) and then apply our method. In addition, we also man-
ually annotate roof ridges. In terms of hit ratio, correctness, and
completeness defined in Section 4.2.2, we obtain 97.9%, 92.9%
and 96.8 % respectively.

However, [AAT19; AAH20] use a different correctness and com-
pleteness term to evaluate their roof ridge and other urban struc-
tures. For [AAT19], it outputs 43.4% completeness and 4% cor-
rectness for just roof ridges (their completeness and correctness
is higher when you also consider the building footprint pixels). In
[AAH20], they improved results to 57.7% completeness and 81.3%
correctness for roof ridges (using the same metrics as [AAT19]). At
satellite-level resolutions, the correctness and completeness term
they provide does not seem suitable. Nonetheless, we did compute
the values using their method and obtained 35.5% completeness
and 34.3% correctness at 30 cms per pixel, as opposed to their val-
ues at 5 cms per pixel. While our terms are lower than [AAH20],
our method operates at 6 times lower resolution because we used
satellite images. We also show our output for the tested tile in Pots-
dam in the Supplemental Figure 2.

Table 3: Quantitative Comparison. We compare our predicted
ridges with Conv-MPN method [ZNF20] for our SpaceNet, Crow-
dAl and Urban3D datasets. For all three metrics terms, higher is
better. Note: since Conv-MPN is not trained on Urban3D origi-
nally, we only show our performance for this dataset.

Dataset [ Method [ Hit Ratio [ Correctness [ Completeness
SpaceNet Conv-MPN 63.2% 58.7% 44.8%
Ours 95.0% 86.4% 90.2%
CrowdAI Conv-MPN 63.4% 61.6% 58.6%
Ours 96.3% 90.9% 92.9%
Urban3D Ours 87.9% 73.5% 81.0%
© 2022 The Author(s)
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Figure 11: Qualitative Comparison. (a) Real images. (b) Ground
truth ridge annotations. (c¢) Conv-MPN results. (d) Ours results.
Note: The red lines in (c) are considered as roof ridges.

Figure 12: Failure Examples. (a) Real images. (b) Ground truth
footprints. (c) Initial footprint segmentations. (d) Ours results.

4.5. More Results

We show our procedural urban generations for three large areas in
Figure 13. Moreover, since we have a procedural output (instead of
an image), we can zoom-in to any part of the area and still have a
high-quality result. Additional example are in Supplemental Figure
1.

© 2022 The Author(s)
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4.6. Failure Cases

Although we support a very wide range of building and roof types,
there are always exceptions (e.g., missing ridges in the edge map,
initial segmentation with poor quality, multiple roof parts in one
rectangle, etc.). Currently for styles outside our assumptions, our
approach gives its best guess. In the example i) of Figure 12, the
building type is T44 based on Section 3.1 and Figure 4. It doesn’t
belong to our supported type and our prediction misses one roof
part shown in a purple box. As for the example ii), multiple roof
parts are contained in one rectangle. Our method assumes a singu-
lar rectangle stands for one roof part. Therefore, one roof part in
the purple box is undetected. For the last example iii), the build-
ing image is not orthorectified. We rotated the building segmen-
tation instance based on a loose oriented bounding box and thus
building segmentation is not perfectly aligned (horizontally or ver-
tically). Since our method assumes the regularities of building and
roof structures, we generate "over-regularized" results. In theory,
our framework can handle these failure scenarios by adding more
building and roof types to our synthetic training datasets. This is
listed as future work.

5. Conclusion

We propose a novel framework that consists of a building decompo-
sition component and a roof ridge detection component to automat-
ically generate procedural roofs from a single satellite image. Our
procedural output for the urban area can be used in many applica-
tions. To the best of our knowledge, our work is the first pipeline to
handle building footprint regularization, building decomposition,
and roof ridge prediction all together given a single un-annotated
satellite image. Through comprehensive experiments, we show our
approach significantly improves the performance compared to sev-
eral state-of-the-art methods for multiple datasets. However, our
approach has some limitations. Although we support a very wide
range of styles, there are always exceptions. Please find examples
in Section 4.6.

Our approach has several avenues of future work. For exam-
ple, since our PBSR is an approximation to represent all possible
building and roof structures, we would like to extend our synthetic
dataset to support more building shapes and roof types (e.g., non-
right angle buildings, not orthorectified satellite image, mansard
roof type, etc.). Also, currently we generate the edge map using
Canny edge detector which depends on the quality of image and
tuning parameters. We would like to explore deep learning based
approaches to help with this step. In addition, we would like to
detect and reconstruct the details (e.g, dormers, chimneys, etc.) of
roofs. Finally, we are also interested in applying our framework to
interdisciplinary applications, such as solar panel planning, energy
modeling, and more.
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