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Abstract

We describe an algorithm for computing the skeleton (medial-axis SIII'

face) of an object defined using constructive solid geometry (CSG). This
surface is the locus of all points in the object's interior that have equal
minimum distance from at least two distinct parts of the boundary, The
skeleton can be used in blending, motion planning, medical tomography,
computer vision, and in mesh generation. We also present a geometric
analysis of Varanoi surr~ces' from which the skeleton is composed.

1 Introduction

·Supperted in part by NSF Grauts CCR 86-19817 and DMC 88-07550, and bl' ONR Cen
trad NOOO14.-86-K-0465.
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with the work by Requicha and Voelcker, e.g., [13), who proposed five pri mit.ivc,<;:
block, sphere, cylinder, cone, and torus. We refer to all objects crc(Lt.ec1 from
the named primitives as esc objects. They provide an unambiguous coJllputer
representation of manufacturable objects of realistic complexity a.nd :>h ..qH'.

We consider in this paper the formation of the skeleton of CSG objecf.s,
defined precisely below. Skeletons can be used in shape representatiOll and shape
recognition [1), in robot motion planning (14], and for the purpose of defining
certain blending surfaces [3]. Moreover, skeletons can be used to decompose
objects as a first step in mesh generation [10].

The balance of this section defines the skeleton and its constituent clements,
Voconoi surfaces and Voronoi curves. It also gives more details of the applica
tions of the skeleton. Section 2 develops a conceptual approach to constructing
the skeleton from its elements and explains the geometric allcl cOlllbill:lLnri ..11
properties skeleton construction has to account for. A general procedure for
constructing Voronoi surfaces is outlined in Section 3. This procedure wml1d be
used in situations in which the bounding surfaces of the CSG object aTe compli·
cated. Simpler surfaces admit special constructions, and these are investigated
in Section 4, from a geometric perspective. Section 5 concludes thc papcl',

1.1 Skeleton of CSG Objects

The locus of all points in an object that have equal minimum distance fl'Olll at
least two bounding faces of the object forms the interior skeleton of th{' ob.i{'cL
In the literature, the interior skeleton has also been referred to as the medial-axis
surface [91.

Definition 1.1 (Blum) The interior skeleton of a 3D object is the locus of the
centers of all its maximal inscribed spheres. The interior skeleton of a 20 object
is the locus of the centers of all its maximal inscribed circles.

The dotted lines in Figure 1 shows the skeletons of simple 2D and 3D objects.
For example, the skeleton of the rectangular block shown in Fig I(c) consis[.s or
13 planar faces, each of which is the locus of all points equidistil.llt to a pail' or
bounding faces of the block. Twelve skeleton faces are equidista.nt to a pai I' or
adjacent faces of the block. The horizontal skeleton face is equidistant to lh(~ 1.0p

and the bottom faces of the block. Note that tllese two faces al'e Hot adjacclIL.
Therefore, possibly all face pairs must be considered when constructing the
skeleton.

The faces of the block's skeleton can be thought of as polygons in equidis
tant planes. To construct the skeleton, we must construct the individual races.
The faces lie in Voronoi surfaces, well-studied in computational geo111£'1,1'.\'. "'''0
consider them next.
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Figure 1: Skeletons of Sphere, Rectangle, Box

1.2 Voronoi Curves and Surfaces

VeraRoi diagrams are widely used in computational geometry. Given a set S
of points in the plane, the VeraRoi diagram is a tesselation of the plane hy
polygons such that every point pDf S is contained in a polygon whose il\tel'ior
points are closer to p than to any other point of S. The Veranoi diagram of
a finite set S contains closed and open polygons, where an open polygon is
bounded by two semi-infinite edges. Proximity problems such as closes\. pi-ur,
Euclidean minimum spanning tree, triangulation, etc., can be solvecl efficiently
when using VeraRoi diagrams [12].

When the elements of S are simple polygons or other extended two·eli mcnsional
objects, the Voronoi diagram is more clearly conceptualized as the locus of cen
ters of all maximal circles that are tangent to at least two elements of S from
the outside. The Voronoi diagram is then composed of curve segments, as well
as straight line segments. When considering extended 2D objects, a similar
process within the boundaries of each object yields a new Voronoi diagram; one
that is the jnterior skeleton of the object. We therefore speak of an exterior and
an interior Voronoi diagram. The exterior Voronoi diagram can be thought of
as the interior Voronoi diagram of the infinite object obtained by subtracting
from the Euclidean plane the interior of the objects in S.

If the elements of S are 3D objects, we obtain a higher-dimensional Varanoi
diagram whose faces lie on surfaces. As in the two-dimensional case, we speak
of interior and exterior Voronoi diagrams. Note that these are precisely the
interior and the exterior skeletons.

When the set S contains more than two objects or one object whose shape is
bounded by more than one face, the skeleton is not a single surface but consists
of faces. Each face lies on a certain surface, called the Voronoi surface. Fol'
example, the Voronoi surface with respect to a plane and a point not in the
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plane is evidently a paraboloid of revolution, with the point as focus. Voronoi
surfaces are considered in Sections 3 and 4.

1.3 Applications of Skeletons

Object skeletons can be used in shape representation and recognition [1]. Drien,r.
the skeleton defines a decomposition of the object into simpler figures that can
be described separately. These descriptions are then combined into a single,
canonical object description that is independent of the original design sequence.
In robot motion planning, the exterior skeleton of a set S of 3D obstacles can
be used to define paths that maximize the distance of a moving robot to each
obstacle; {14] uses the exterior skeleton to find collision free paths.

In computer-aided design and modelling, variable-radius (rolling-ball) blend::;
can be defined via a spine curve and a radius-variation function. The exterior
skeleton surface can be used for an analytic definition of the spine cmvc 13) when
the blend is a fillet. The interior skeleton can be used for an analytic dl,[jll·Il."IOll

of the spine in the case of rounds.

In [10] it is argued tha.t the interior skeleton can be used to decompose
objects for the purpose of finite-element mesh generation in 2D domains that
have been defined in a CSG style from disks and rectangles. Similarly, we
consider decomposing 3D CSG objects with the skeleton. In solid mcchall ics,
the interior skeleton would be required.1 In fluid mechanics, the exterior skdcLOIl

would be used, e.g., when studying an airfoil in turbulent media.

Despite great practical demand and potential, automatic interfaces of solid
modelers with analysis codes appear to be severely limited [4J. The ability to
generate skeletons automatically from a solid model would facilitate construct
ing more sophisticated interfaces of this kind. Algorithms have been proposed
for the two-dimensional version of the problem, fOT computing interior and exLe

rior Voronoi curves, [11, 10]. Methods for constructing simple Voronoi surfaces
ha.ve also been considered [9, 3]. However, complex Voranoi elements (Le. com
plicated curves and surfaces) arise when skeletons of moderately complex eSG
objects are considered, and there seems to be no work on this subject.

In this paper, we take a deeper look at such skeleton surfaces by invesflgating
the individual Voronoi elements that make up the interior skeleton of eSG
objects. It is shown that the geometry of such skeletons are inherently complex.
An investigation into the geometry of the associated Voronoi surfaces IJl'i Ilgs to
light the necessity of going beyond natural quadrics in existing solid In(Jd(~lIl'rs.

I For an ~utomatic method 1.0 senerate rectangular grids for l1uee-dimensioll1L11101)'lic'llral
domains efficiently see [15].
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1.4 Preliminaries

Our usage of the term skeleton refers to the composite of Voronoi curve!> a~cl.
surfaces that result from appropriate pairs of bounding faces of the object.
A Voronoi curve is defined with respect to a pair of curves, and a Voronoi
surface with respect to a pair of surfaces. It suffices to restrict attention to the
interior skeleton, since the exterior skeleton may be obtained by considering the
(regularized) complement of the object, in 3-space.

Mathematically, a Voronoi surface can be defined as follows. Let / and 9 be
two surfaces. Then their Voronoi sur/ace, denoted VorU,g) is the locus of all
points equidistant from f and from g:

V<>rU,g) ~ (p E R'I dJ(p) ~ d,(p))

where dJ(p) and dg(P) are the perpendicular distances of point p from / and
from g, respectively. Similarly, we define the Voronoi curve of curves J and 9
as the locus of points in R2 that are equidistant from f and 9- If / 01" 9 arc
curves in 3-space, then the equidistant points form a surface, again called the
Voronoi surface of f and g. It can be shown that Voronoi curves and surfaces
are semi-algebraic whenever f and 9 are.

All CSG objects are bounded by faces that lie on planes, natural quadrics,
and tori. When the entire surfaces an~ considered, e.g., the entire pla_nc, the
infinite cylinder, the infinite double cone, etc., their pairwise Voronoi surfaces
will usually be algebraic surfaces. However, there are cases in which a VOl'olloi
surface is only semi-algebraic, that is, it is a subset of an algebmic surface. This
situation arises because certain Voronoi surfaces may end abruptly, and we give
an example of this phenomenon later in Section 3.

2 On ,the Construction Skeletons

The skeleton of a CSG object consists of Voronoi elements. These elclll(~l1l.s

are obtained by considering the bounding surfaces of the olJject, individually or
pairwise. In this section, we illustrate the nature of the skeleton and argue that
the construction of the skeleton consists of trimming Veronoi surfaces lJetween
pairs of boundary elements of equal or mixed dimensionality.

2.1 Reflexive Voronoi Surfaces

Reflexive Voronoi surfaces are lower-dimensional Voronoi surfaces that arise in
the skeleton of certain primitive shapes. Consider a sphere. Its skcleton is
just a point, namely the center of the sphere. Since such a spherc could be
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Figure 2: Block with blind hole and the partial skeleton

the eSG object under consideration, it is necessary to identify the mflexive
Voranoi surface of a given surface, defined to consist of all points ]J in space
with the property that there exists more than one point on the given surface, at
a minimum distance from p. It is evident that the given surface must necessarily
be non-planar.

Examples of eSG objects whose reflexive Voronoi surfaces are actually the
interior skeletons include the cylinder I cone and toius. For the cyclillder and
the cone, the reflexive Voronoi surfaces are their respective axes. III the case or
the torus it is the spine - a circle that is the locus of centers of the geuemtiug
spheres. In the foUowing, we will refer to such curves as VOl'onoi sUI'f..u:cs and
not Voranoi curves, because they arise from considering surfaces. Moreovel', for
complicated surfaces they need not degenerate ta points and curves,

2.2 A Procedural Construction for Skeletons

Let object S be a rectangular block with a blind hole, as shown in Figure 2.
Let 9 denote the cylinder used in the CSG construction and I the plane where
the hole begins. It will be shown later that the skeleton of this object includes
part of a circular cone which has for its base the circle of intersection of 9 and
I. See also Figure 2. The entire cone is the Voronoi surface of the plane f and
the (infinite) cylinder g. In principle, the construction of the skeleton of this
object could be described as follows.

1. For each bounding surface, Ii of S, construct the reflexive Vorolloi ~ll ..fa("I'
Var(J,).

2. For each pair of bounding surfaces, f;,fk of S, construct the Voronoi sur
face Var(J;.f,).
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Figure 3: Odd and Even Varanoi Surface of two Spheres

3. Trim VorUil and Vor(jj,lk) suitably to yield the interior skeleton of S.

This motivates considering the Varanoi surfaces between pairs of bouuding SlU'

faces of the object.

Note that this approach to constructing a skeleton is too simplistic. It
ignores the fact that the presence of edges and vertices may cause other surface
elements to appear in the skeleton.

2.3 Voronoi Surface Parity

We wish to determine Varanoi surfaces for pairs of adjacent bounding surfaces
of the object. Given two surfac.;es / and 0, the surface Vor(J,9) consists of two
components. One component consists of points that lie either on the outside of
both f and 9 or on the inside of them. We call such a VoraRoi surface the even
Voronoi surface of f and g. The other component of Vor(j, g) 1s the olid Voronoi
surface of f and g and consists of points that are on the inside of f and outside
of g, or on the outside of f and the inside of g. Figure 3 shows both components
for two spheres of equal radius. Here, the even Voronoi surface is a plane that
contains the circle in which the two spheres intersect. Points on this ph\.l1c have
equal minimum distance to either sphere, and always lie on the outside of both
spheres or on the inside of both of them. As shown later, the odd offset is a
prolate spheroid, Le., an ellipse rotated about one of its axes. The points of the
spheroid have equal minimum distance from the two spheres, but are always
outside of one and inside the other. Which component of the Voronoi surfaces
is needed depends, roughly speaking, on whether the surfaces bound cavities or
protrusions. More precisely, in the terminology of [2J, it depends on whether
the primitives contributing the two faces are used positively or negatively ill the
eSG tree.
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2.4 Mixed-Dimensional Pairs

Consider the bottom of the blind hole of Figure 2. In its vicinity. the skeleton
has a more complicated structure as illustrated in Figure 4. Here, the skcleloll is
composed of three elements,labeled hI, hz, and h3 in the figure. The element hi
is part of a cone, the VorCh ,g) of cylinder it bounding the hole and the opposite
face plane 9 of the block. The surface h3 is part of a plane, the VoreB, h) or the
plane 9 and the plane h that forms the bottom of the hole. The intermediate
surface, hz, consists of points t.hat ha.ve equal distance fL'om the ~J;Ulc y and the
edge e formed by the intersection of II and h. Thus, hz is part of VOL'(h, c).
We will see later that Vor(/t,e) is a parabolic torus - a surface of revolution
obtained by rotating a parabola around a line parallel to and away from its axis
of symmetry.

This shows that not only do we have to consider Voronoi surfaces oetwcen
pairs of bounding surfaces, but also between surfaces and curves. It will he 110

surprise that we also need to determine Voronoi surfaces for curve pairs, for
points and curves, for points and surfaces, and for pairs of points. Hence, we
have to augment our earlier algorithm with a determination of VOl'olloi slIrf"ces
of such pairs of boundary elements, of lower and of mixed dimensionality.

2.5 Tl-imming Surfaces

The complexity of constructing the skeleton of eSG objects now begins Lo show:
Many Voronoi surfaces have to be constructed, and a suitable strategy for trim
ming away irrelevant surface areas will be needed. For this purpose, we should
consider where the "influence region" of a face ends on an associated Voronoi
surface. This is especially important In view of the fact that since adjacent
components of a skeleton may meet with tangent continuity, a determination
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Figure 5: Trimming Surface at Edge e

of the separating edges as intersection curves of the associated Voronoi sul'faces
may be pose delicate numerical problems.

Consider a point p in space. We ask for a point q on a given face f of the
eSG object that lies closest to p. If q is interior to I, then the line pq mllst be
normal to f at q. This motivates trimmlng the Varanoi surface associated with
I, by a surface oj normals at the boundary of f. This surface is a ruled sllrface
generated by all the normals to f. along its boundary.

In simple situations we expect that the trimming curves do not exhibit com
plicated singularities, and that they delimit a simply connected area tllat COll

stitutes a face of the skeleton. Note, however, that the trimming surface could
have a nontrivial geometry. For example, for a face on the cylinder I bounded
by the elliptic edge e, the trimming surface is the ruled surface Ie shown in
Figure 5.

Similar trimming methods can be formulated for edges: Trim the associa.ted
Voronoi surface by the normal planes at the vertices of the edges, and by the
trimming surfaces of the adjacent faces. In summary. we construct the Voronoi
surfaces on which the faces of the skeleton are situated, by considering element!'i
of the boundary individually, and in pairs. Then Voronoi surfaces arc trimmed
by the trimming surfaces which are generated by normals to the surfaces and to
the edges. The skeleton is then assembled from the patches of Voronoi surfa.ces
that remain.

2.6 Algebraic Complexity

Aside from the combinatorial complexity of properly trimming and combining
patches of Voronoi surfaces, the Voronoi surfaces themselves can be algebraically
quite complex. In response, we present in the next section a general method
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that formulates the surfaces in a fairly simple way, as a set of equations llsing
auxiliary variables. These equations can be formulated easily, but their analysis
and interrogation is not so simple and is the subject of ongoing researcll; [0,
7]. So, we give a simplified method for deriving implicit equations of VOl'onoi
surfaces of csa surface pairs. In addition, in Section 4, we discuss the geometry
of Voronoi surfaces for CSG. The geometric properties derived in that section
provide shortcuts to the construction and analysis of the elements of the interior
skeleton.

3 Methods for Deriving Voronoi Surfaces

Recall that the Voronoi surface, VorU,g), is the locus of all points equidistant
from surfaces f and g. Given f and g, implicitly or paramebically, thel'e is a
general method for formulating a mathematical description of VOl'onoi curves
and surfaces, as a set of equations using auxiliary variables. Although we use
this general method for algebraic curves and surfaces in this paper, we !late that
it can be used for all curves and surfaces that are differentiable. We recall the
method from [3, 5, 6, 7].

3.1 A General Procedure

Let f and 9 denote a pair of algebriuc surfaces. Consider two spheres S, and
59' each of radius d, with centers on f and g, respectively. With (1 the offset
distance, the offset surfaces of f and g are given by the envelopes generated by
5} and 89 as they move on J and g. This is equivalent to displacing, in the
normal direction, the centres (Ul lU2, U3) of 5} and (VI, V2, V3) of 59' as they
move on J and g, by the radius of the spheres. Denoting the pair of linearly
independent tangent directions to f at any point by t 1 and t2 and similarly to
9 by t~ and t2we formulate the following eight equations in ten variables

/: /(.',.',.3) 0

g: g(Vl,V2,V3) 0

Sf: (x - .,)' +(y - .,)' +(z - .3)' - d' 0

S,: (x - V1)' +(y - v,)' +(z - Va)' - d' 0

(V'Sj" til 0

(V'Sj"t,) 0

(V'S,' tD = 0

(V'S,' tD = 0

10



By eliminating the variables {1£1' 1£2, 1£3, VI, v2, V3, d} the implicit equation of the
Voronoi surface VorU,g) associated with f and g can be obtained, at least in
principle.

An example helps to illustrate the above procedure. Let I be a cylinder
of unit radius, parallel to the z-axis with the line (:I: = 0, y = 2) as its axis.
Let 9 be another cylinder of unit radius, parallel to the x-a.xis with the line
(z = O,y = -2) as its axis:

f' x' + (y - 2)' - 1 0

g' z' + (y +2)' - 1 = 0

Let d be the radius of the spheres Sf and Sg. At points (1£101£2,1£3) and
(Vt,V2,V3) on I and g respectively, we have the equations

j, u1+(u,-2)'-1 0

Sf' (x - u.)' + (y - u,)' +(z - U3)' - d' = 0

9' v5+(v,+2)'-1 0

S,' (x - V1)' + (y - v,)' + (z - V3)' - d' 0

The gradients 'V j and V iJ are given by [21£1,2112 - 4, 0] and [0,2V2 + 4, 2va}.
The two independent tangent vectors at (1£101£2,1£3) on I, are

t; = (l,O,O)

Thus, the final system of eight equations is given by

u1 + (u, - 2)'-1 0

(x - u.)' + (y - u,)' + (z - U3)' - d' = 0

v~ +(V2 +2)2_1 = 0

(x - V1)' + (y - v,)' + (z - V3)' - d' 0
(1)

z - t£3 = 0

(x - • .)(2 - .,) + (y - u,)u, = 0

x - VI 0

-(y - V,)V3 +(z - .3)(.' +2) 0

After elimination, we obtain the equation of the Voronoi surface.

11



Surface Equation r-Offset Equation

Plane z Plane z - (l

Sphere x2 + y2 +z2 _ r2 Sphere x 2 +y2 + z2 _ (1' + d)2

Cylinder :1;2 +y2 _ r2 Cylinder x2 +y2_(r+d)2

Cone x 2 + y2 _ z2 tan2(-y) Cone x 2 +y2 _ (z + djsin(-YJf taI1 2(-y)

Torus (x 2+ y2 + z2 _ r2)2 Torus (x2 + y2 + Z2 _ (1' + d)2)2

+2C2(Z2 _ (x2 + y2 + r2» + c4 +2c2(z2 _ (x 2 + y2 + (1' + d)2)) + c·1

Table 1: d-Offsets of CSG Surfaces

Elimination of the additional variables in an attempt to derive. an implidt
equation for the Voronoi surface is a task well beyond the capacity of CIlI'l'C!llt
eHmiIlation procedures known to us; see, e.g., [7J. Instead, we use the equaLiom;
formulated by the general method only for numerical computations thal analyze
the surface locally, as in, e.g., [5J.

We mention that this method may generate extraneous solutions. SOllle
of these may be eliminated by adding additional equations; see [6]. Whether
such additions succeed in all cases is not known at this time. Note also that the
general method, as described, cannot distinguish between odd and even VOl'onoi
surfaces. In consequence, the implicit equation derived from the system (1) mllst
be the product of the two surfaces. This fact would be unpleasant for a global
surface analysis. For a local surface- analysis, however, the additionaJ surface
components present no serious obstacle.

3.2 Simplifications for Special Surfaces

The explicit derivation of the Voronoi surface, by the procedure just described,
requires excessive symbolic computations. Considerable simplificatiolls a.rc pos
sible for specific classes of surfaces, including planes, natural quadrics, a,nd tori.
For example, if one of the primary surfaces is a plane and the other a cylinder
or a. cone, it is easy to see that the associated Voronoi surface is a cone [3]. Such
simplifications are based on the. idea to replace the four equations describillg the
d-offset of a surface with a single equation, where possible, thereby eliminating
up to six variables outright. Note that d-offsets are explicitly known for planes,
natural quadrics, and the torus. They are summa.rized in Table 1. Figures 6
through 8 explain the geometric meaning of the constants in the equations. The
offset equations are readily verified.

As an example, we derive the even Voronoi surface of the two non-intersecting

12
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cylinders discussed before. The equations for the respective d-offsets arc then:

F, .' + (y - 2)' - (1 + d)' = 0

G: z' + (y +2)' - (1 +d)' 0

Here, d is eliminated in h = F - G, which is the sought equation of the even
Voronoi surface of the two cylinders:

It is a hyperbolic paraboloid, as shown in Plate-I.

In general, d has to be eliminated in two steps. As an example, consider the
odd Voronoi surface of the two cylinders. It is described by

F: .' + (y - 2)' - (1 +d)' 0

G: z' +(y +2)' - (1- d)' 0

We obtain
F- G =:z:2 -8y- Z2 - 4d

from which we determine d as a function of :t, y and z:

d = (.' - 8y - z')/4

Substitution into F then yields the equation of the odd Voronoi surrac~ as

;, =.' + (y _ 2)' - (1 +(.' - 8y _ z')/4)'

This is a quartic surface. Since the cylinders do not intersect, physically there
cannot exist a Voronoi surface with an odd component. Algebraically, we might
say that the odd Voronoi surface does not contain any real points. If the r..vlin
del'S have a nonempty intersection, the odd Voronoi surface will contaill real
points. Such an example is shown in Plate-II.

We mentioned in Section 1 that the Voronoi surface of two algebraic surfaces
may be semi-algebraic. This is the case with the odd Voronoi surface showll in
Plate-II. Here, the algebraic surface has four conical singularities, two of which
are visible. The central part of the surface, in shape roughly like a pillow, is
the odd Voronoi surface and ends in the four conical points that lie on the
two cylinder axes. The containing algebraic surface continues beyond these
singularities.2 Its other points do not belong to the Voronoi surface, since the
points of equal distance on the two cylinders minimize the distance locally only,
not globally.

~In the picLure the (our conical surface extensions ha.ve been clipped a.lmost entirel)'.
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4 Voronoi Surfaces between Surface Pairs

We now consider the geometry of Vacanoi surfaces that result between pairs
of bounding surfaces. We restrict the bounding surfac~s to be planes, natural
quadrics, and tori. Many of the Vacanoi surfaces that arise can be analyzed by
purely geometric argument, and we do this where appropriate. Note that we
consider the bounding surfaces in their entirety. The Voranoi surface of such
a pair, as pointed out earlier, is not always a complete algebraic surface, but
is always part of an algebraic surface. We do not address how to trim Voranoi
surfaces.

First, we recall the relevant geometric facts abollt Varcnoi curves for poinls,
circles, and lines. These results are used later to analyze the Voronoi SUl'facCls.

In the following, we refer to planes, natural quadrics, and tori, collectively as
esc su.rfaces.

4.1 Voronoi Curves of Points, Circles, and Lines

Proposition 4.1
The Voronoi curve of a straight line and a distinct point is a parabola. If the
point lies on the line, the Voronoi curve is the perpendicular to the line al. Llmt
point.

Proposition 4.2
The odd and even Voronoi curves of a circle C and a straight line L are parabolas.
Each has the center of C as its focus. If the circle is tangent to L, then one of
the parabolas degenerates into a haif line.

Proof
Let the radius of the circle C be r, and consider first the case where L intersects
C. Without loss of generality, we orient L such that the center of C lies La the
outside of L or on L. Consider the component hI of the even Voronoi curv(~ tlmL
lies outside both L and C. If p is a point on hI at a distance d) from the drcl{'
C and the line L, then p is at distance dl +r from the center of the circle. Ilcllce
it is also at distance dl +r from a line Lll parallel to and at a distance T from L,
on the inside of L. See also Figure 9 left. By Proposition 4.1, the component hI
of the even Voronoi curve lies on a parabola Pl' Now consider the component
h2 of the even Voronoi curve that lies inside C and inside L. If p is a point on
h2 , at a distance d2 from C and L, it is also at a distance r - d2 from the center
of C. Hence it is also at a distance T - d2 from the line L 1 , and hence is also on
the parabola Pl' Note that the parabola passes through the intersection points
of Land C, has the center of C as its focus and the perpendicular to L passing
through the center of C as its ax'is.
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Figure 9: Voranoi Curves of Line and Circle

By a similar argument, the odd Voranoi curve can be shown to be another
parabola, also passing through the intersection points of Land C, with the same
axis, but an opposite orientation.

Now assume that L is tangent to C. Then the component h2 of the even
Veranoi curve no longer exists, and hI and the point of tangency cover the ent.ire
parabola. Moreover, the odd Veranoi curve is the haIfline all the perpendicular
to L at the point of tangency. tha.t lies on the inside of L. See also Figure 9
right. When L and C do not intersect, the odd Veranoi curve does not exist. 0

Proposition 4.3
The Veranoi curve of two nonintersecting circles is a. hyperbola jf the ,circles
have different radii, and a straight line if the circles are of equal radius.

Proof
Let C1 and C2 be the two circles, and consider a point p exterior to both, all

the Voroni curve. If d is the distance from either circle, then the distance to
the two centers is d + Tl and d + T2, respectively, where Tl and 1"2 are the radii.
Hence the difference of the two distances is constant. If the radii diITer, then the
constant is not zero, and hence the Voronoi curve is a hyperbola. Otherwise,
the difference is zero, Le., the Voronoi curve is a straight line. 0

Proposition 4.4
The odd Voronoi curve of two intersecting circles is an ellipse and the even
Voronoi curve a hyperbola. If the circles have equal radii, the hyperbola degen·
erates into a straight line.

Proof
Let C1 and C2 be the two circles, and consider a point p exterior to both, on the
even Voronoi curve. If d is the distance from each circle, then the disLiLllce Lo
the two centers is d + 1"1 and d + 1"2, respectively, where 1"1 and 1"2 are the radii.
Hence the difference of the two distances is constant, so the even VOl'onoi curve
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Figure 10: Varanoi Curves of two Circles

is a hyperbola. if Tt f:. T2 and a straight line if Tl = r2_ Now consider a point q
on the odd Varanoi curve, with distance d from both circles, as shown in Figure
10. The distances from the two centers are therefore Tl - d and '"2 +d, so the
sum of the distances is constant. Hence the odd Varanoi curve is an ellipse 0

4.2 Voronoi Surfaces of eSG Surface Pairs

We classify.the types of Varanoi surfaces for CSG surface pairs. Although the
algebraic degree of a Varanoi surface can-be as high as 16, for two tori in general
position, there are many cases in which the Varanoi surface is much simpler.
Moreover, there are many geometric properties of interest to be reported.

We think of a Varanoi surface as the projection into (x,y,z)-space of the
intersection of two hypersurfaces in (x, y, Z, T )-space. Each hypel'surface is a
generic r-offset. The geometry of the Voronoi surface may depend on whether
two positive r-offsets are intersected, or whether a positive and a negative
r-offset are intersected. We speak of an even Voronoi surface in the posi
tive/positive and in the negative/negative case. In the positive/negative and
the negative/positive case, we speak of an odd Voronoi surface.

We classify first those Voronoi surfaces in which one member of the pair is
a plane. The following is elementary:

Proposition 4.5
Consider the Voronoi surface VorU,9), where f is a plane and 9 is a plane,
sphere, cylinder, cone, or a torus. Then the degree of VorU, g) does not exceed
the degree of 9.

Proof
Since the r-offset of f is a plane, we may write r;;;; h(x,y,z), where h is linear.
Consider the r-offset of 9, where 9 is a CSG surface. Any term x"yizkrm in the
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r-offset equation 6atisfies i + j + k +m ~ 2 for the sphere, cylinder, and conc,
and satisfies i +j + k +m.:5 4 for the tOfUS. Substitution into the equation for
9 therefore results in an equation of degree at most the degree of g. 0

Note that, when f is a plane, the geometry of the odd and the even Voranoi
surface do not differ. This is analogous to Proposition 4.2. The individual
Vacanoi surfaces are characterized now:

Theorem 4.6
Let It = VarU, g), where / is a plane.

(i) If 9 is a plane, then so is h.

(ii) If 9 is a sphere, then h is a paraboloid of revolution.

(iii) Let 9 be a cylinder. If the axis of 9 is parallel to or lies in f, then It is a
parabolic cylinder. If the axis of 9 intersects f in a point, then h is a cone
whose baseline is the elliptic or circular intersection of 9 and J.

(iv) If 9 is a cone, then so is I. If I contains the axis of g, then h has a.
hyperbola as base. If I does not contain the axis of g, nor its verI-ex, then
h has the intersection of J and 9 as its base. as base.

(v) Let 9 be a torus. If I is perpendicular to the axis of the torus, then h is
a surface obtained by rotating a parabola about the axis.

Proof
Case (i) is trivial. For Case (ii) observe that Vor(j,g) must be a surface of
revolution about the normal to J passing through the center of g. It follows
from Proposition 4.2 that h is a paraboloid of revolution.

Case (iii): Let the axis of cylinder 9 be parallel to the plane I, and cOllsider <t.

plane P perpendicular to the axis of g. P intersects f in a line Land y in a
circle C. Because P is also perpendicular to the plane I, the points all f allel
9 that are nearest to a given point p in the plane P must also lie on the plane
P. So, P intersects the Voronoi surface of I and 9 in the Voronoi curve of the
circle C and the line L, by Proposition 4.2 a parabola. Since the position and
size of Land C are independent of the position of P, therefore, Vor(f,9) is a
parabolic cylinder.

Now assume that the axis of9 intersects I. Let C be the curve ofintel'scctioll
between I and g. Clearly, C is either a circle or an ellipse and lies Oll the Voronoi
surface h. Consider the plane P through the axis of 9 and perpendicular to J.
P intersects f in a line L1 and 9 in the parallel lines L 2 and L3 . Since the
closest approach on f and g, to any given point p on P must lie on these lilies,
P intersects h in two lines HI and H2 that bisect the angle between L1 and L2 ,

18
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Figure 11: Structure of the Vacanoi Surface of Cylinder and Plane

and the angle between L 1 and L 3 • It is not difficult to see that the lines HI and
H 2 intersect in a point 11 on the axis of the cylinder g.

Consider any plane Q through the cylinder axis, and note that Q is not
necessarily perpendicular to f. Then Q contains v and a point w ill which C'
intersects Q. Note that both points lie on h. We argue that the line v, w lies
on the Vacanoi surface h. Now the shortest distance of a point q all this line,
from the cylinder g, varies linearly with the distance of q from w. Similarly,
the shortest distance of q from the plane f varies linearly with the distance of
q from w, which is evident when considering the plane Q' through the line v, w
that is perpendicular to f. See also Figure 11. Since both v and ware on h,
and since the distances from f and 9 vary linearly, the two distance functions
must be the same. That is, the line v, w is on h.

We have shown that h contains aU lines through points of C and through v.
It follows that h is a cone with vertex v and base line C.

Case (iv): Assume that f contains the axis of g, so 9 intersects f in the
degenerate conic C consisting of two intersecting lines. Note that C is on h.
Consider a point p on h other than the vertex v of the cone. The point of
closest approach to p on f is PI and on 9 it is Pg. We consider the line L I
through v and PI> the line Lg through Pg and v, and the line Lh through p
and v. We want to show that Lh is on the Voronoi surface. Now Ll is ill
f and L, in 9. Let q(A) = Ap + (1 - A)V be any point on Lh, and qf(A) =
>'PI + (1 - >.)v and qg(>') = >'Pg + (1 - >.)v the corresponding points on Lf
and Lg • By proportionality, the distance (q(>.),q,(>.» is equalto the distaucC!
(q(A), q,(A)), and the angles L(q(A), qf(A), v) and L(q(A), q,(A), v) both <c'-' ,-;gbt_
angles. Hence, the line Lh is on the Voronoi surface; i.e' l the Voronoi surfa.ce is
a cone.

19



,,,,

f'

Figure 12: Section of the Varonoi Surface of a Cone and a Plane

We now show that the curve in which h intersects a. plane P perpendicular
to f is a hyperbola. Consider a point p on h at distance d from both f and g.
Then p lies on a plane parallel to I, at distance d, that intersects P in a lill(~

if. Moreover, p lies on a cone, of equal apex angle ct as 9, that intersects P in it

circle eg • If rp is the radius of the circle in which 9 intersects P, then thl..! radius
of cg is rp + dj cos(a). Referring to Figure 12, we have

(rp + dl cos(a))' = .' + d'

Algebraic manipulation brings this equation into the form

(dl cos(a) +rpl sin'(a))' - .' - r~ cot'(a) = 0 (2)

For a fixed plane P, rp and a are constants, hence (2) is the equation of a
hyperbola.

If f does not contain the axis of the cone 9, nor the vertex of 9, then f and 9
intersect jn the nondegenerate conic C. We consider a plane P perpendicular to
f containing the axis of g. P intersects J in the line L10 and 9 in the intersecting
lines £2 and £3. Clearly, the angle bisectors, HI of the lines L 1 and L2, and
H 2 of the lines L 1 and L3 are on the Voronoi surface h. The intersection of
HI and H2 is on the axis of g, because their intersection point v has equal
minimum distance from both L2 and L3 .3 Therefore, the same argument as in
the cylinder/plane case shows that h is a cone with base line C.

Finally, if f contains the vertex of 9 but not its axis, then h is a cOile whose
vertex is the vertex of G. To argue this case, consider a.1l offset of f by some
distance d and a plane parallel to I, at dista.nce d. Their intersection is a

~Thi9 argument also a.pplies to CiLBe (iii).
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Figure 13: Varonoi Surface when Plane f is perpendicular to Torus axis

nondegenerate conic C that lies on h and is the base of the cone. The details
are straightforward.

Case (v): By Proposition 4.5, h is a quartic surface. Let L be the a.'"is of
symmetry of the torus, and consider any plane P containing L. P intersects 9
in two circles C1 and C2 , and f in a line LJ. Let p be a point in P. Since f
is perpendicular to £, the point Pi in f minimizing the distance ]J>1JJ is in P.
Moreover, since L is the axis of symmetry or g, the point Pg on [] miuinlizing
the distance P,Pg is also in P. See also Figure 13. Therefore, P intersects the
Varanoi surface h in curves that must be the Varanoi curves of'C1 and LI , and
of C2 and LJ. Tl).ese curves are parabolas. Since the distance of the circles
from the axis L is fixed, h is a parabolic torus obtained by rotating the VOl'onoi
curves about L. 0

Theorem 4.7
Let h = Vor(J,o), where f is a sphere.

(i) If9 is a sphere of equal radius, then h is a plane or a prolate spheroid. If 9
is a sphere of unequal radius, then h is a prolate spheroid or a two-sllCeted
hyperboloid.

(li) If 9 is a cylinder whose axis contains the center of the sphere, then h is
a plane or a surface obtained by rotating a parabola about a line perpell
dicular to the axis of symmetry.

(iii) If 9 is a cone whose axis contains the center of the sphere, then h is a
figure of revolution, about the axis of the cone. The components or hare
obtained by rotating a parabola around a line that is not perpendicular
to the axis of symmetry. When 9 is tangent to J, then h has a component
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Figure 14: Vcranai Surface of Cylinder and Sphere

that is a right circular cone.

(iv) If 9 is a torus whose axis of revolution contains the center of the sphere,
then h is a figure of revolution. Its components are obtained by revoh'jllg
ellipse, or hyperbola around the tOfUS axis. If the radius of 9 is equal to
the minor radius of the torus, then h contains also a cone, a cylinder, or
a plane.

Proof
Case (i): Consider a plane P containing the centers of both spheres. If p is any
point on P, then the points Pion f and Pg on 9 nearest to P arc also ill P. lL
follows that h is a surface of revolution whose axis is through the centers of J
and g. The statement now follows from Propositions 4.3 a.nd 4.4.

Case (ii): If the cylinder axis contains the center of the sphere, then the Voconoi
surface must be a surface of revolution about the cylinder axis. By Proposi tion
4.2, h is obtained by rotating a parabola about its lalus rectum:1 It has a
spindle as shown in Figure 14. When the radius of the sphere is equal to the
cylinder radius, by Proposition 4.1, the even Voronoi surface is a plane through
the center of the sphere and perpendicular to the cylinder.

Case (iii): Clearly h js a surface ofrevolution about the axis of the cone. Consid
ering a plane P containing the axis of g, the statement follows from Propositioll
4.2. See also Figure 15.

Case (iv): Again, h must be a surface of revolution whose geometry is de
termined by the section with planes P containing the axis of the torus. By
Propositions 4.3 and 4.4, the Voranoi curves of the circles in which P intersects
f and g are ellipse, hyperbola, or line. Depending on the axis position, the line
can generate a cone, a cylinder, or a plane as component of the Voronoi surface
h,O

'The line Lhrough the focus of lILe pa.rabola. perpendicular Lo Lhe axis of symmcLry.
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Figure 15: Voronoi Surface of Cone and Sphere

Theorem 4.8
Let h = Vor(j,g), where J is a cylinder.

(i) If 9 is a cylinder of equal radius, then the even Voronoi surrace is a hyper
bolic paraboloid if the axes are skew, a pair of planes ir the a....es intersect,
and a single plane if the axes are parallel. If 9 is a cylinder or different
radius with a parallel axis, then h is an elliptic or a hyperbolic cylinder.

(ii) Ir!J is a cone and the axes or J and 9 coincide, the odd and even Vorolloi
surfaces are cones.

(iii) Ir 9 is a torUS and the axes of J and 9 coincide, then h is a paraboloid of
revolution. If the cylinder diameter does not exceed the smaller radius or
the torus, then the Voronoi surface does not contain a spindle, otherwise
it does.

Proof
Case (1): Assume that f and 9 have equal radius. If the axes of f and 9 are
parallel and not coincident, then h is a plane by Propositions 4.3 and 4.4. U the
axes intersect, then the intersection curve of J and 9 is a pair of ellipses that lie
in two planes, say PI and Pz. Note that these planes bisect the angle between the
intersecting axes or f and 9. Consider enlarging the radius of both cylinders by
the same distance d. Evidently, the intersection curve of the enlarged cylinders
is on h, and is also in PI and P2 • Hence h consists of PI and P2 .

Assume that f and 9 have equal radius but skew axes. Without loss or
generality, the equation of f is :z:2 + y2 - r 2 = 0, and the equation or 9 is
9I(:Z:,Y,Z) - r 2 = 0, where 91 is a quadratic polynomial in x,y,Z without a
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Figure 16: Voronoi Surface Point for two skew Cylinders

constant term. The even Voronoi surface is therefore obtained from

.'+y'-(r+d)' 0

g,(.,y,z)-(r+d)' 0

by elimination of d, effected by subtraction. Since x2 + y2 - 91 is quadratic,
the even Voronoi surface is quadratic. Let I be the line of closest approach of
the axes of f and 9, and assume that the axes of f and 9 pass at right anglc,
at distance m. The plane P containing both I and the axis of f intersccts J in
a pair of lines and 9 in a circle. It is not hard to see that It intersects P in a
parabola. By symmetry, h intersects the plane pI containing 1 and the axis of
9 also in a parabola. Next, consider a plane PI parallel to P, at distance c. Let
p be a point on the intersection of h and PI, at distance d from both cylinders.
Referring to Figure 16, we have (m+x)2+ y2 = (r+d)2 and c2+x2 = (1·+d)2.
Subtracting, we obtain m2 + 2mx + y2 - c2 = 0, hence It intersects PI in a
parabola. It follows that h is a hyperbolic paraboloid. If the angle between the
skew axes is not a right one, then a purely algebraic argument can be given,
roughly as follows. Consider h = x 2 + y2 - 91 and compute its invariants. The
invariants certify that h is a hyperbolic paraboloid in this case also.

If f and 9 have different radii but have parallel axes, then the statement
follows from Propositions 4.3 and 4.4.

Case (ii): Consider the even Voronoi surface h. it is a surface of revolll~ion

about the common axis. Consider the plane P through the axis. It intersects J
in two parallel lines Ll and L2 and 9 in two intersecting lines £3 and Lof, that
meet at a point tI on the common axis. The bisectors HI and H 2 of the angles
formed by L l £3 and £2£4 are lines consisting of points that are equidistant from
f and g. Also HI and H 2 meet at a point u on the common axis. The surfac~

24



of revolution, h, formed by H 1 and H 2 is a cone with vertex at u. Moreover,
since the two triangles on P with vertices on £1 and £2 and the common base
uv are equal in all respects, the apex angles of hand 9 are also equal. It is easy
to see that the odd Voronoi .surface is also a cone since it is generated by the
perpendiculars to HI and H 2 at the points of intersection with £1 and £2_

Case (iii): Consider any plane P containing the coincident axes of f and g.
The point Pi on f of closest approach to a given point P in P must lie in P,
and the same is true for the point Po on g. Hence h is a figure of revolution.
P intersects f in two lines parallel to the axis, and 9 in two circles. rr 9 and
f intersect, By Proposition 4.2, P inter.sects h in a pair of intersecting and a
pair of non-intersecting parabolas. Since the lines in which P intersects fare
parallel to the axis of J, the parabolas revolve around a line perpendicular to
the line of .symmetry.

If the cylinder diameter is less than the smaller diameter of the torus, h is a
paraboloid of revolution. Moreover, the parabola orientation is .such that there
is no spindle. If the cylinder diameter is larger than the smaller diameter of the
torus, then the odd Voronoi surface contains a spindle. 0

Theorem 4.9
Let h = Vor(J,9), where f is a cone.

(i) If9 is a cone, and the axes of f and 9 are coincident, then the components
of h consists of cones.

(il) If 9 is a torus and the axes of I and 9 coincide, then h is a figure of
revolution obtained by rotating a parabola about a line not perpendicular
to the axis of symmetry.

Proof

Case (i): If f and 9 have the same axis, then h is clearly a figure of revolution.
A plane P containing the axis intersects J and 9 in two pairs of intersecting
lines, and the bisectors of two lines, one from I and the other from g, are the
generators of h. Therefore, h has right-circular cones as components.

Case (ii): Clearly h is a figure of revolution. Let P be a plane containing the
common axis of I-and g. P intersects J in two lines and 9 in two circles. By
Proposition 4.2, P intersects h in four parabolas. Since the lines in which P
inter.sects f are at an angle wi th respect to the axis of JI none of the parabolas
revolves around a line perpendicular to the line of symmetry. 0

Theorem 4.10 Let h = Vor(j,9), where J and g are tori with coincident 'axes.
Then h is a figure of revolution obtained by rotating an ellipse or a hyperbola
about a line perpendicular to one of their axes. IT the minor radii of the tori
are equal, then the even Voronoi surface is a cylinder or a cone. If f and 9
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are congruent with a common center, then the even Voronoi surface is a pair of
planes containing the intersection curve.

Proof

Obviously h is a figure of rotation. Hence the the first two parts of theorem
follows from Propositions 4.3 and 4.4. If J and g are congruent and have the
same centers, then their intersection consists of two plane curves, in the planes
PI and P2· The d-otrsets of the tori are also congruent with common centers,
and their intersection curves lie in PI and P2. Hence the Voronoi surface 11as
two planes as components. By symmetry, there is no additional component. 0

5 Conclusion

We have presented a conceptually simple method for constructing the iuteriol'
skeleton of CSG objects. -The individual elements of the skeleton were shown to
be the well known Voronoi curves and surfaces. In general, the Voronoi elcmellts
have a complicated geometry. We analyzed a number of special cases in which
the Voronoi surface of pairs of CSG surfaces has a simple geometric structure.

Skeleton surfaces have been proposed for use in a variety of important appli
cations such as computer-aided design, motion planning, mesh generation and
shape analysis. Our investigations, while illuminating the intrinsic geometric
complexity of such surfaces, provides insights that can be exploited in skeleton
construction algorithms.
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