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" Abstract -

-W- describdan algorithm for computing the skeleton (medial-axis snr-

face) of an object defined using constructive olid geometry (CSG). This
surface is the locus of all points in the objei 's interior that have equal
minimum distance from at least two distinct arts of the boundary. The
skeleton can be used in blending, motion planing, medical tomography,
computer vision, and in mesh generation. We also present a geometric
analysis of Voronoi surfaces from which the skeleton is composed. (

1 Introduction

A common design paradigm in mechanical engineering is to create complex
mechanical parts from primitive shapes by regularized Boolean operations. This
paradigm became well-known as Constructive Solid Geometry (CSG), notably
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with the work by Requicha and Voelcker, e.g., [131, who proposed five primitives:
block, sphere, cylinder, cone, and torus. We refer to all objects created froin
tlhe named primitives as CSG objects. They provide an unambiguous coin piiler
representation of manufacturable objects of realistic complexity and slia p,.

We consider in this paper the formation of the skeleton of CSG objects.
defined precisely below. Skeletons can be used in shape representation and shape
recognition [1], in robot motion planning [141, and for the purpose of defining
certain blending surfaces (3]. Moreover, skeletons can be used to deconipose
objects as a first step in mesh generation [10].

The balance of this section defines the skeleton and its constituent elements,
Voronoi surfaces and Voronoi curves. It also gives more details of the applica-
tions of the skeleton. Section 2 develops a conceptual approach to constructi lu
the skeleton from its elements and explains the geometric and coinaibiatomil
properties skeleton construction has to account for. A general proce(lulre foy
constructing Voronoi surfaces is outlined in Section 3. This procedure would be
used in situations in which the bounding surfaces of the CSG object are conpli-
cated. Simpler surfaces admit special constructions, and these are investigated
in Section 4, from a geometric perspective. Section 5 concludes the paper.

1.1 Skeleton of CSG Objects

The locus of all points in an object that have equal minimum distance firoin al
least two bounding faces of the object forms the interior skeleton of the obiject.
In the literature, the interior skeleton has also been referred to as the medial-axis
surface [9].

Definition 1.1 (Blum) The interior skeleton of a 3D object is the locus of tle
centers of all its maximal inscribed spheres. The interior skeleton of a 2D obJect
is the locus of the centers of all its maximal inscribed circles.

The dotted lines in Figure I shows the skeletons of simple 2D and 3D objects.
For example, the skeleton of the rectangular block shown in Fig 1(c) consists or
13 planar faces, each of which is the locus of all points equidistant to a pair or
bounding faces of the block. Twelve skeleton faces are equidistant to a pair of
adjacent faces of the block. The horizontal skeleton face is e(Iii(listant to Ili I, p
and the bottom faces of the block. Note that these two faces are not adjacelt. 1 or
Therefore, possibly all face pairs must be considered when constructing the I-F

skeleton. IRA&I
.R C

The faces of the block's skeleton can be thought of as polygons in cquidis- nced 0
tant planes. To construct the skeleton, we must construct the individual faces. ct"On-
The faces lie in Voronoi surfaces, well-studied in computational geometry. \V,
consider them next. amzff dvt
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Figure 1: Skeletons of Sphere, Rectangle, Box

1.2 Voronoi Curves and Surfaces

Voronoi diagrams are widely used in computational geometry. Given a set 5
of points in the plane, the Voronoi diagram is a tesselation of the plane hv
polygons such that every point p of S is contained in a polygon whose inlteriol
points are closer to p than to any other point of S. The Voronoi diagram of
a finite set S contains closed and open polygons, where an opei polygon is
bounded by two semi-infinite edges. Proximity problems such as closest pair,
Euclidean minimum spanning tree, triangulation, etc., can be solved ellicinlik
when using Voronoi diagrams [12].

When the elements of S are simple polygons or other extended two-di mensional
objects, the Voronoi diagram is more clearly conceptualized as the locus of ceii-
ters of all maximal circles that are tangent to at least two elements of S fiotn
the outside. The Voronoi diagram is then composed of curve segments, as well
as straight line segments. When considering extended 2D objects. a sinilar
process within the boundaries of each object yields a new Voronoi diagram: one
that is the interior skeleton of the object. We therefore speak of an exterior and
an interior Voronoi diagram. The exterior Voronoi diagram can be thought of
-as the interior Voronoi diagram of the infinite object obtained by subtracting
from the Euclidean plane the interior of the objects in S.

If the elements of S are 3D objects, we obtain a higher-dimensional \'oronoi
diagram whose faces lie on surfaces. As in the two-dimensionld case, ' e Speak
of interior and exterior Voronoi diagrams. Note that these are precisely the
interior and the exterior skeletons.

When the set S contains more than two objects or one object whose shape is
bounded by more than one face, the skeleton is not a single surface but consists
of fares. Each face lies on a certain surface, called the Voronoi surfre. For
example, the Voronoi surface with respect to a plane and a point not in the
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plane is evidently a paraboloid of revolution, with the point as focus. \"rolioi
surfaces are considered in Sections 3 and 4.

1.3 Applications of Skeletons

Object skeletons can be used in shape representation and recognition [1]. BPivl v.
the skeleton defines a decomposition of the object into simpler figures that can
be described separately. These descriptions are then combined into a single,
canonical object description that is independent of the original design sequence.
In robot motion planning, the exterior skeleton of a set S of 3D obstacles can
be used to define paths that maximize the distance of a moving robot to each
obstacle; [!4] uses the exterior skeleton to find collision free paths.

In computer-aided design and modelling, variable-radius (rolling-ball) blends
can be defined via a spine curve and a radius-variation function. The exteror
skeleton surface can be used for an analytic definition of the spine curve [3] yhtlle
the blend is a fillet. The interior skeleton can be used for an analvli c dlefilltitti
of the spine in the case of rounds.

In [10] it is argued that the interior skeleton can be used to decompose
objects for the purpose of finite-element mesh generation in 2D domains that
have been defined in a CSG style from disks and rectangles. Similarly, we
consider decomposing 3D CSG objects with the skeleton. In solid niccltaliCs.
the interior skeleton would be required.' In fluid mechanics, the exterior skulet ot
would be used, e.g., when studying an airfoil in turbulent media.

Despite great practical demand and potential, automatic interfaces of so-lid
modelers with analysis codes appear to be severely limited [I]. The ability to
generate skeletons automatically from a solid model would facilitate construct-
ing more sophisticated interfaces of this kind. Algorithms have been proposed
for the two-dimensional version of the problem, for computing interior and exte-
rior Voronoi curves, (11, 101. Methods for constructing simple Voronoi surfaces
have also been considered [9, 3]. However, complex Voronoi elements (i.e. com-
plicated curves and surfaces) arise when skeletons of moderately complex CSG
objects are considered, and there seems to be no work on this subject.

In this paper, we take a deeper look at such skeleton surfaces by investigating
the individual Voronoi elements that make up tlii interior skeleton of (SG
objects. It is shown that the geometry of such skeletons are inherently complex.
An investigation into the geometry of the associated Voronoi surfaces brings to
light the necessity of going beyond natural quadrics in existing solid mtodellhts.

'For an automatic method to generate rectangular grids for three-dimeisiodal plyhwilt I
domains efficiently see (15].
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1.4 Preliminaries

Our usage of the term skeleton refers to the composite of Voronoi curves ad
surfaces that result from appropriate pairs of bounding faces of the object.
A Voronoi curve is defined with respect to a pair of curves, and a Voronoi
surface with respect to a pair of surfaces. It suffices to restrict attention to the
interior skeleton, since the exterior skeleton may be obtained by considering the
(regularized) complement of the object, in 3-space.

Mathematically, a Voronoi surface can be defined as follows. Let f and g be
two surfaces. Then their Voronoi surface, denoted Vor(f,g) is the locus of all
points equidistant from f and from g:

Vor(f,g) = {pE R' I d(p) = d9 (p)}

where df(p) and d(p) are the perpendicular distances of point p from f ;)ld
from g. respectively. Similarly, we define the Voronoi curve of curves f ald y
as the locus of points in R 2 that are equidistant from f and g. If f or y are
curves in 3-space. then the equidistant points form a surface, again called the
Voronoi surface of f and g. It can be shown that Voronoi curves and surfaces
are semi-algebraic whenever f and g are.

All CSG objects are bounded by faces that lie on planes, natural quadrics.
and tori. When the entire surfaces are considered, e.g., the entire planc. the
infinite cylinder, the infinite double cone, etc., their pairwise Voronoi surlaces
will usually be algebraic surfaces. However, there are cases in which a Voronoi
surface is only semi-algebraic, that is, it is a subset of an algebraic surface. This
situation arises because certain Voronoi surfaces may end abruptly, and we give
an example of this phenomenon later in Section 3.

2 On the Construction Skeletons

The skeleton of a CSG object consists of Voronoi elements. These vle~m,w.
are obtained by considering the bounding surfaces of the object, inldividwillv m
pairwise. In this section, we illustrate the nature of the skeleton and argue that
the construction of the skeleton consists of trimming Voronoi surfaces betwven
pairs of boundary elements of equal or mixed dimensionality.

2.1 Reflexive Voronoi Surfaces

Reflexive Voronoi surfaces are lower-dimensional Voronoi surfaces that arise in
the skeleton of certain primitive shapes. Consider a sphere. Its skeleton is
just a point, namely the center of the sphere. Since suc!: a sphere could be
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Figure 2: Block with blind hole and the partial skeleton

the CSG object under consideration, it is necessary to identify the trjlexic
Voronoi surface of a given surface, defined to consist of all points p i1 space
with the property that there exists more than one point on the given surface, at
a minimum distance from p. It is evident that the given surface must necessarily
be non-planar.

Examples of CSG objects whose reflexive Voronoi surfaces are actually lie
interior skeletons include the cylinder, cone and torus. For the cyclinder and
the cone, the reflexive Voronoi surfaces are their respective axes. In the case of
the torus it is the spine - a circle that is the locus of centers of the genlerailg
spheres. In the following, we will refer to such curves as Voronoi surfaces and
not Voronoi curves, because they arise from considering surfaces. Moreover. for
complicated surfaces they need not degenerate to points and curves.

2.2 A Procedural Construction for Skeletons

Let object S be a rectangular block with a blind hole, as shown in Figure 2.
Let g denote the cylinder used in the CSG construction and f the plane where
the hole begins. It will be shown later that the skeleton of this object incluides
part of a circular cone which has for its base the circle of intersection of Y and
f. See also Figure 2. The entire cone is the Voronoi surface of the plane f and
the (infinite) cylinder g. In principle, the construction of the skeleton of this
object could be described as follows.

1. For each bounding surface, fi of S, construct the reflexive Vorouoi snii fai,
Vor(f,).

2. For each pair of bounding surfaces, fj,fk of S, construct the Voronoi sur-
face Vor(fj, fk).
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Figure 3: Odd and Even Voronoi Surface of two Spheres

3. Trim Vor(f,) and Vor(fj,fk) suitably to yield the interior skeleton ol S.

This motivates considering the Voronoi surfaces between pairs of boiindinm ,tir-
faces of the object.

Note that this approach to constructing a skeleton is too siniplistic. It
ignores the fact that the presence of edges and vertices may cause other silul:v
elements to appear in the skeleton.

2.3 Voronoi Surface Parity

We wish to determine Voronoi surfaces for pairs of adjacent bounding surfaces
of the object. Given two surfaces f and g, the surface Vor(f,g) consists of two
components. One component consists of points that lie either on the oIitsidC of
both f and g or on the inside of them. We call such a Voronoi surface the Cicyl

Voroioi surface of f and g. The other component of Vor(f, g) is the odd \'()I 0n1i

surface of f and g and consists of points that are on the inside of f and outsidc
of g, or on the outside of f and the inside of g. Figure 3 shows both coiiiIoutenits
for two spheres of equal radius. Here, the even Voronoi surface is a plane thatt
contains the circle in which the two spheres intersect. Points on this plane have
equal minimum distance to either sphere, and always lie on the outside ol both
spheres or on the inside of both of them. As shown later, the odd ollset is a
prolate spheroid, i.e., an ellipse rotated about one of its axes. The points of the
spheroid have equal minimum distance from the two spheres. but are always
outside of one and inside the other. Which component of the Voronoi suifaccs
is needed depends, roughly speaking, on whether the surfaces bound cavities or
protrusions. More precisely, in the terminology of [2], it depends oii whelhii
the primitives contributing the two faces are used positively or ncgatively ill I lie
CSG tree.
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Figure 4: Skeleton at the end of a blind hole

2.4 Mixed-Dimensional Pairs

Consider the bottom of the blind hole of Figure 2. In its vicinity, tile skeleton
has a more complicated structure as illustrated in Figure 4. lere, the skeleton is
composed of three elements, labeled hl, h2, and h3 in the figure. The element h1
is part of a cone, the Vor(fl,g) of cylinder f, bounding the hole and the opposite
face plane g of the block. The surface h 3 is part of a plane, the Vor(g, f2) of the
plane g and the plane f2 that forms the bottom of the hole. The interme(iate
surface, h 2, consists of points that have equal distance from tile plaite y and the
edge e formed by the intersection of f, and f2. Thus, h2 is part of Vor(fl,c).
We will see later that Vor(fl, 1 is a parabolic torus - a surface of revolution
obtained by rotating a parabc iround a line parallel to and away front its ;ixis
of symmetry.

This shows that not only do we have to consider Voronoi surfaces between
pairs of bounding surfaces, but also between surfaces and curves. It will be Imt
surprise that we also need to determine Voronoi surfaces for curve pairs. for
points and curves, for points and surfaces, and for pairs of points. llence. we
have to augment our earlier algorithm with a determination of Voroini sliivf;,,
of such pairs of boundary elements, of lower and of mixed dimensionadit.

2.5 Trimming Surfaces

The complexity of constructing the skeleton of CSG objects now begins to show:
Many Voronoi surfaces have to be constructed, and a suitable strategy for triim-
ming away irrelevant surface areas will be needed. For this purpose, we should
consider where the "influence region" of a face ends on an associated Voronoi
surface. This is especially important in view of the fact that since adjacent
components of a skeleton may meet with tangent continuity, a determinatin
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Figure 5: Trimming Surface at Edge e

of the separating edges as intersection curves of the associated Voronoi surfaces
may be pose delicate numerical problems.

Consider a point p in space. We ask for a point q on a given face f of the
CSG object that lies closest to p. If q is interior to f, then the line T3-7 must be
normal to f at q. This motivates trimming the Voronoi surface associated wit I,
f, by a surface of normals at the boundary of f. This surface is a ruled surface
generated by all the normals to f, along its boundary.

In simple situations we expect that the trimming curves do not exhibit (toni1-
plicated singularities, and that they delimit a simply connected area that coli-
stitutes a face of the skeleton. Note, however, that the trimming surface could
have a nontrivial geometry. For example, for a face on the cylinder f bounded
by the elliptic edge e, the trimming surface is the ruled surface f, shown in
Figure 5.

Similar trimming methods can be formulated for edges: Trim the associated
Voronoi surface by the normal planes at the vertices of the edges, aud by the
trimming surfaces of the adjacent faces. In summary, we construct the Vorolnoi
surfaces on which the faces of the skeleton are situated, by considering eleiiivills
of the boundary individually, and in pairs. Then Voronoi surfaces are trimmiled
by the trimming surfaces which are generated by normals to the surfaces and to
the edges. The skeleton is then assembled from the patches of Voronoi surfaces
that remain.

2.6 Algebraic Complexity

Aside from the combinatorial complexity of properly trimming and comhiiiiii,
patches of Voronoi surfaces, the Voronoi surfaces themselves can be algebraicallv
quite complex. In response, we present in the next section a general method
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that formulates the surfaces in a fairly simple way, as a set of eqllationtu isiiig

auxiliary variables. These equations can be formulated easily, but their anatvsis
and interrogation is not so simple and is the subject of ongoing research: [(i.
7]. So, we give a simplified method for deriving implicit equations of Voronoi
surfaces of CSG surface pairs. In addition, in Section 4, we discuss the geometry
of Voronoi surfaces for CSG. The geometric properties derived in that section

provide shortcuts to the construction and analysis of the elements of the interior
skeleton.

3 Methods for Deriving Voronoi Surfaces

Recall that the Voronoi surface, Vor(f,g), is the locus of all points CqiUidistailt
from surfaces f and g. Given f and g, implicitly or parametrically, there is a
general method for formulating a mathematical description of Voronoi curves
and surfaces, as a set of equations using auxiliary variables. Although we use
this general method for algebraic curves and surfaces in this paper, we note that
it can be used for all curves and surfaces that are differentiable. We recall the
method from [3, 5, 6, 7].

3.1 A General Procedure

Let f and g denote a pair of algebraic surfaces. Consider two spheres S' and
S,, each of radius d, with centers on f and g, respectively. With d the offset
distance, the offset surfaces of f and g are given by the envelopes generated b\
S/ and S. as they move on f and g. This is equivalent to displacing, in the
normal direction, the centres (Ul,U 2 ,u 3 ) of S! and (v,v 2 ,v 3 ) of Sg, as they
move on f and g, by the radius of the spheres. Denoting the pair of liiieariv
independent tangent directions to f at any point by t1 and t 2 and . ilaiy to
y by t't and t' we formulate the following eight equations in ten variables

f :/(uIu2,u3) = 0

g: g(vl,v2,v3) = 0

SI: (x-u1)'+(y-u 2 )2 +(z-u 3 )2 -d 2 = 0

S9: (X- v1) 2+ (Y-v 2 )+(z-v 3 )2 -d 2  = 0

(VS 1 • ti) = 0

(VS 1 . t2 ) = 0

(Vs 9 . t) = 0

(Vsgt,) = 0
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By eliminating the variables { uL, u2 , u 3 , vI, v, v 3 , d} the implicit equation of the
Voronoi surface Vor(f,9 ) associated with f and g can be obtained, at least in
principle.

An example helps to illustrate the above procedure. Let f be a cylinder
of unit radius, parallel to the z-axis with the line (x = 0,y = 2) as its ;xis.
Let g be another cylinder of unit radius, parallel to the x-axis with the lille
(z = O,y = -2) as its axis:

f: x2 +(y-2)2 -- 1 = 0

g: z 2 +(y+2) 2 -1 = 0

Let d be the radius of the spheres S1 and S.. At points (ui, u 2 ,11 3 ) and
(vI,v 2 , v 3 ) on f and g respectively, we have the equations

" :u'+(u2-2)' -I = 0

Sf: (X-? 1 )2 +(y-u 2 )2 +(z-u 3 )2 -( 2 = 0

v'+(v 2 +2) 2 - I = 0
S,: (X-vI) 2+(y -V 2 )2 +(z-v 3 )2 -d' = 0

The gradients Vf and V7 are given by [2u,,2u2 -4,0] and (0,2v2 + 4,2v3].

The two independent tangent vectors at (uI,u 2 , u 3 ) on f, are

t = (0,0,1) t 2 = (2- u2 U1,0)

At (VI,V 2 ,V3 ) on g they are

t, = (1,0,0) t' = (0,-v 3 , v 2 + 2)

Thus, the final system of eight equations is given by

u1+(u 2 -2) 2 -I = 0
(X-,II)'+(y-u)'+(z-u 3 )2 -d 2 = 0

v3+(v 2 +2) 2 - 1 = 0
(x-vI)'+(y-V 2 )'+(z-v 3 )2 -d 2  = 0

Z - U3 = 0

(x - uI)(2 - u2 ) + (y - u2 )uI = 0
X -v = 0

-(Y - 2) 3 + (Z - V30 2 " 2)= 0

After elimination, we obtain the equation of the Voronoi surface.

11



Surface Equation r-Offset Eqpiationt

Plane z Plane Z - d

Sphere 2 + y 2 +z 2 -r 2  Sphere X2 +  - ( r + (!)2

Cylinder X2 + y 2 - r 2  Cylinder X + 2  ( r" + 1/)2

Cone x 2 + y 2 _ z2 tan2 (7) Cone x2 + y- ( + ,1/sii,('t))2 ta:(
Torus (Xorus (2 + y 2 + 2  ( +d)

+2c 2 (Z 2 _ (X2 + y 2 + r 2 )) + c4  +2c 2 (Z 2 
- (x2 + y2 + (" + d) 2 )) + ('

Table 1: d-Offsets of CSG Surfaces

Elimination of the additional variables in an attempt to derive an implicit
oquation for the Voronoi surface is a task well beyond the capacity ol cii ri-t

elimination procedures known to us; see, e.g., [7]. Instead, we use the eqliai.iOiiS

formulated by the general method only for numerical computations that analvzc
the surface locally, as in, e.g., [5].

We mention that this method may generate extraneous solutions. Some
of these may be eliminated by adding additional equations; see [6]. Whietlier
such additions succeed in all cases is not known at this time. Note also that the
general method, as described, cannot distinguish between odd and even Voronoi
surfaces. In consequence, the implicit equation derived from the system ( 1) must
be the product of the two surfaces. This fact would be unpleasant for a global
surface analysis. For a local surface analysis, however, the additional surface
components present no serious obstacle.

3.2 Simplifications for Special Surfaces

The explicit derivation of the Voronoi surface, by the procedure just described.
requires excessive symbolic computations. Considerable simplifications are pos-
sible for specific classes of surfaces, including planes, natural quadrics, anid tori.
For example, if one of the primary surfaces is a plane and the other a cylinder
or a cone, it is easy to see that the associated Voronoi surface is a cone [3]. Ciicli
simplifications are based on the idea to replace the four equations describing the
(-offset of a surface with a single equation, where possible, thereby efiimihatiit,
up to six variables outright. Note that d-offsets are explicitly known for planes.
natural quadrics, and the torus. They are summarized ii. Table 1. Figures 6
through 8 explain the geometric meaning of the constants in the equations. The
offset equations are readily verified.

As an example, we derive the even Voronoi surface of th two non-intersecting
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Figure 6: Plane and Sphere Constants
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Figure 7: Cylinder and Cone Constants
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Figure 8: Torus Constants
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cylinders discussed before. The equations for the respective d-offsets are then:

F: x2 + (y- 2) 2 -(+d) 2 = 0

G: z2 + (y + 2) 2 - (1 + d) 2 = 0

Here, d is eliminated in h = F - G, which is the sought equation of the even

Voronoi surface of the two cylinders:

h: 2 - 8 y - z = 0

It is a hyperbolic paraboloid, as shown in Plate-I.

InI general, d has to be eliminated in two steps. As an example, consider the
odd Voronoi surface of the two cylinders. It is described by

F: x 2 +(y-2)2 -(l +d) 2  = 0

G: z 2 +(y+2)2 -(1-d) 2  = 0

We obtain
F-G=x 2 -8y-z 2 -4d

from which we determine d as a function of z, y and z:

d =(X 2 _ y- z 2)/4

Substitution into F then yields the equation of the odd Voroinoi surface as

, = X2 + (y - 2)2 - (1 + (X2 - 8Y- Z2)/4)'

This is a quartic surface. Since the cylinders do not intersect, physically there
cannot exist a Voronoi surface with an odd component. Algebraically, we init
say that the odd Voronoi surface does not contain any real points. If the cihnit-

ders have a nonempty intersection, the odd Voronoi surface will contalili Iv;i

)oints. Such an example is shown in Plate-II.

We mentioned in Section I that the Voronoi surface of two algebraic surfaces
may be semi-algebraic. This is the case with the odd Voronoi surface shown in
Plate-lI. Here, the algebraic surface has four conical singularities, two of which
are visible. The central part of the surface, in shape roughly like a pillow, is
the odd Voronoi surface and ends in the four conical points that lie on the
two cylinder axes. The containing algebraic surface continues beyond these
singularities.2 Its other points do not belong to the Voronoi surface, since the
points of equal distance on the two cylinders minimize the distance locally onlv,

not globally.

21n the picture the four conical surface extensions have been clipped almost entiicly.
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4 Voronoi Surfaces between Surface Pairs

We now consider the geometry of Voronoi surfaces that result between pairs
of bounding surfaces. We restrict the bounding surfaces to be planes. ilatiral

quadrics, and tori. Many of the Voronoi surfaces that arise can be analyzed by
purely geometric argument, and we do this where appropriate. Note that we
consider the bounding surfaces in their entirety. The Voronoi surface of such
a pair, as pointed out earlier, is not always a complete algebraic surface, but
is always part of an algebraic surface. We do not address how to trim \'oronoi
surfaces.

First, we recall the relevant geometric facts about Voronoi curves for pollits.

circles, and lines. These results are used later to analyze the Voronoi sturlace".
In the following, we refer to planes, natural quadrics. and tori, collectively as

CSG surfaces.

4.1 Voronoi Curves of Points, Circles, and Lines

Proposition 4.1
The Voronoi curve of a straight line and a distinct point is a parabola. If the
point lies on the line, the Voronoi curve is the perpendicular to the liine ai t hat
point.

Proposition 4.2
The odd and even Voronoi curves of a circle C and a straight line L are parabolas.
Each has the center of C as its focus. If the circle is tangent to L, thei one of
the parabolas degetierates into a half line.

Proof
Let the radius of the circle C be r, and consider first the case where L intersects
C. Without loss of generality, we orient L such that the center of C lies to I lh
outside of L or on L. Consider the component h, of the even Voronoi (.iVw, ih;1I

lies outside both L and C. If p is a point on h, at a distance d, from the ciirlc

C and the line L, then p is at distance d +r from the center of the circle. llciiu,
it is also at distance dl + r from a line L1, parallel to and at a distance r from L.
on the inside of L. See also Figure 9 left. By Proposition 4.1, the component hi
of the even Voronoi curve lies on a parabola P1. Now consider the component
h2 of the even Voronoi curve that lies inside C and inside L. If p is a point onl
1h2, at a distance d2 from C and L, it is also at a distance r - d2 from the center
of C. Hence it is also at a distance r - d2 from the line LI, and hence is also on
the parabola P1 . Note that the parabola passes through the intersection points
of L and C, has the center of C as its focus and the perpendicular to L passing

through the center of C as its axis.
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Figure 9: Voronoi Curves of Line and Circle

By a similar argument, the odd Voronoi curve can be shown to be another
parabola, also passing through the intersection points of L and C. with the same
axis, but an opposite orientation.

Now assume that L is tangent to C. Then the component h 2 of the even
Voronoi curve no longer exists, and h, and the point of tangency cover the en! ire
parabola. Moreover, the odd Voronoi curve is the half line on the perpendicil:r
to L at the point of tangency, that lies on the inside of L. See also Iigmie 1)
right. When L and C do not intersect, the odd Voronoi curve does not exist. 0

Proposition 4.3
The Voronoi curve of two nonintersecting circles is a hyperbola if the circles
have different radii, and a straight line if the circles are of equal radius.

Proof
Let C, and C2 be the two circles, and consider a point p exterior to both. on
the Voroni curve. If d is the distance from either circle, then the distance to
the two centers is d + r, and d + r 2, respectively, where r, and r.2 are the radii.
Hence the difference of the two distances is constant. If the radii differ, thict I I,
constant is not zero, and hence the Voronoi curve is a hyperbola. Otherwise.
the difference is zero, i.e., the Voronoi curve is a straight line. C

Proposition 4.4
The odd Voronoi curve of two intersecting circles is an ellipse and the evei
Voronoi curve a hyperbola. If the circles have equal radii, the hyperbola degen-
erates into a straight line.

Proof
Let C1 and C2 be the two circles, and consider a point p exterior to both. on Hie
even Voronoi curve. If d is the distance from each circle, then the distaie to
the two centers is d + r, and d + r2 , respectively, where ri and r 2 are the radii.
Hence the difference of the two distances is constant, so the even Vorovoi cii ye
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Figure 10: Voronoi Curves of two Circles

is a hyperbola if rl $ r 2 and a straight line if rl = r 2. Now consider a point (I
on the odd Voronoi curve, with distance d from both circles, as shown in Figure
10. The distances from the two centers are therefore rl - d and r2 + (1, so the
sum of the distances is constant. Hence the odd Voronoi curve is an ellipse U

4.2 Voronoi Surfaces of CSG Surface Pairs

We classify the types of Voronoi surfaces for CSG surface pairs. Although the
algebraic degree of a Voronoi surface can be as high as 16, for two tori in general
position, there are many cases in which the Voronoi surface is much simpler.
Moreover, there are many geometric properties of interest to be reported.

We think of a Voronoi surface as the projection into (x, y, z)-space of the
intersection of two hypersurfaces in (x, y, z, r)-space. Each hypersurface is a
generic r-offset. The geometry of the Voronoi surface may depend on whether
two positive r-offsets are intersected, or whether a positive and it iitgativ,
r-offset are intersected. We speak of an even Voronoi surface in the posi-
tive/positive and in the negative/negative case. In the positive/negative and
the negative/positive case, we speak of an odd Voronoi surface.

We classify first those Voronoi surfaces in which one member of the pair is

a plane. The following is elementary:

Proposition 4.5
Consider the Voronoi surface Vor(f,g), where f is a plane and g is a plane.
sphere, cylinder, cone, or a torus. Then the degree of Vor(f,g) does not exceed

Proof
Since the r-offset of f is a plane, we may write r = h(z,y,z), where h is lineaI.
Consider the r-offset of g, where g is a CSG surface. Any term xvyzk rT in the

17



r-offset equation satisfies i + j + k + m < 2 for the sphere, cylinder, and cone,.
and satisfies i + j + k + m < .4 for the torus. Substitution into the equation for
g therefore results in an equation of degree at most the degree of g. 0

Note that, when f is a plane, the geometry of the odd and the even Voroioi
surface do not differ. This is analogous to Proposition 4.2. The individual
Voronoi surfaces are characterized now:

Theorem 4.6
Let h = Vor(f,g), where f is a plane.

(i) If g is a plane, then so is h.

(ii) If g is a sphere, then h is a paraboloid of revolution.

(iii) Let g be a cylinder. If the axis of g is parallel to or lies in f, then it is a

parabolic cylinder. If the axis of g intersects f in a point, then h is a cone
whose baseline is the elliptic or circular intersection of g and f.

(iv) If g is a cone, then so is f. If f contains the axis of g, then it has a
hyperbola as base. If f does not contain the axis of g, nor its vertex, t hlen
It has the intersection of f and g as its base. as base.

(v) Let g be a torus. If f is perpendicular to the axis of the torus, then h is
a surface obtained by rotating a parabola about the axis.

Proof
Case (i) is trivial. For Case (ii) observe that Vor(f,g) must be a surface of
revolution about the normal to f passing through the center of g. It follows
from Proposition 4.2 that h is a paraboloid of revolution.

Case (iii): Let the axis of cylinder g be parallel to the plane f, and couusiu er ;I
plane P perpendicular to the axis of g. P intersects f in a line L and y in a
circle C. Because P is also perpendicular to the plane f, the points on f and
g that are nearest to a given point p in the plane P must also lie on the plane

P. So, P intersects the Voronoi surface of f and g in the Voronoi curve of the
circle C and the line L, by Proposition 4.2 a parabola. Since the position and
size of L and C are independent of the position of P, therefore, Vor(f,g) is a
parabolic cylinder.

Now assume that the axis of g intersects f. Let C be the curve of intersection
between f and g. Clearly, C is either a circle or an ellipse and lies on I lie Vorolui
surface h. Consider the plane P through the axis of g and perpendicular to f.
P intersects f in a line L, and g in the parallel lines L 2 and L' . Since the
closest approach on f and g, to any given point p on P must lie on these lines,
P intersects h in two lines i!, and H2 that bisect the angle between L, and L 2,
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Figure 11: Structure of the Voronoi Surface of Cylinder and Plane

and tile angle between Ll and L 3 . It is not difficult to see that the lines ill aid

12 intersect in a point v on the axis of the cylinder g.

Consider any plane Q through the cylinder axis, and note that (0 is not

necessarily perpendicular to f. Then Q contains v and a point w in Miich (_'
intersects Q. Note that both points lie on h. We argue that the line F-,' lis
on the Voronoi surface h. Now the shortest distance of a point q on this line,
from the cylinder g, varies linearly with the distance of q from w. Siaimdi'v.
the shortest distance of q from the plane f varies linearly with the distance of
q from w, which is evident when considering the plane Q' through the line V, IL'

that is perpendicular to f. See also Figure 11. Since both v and w are on h,
and since the distances from f and g vary linearly, the two distance functions
must be the same. That is, tile line U is on h.

We have shown that h contains all lines through points of C and thliotivl 7'.

It follows that h is a cone with vertex v and base line C.

Case (iv): Assume that f contains the axis of g, so y intersects f il the
degenerate conic C consisting of two intersecting lines. Note that (.' is oil It.
Consider a point p on h other than the vertex v of the cone. The point of
closest approach to p on f is pf and on g it is pg. We consider the line Lf
through v and pf, the line L. through pg and v, and the line Lh through p
and v. We want to show that Lh is on the Voronoi surface. Now Lf is ill
f and L_ in g. Let q(A) =Ap + (1 - A)v be any point on Lh, and qf (A) =

Apf + (1 - A)v and q(A) = Apg + (1 - \)v the corresponding points on 1,
and L.. By proportionality, the distance (q(A),qf(A)) is equal to the distance
(q(A), qg(A)), and the angles L(q(A),q(A),v) and L(q(A),q 9 ( A), v) both ;ait, iiht
angles. Hence, the line Lh is on the Voronoi surface; i.e., the Vorouioi surface is

a cone.
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Figure 12: Section of the Voronoi Surface of a Cone and a Plane

We now show that the curve in which h intersects a plane P perpendillikil
to f is a hyperbola. Consider a point p on h at distance d from both f and q.
Then p lies on a plane parallel to f, at distance d, that intersects P in a lile
If . Moreover, p lies on a cone, of equal apex angle a as g, that intersects P in a
circle c9 . If rp is the radius of the circle in which g intersects P, then the radius
of c9 is rp + d/ cos(a). Referring to Figure 12, we have

(rp + d/ cos(a))2 = z2 + d2

Algebraic manipulation brings this equation into the form

(d/ cos(a) + rp/sin2(a))2 - - r, cot 2 (a) = 0 (2)

For a fixed plane P, rp and a are constants, hence (2) is the equation of .1
hyperbola.

If f does not contain the axis of the cone g, nor the vertex of g, then f and q
intersect in the nondegenerate conic C. We consider a plane P perpendicular to
f containing the axis of g. P intersects f in the line LI, and g in the intersecting
lines L2 and L3. Clearly, the angle bisectors, H, of the lines L, and L2 , and
112 of the lines L1 and L3 are on the Voronoi surface h. The intersectiou of
11, and 112 is on the axis of g, because their intersection point v has eqnal
minimum distance from both L2 and L 3. 3 Therefore, the same argument as in
the cylinder/plane case shows that h is a cone with base line C.

Finally, if f contains the vertex of g but not its axis, then h is a coie %% hoso
vertex is the vertex of G. To argue this case, consider an offset of f by sone
distance d and a plane parallel to f, at distance d. Their intersection is a

'This argument also applies to case (iii).
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Figure 13: Voronoi Surface when Plane f is perpendicular to Torus axis

nondegenerate conic C that lies on h and is the base of the cone. The details
are straightforward.

Case (v): By Proposition 4.5, h is a quartic surface. Let L be the axis of
symmetry of the torus, and consider any plane P containing L. P intersects g
in two circles C and C2 , and f in a line L1 . Let p be a point in P. Since f
is perpendicular to L, the point pf in f minimizing the distance ThTP7 is iH I'.
Moreover, since L is the axis of symmetry of g, the point p9 on g miniinizing
the distance T-7p. is also in P. See also Figure 13. Therefore, P intersects tLhe
Voronoi surface h in curves that must be the Voronoi curves of C1 and Lf. and
of C 2 and Lf. These curves are parabolas. Since the distance of the circles
from the axis L is fixed, h is a parabolic torus obtained by rotating the Vorono
curves about L. 0

Theorem 4.7
Let h = Vor(f,g), where f is a sphere.

(i) If g is a sphere of equal radius, then h is a plane or a prolate spheroid. If q
is a sphere of unequal radius, then h is a prolate spheroid or a two-sheeted
hyperboloid.

(ii) If g is a cylinder whose axis contains the center of the sphere. then I is
a plane or a surface obtained by rotating a parabola about a line perpen-
dicular to the axis of symmetry.

(iii) If g is a cone whose axis contains the center of the sphere, then It is a
figure of revolution, about the axis of the cone. The components of h are
obtained by rotating a parabola around a line that is not perpendicular
to the axis of symmetry. When g is tangent to f, then h has a component
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Figure 14: Voronoi Surface of Cylinder and Sphere

that is a right circular cone.

(iv) If g is a torus whose axis of revolution contains the center of the sphere.
then I is a figure of revolution. Its components are obtained by revolving
ellipse, or hyperbola around the torus axis. If the radius of y is eqald to
the minor radius of the torus, then h contains also a cone, a cylinder, or
a plane.

Proof
Case (i): Consider a plane P containing the centers of both spheres. If p is ally
point on P, then the points Pf on f and p. on g nearest to p are also in '. It
follows that h is a surface of revolution whose axis is through the centers of f
and g. The statement now follows from Propositions 4.3 and 4.4.

Case (ii): If the cylinder axis contains the center of the sphere, then the Voronoi
surface must be a surface of revolution about the cylinder axis. By Proposition
4.2, h is obtained by rotating a parabola about its latus rcctum." It has a
spindle as shown in Figure 14. When the radius of the sphere is equal to the
cylinder radius, by Proposition 4.1, the even Voronoi surface is a plane through
the center of the sphere and perpendicular to the cylinder.

Case (iii): Clearly h is a surface of revolution about the axis of the cone. Consid-
ering a plane P containing the axis of g, the statement follows from Propositiol

4.2. See also Figure 15.

Case (iv): Again, h must be a surface of revolution whose geometry is de-
termined by the section with planes P containing the axis of the torus. fly
Propositions 4.3 and 4.4, the Voronoi curves of the circles in which P intersects
f and g are ellipse, hyperbola, or line. Depending on the axis position. the line
can generate a cone, a cylinder, or a plane as component of the Voronoi sulface
h. 0

'The line through the focus of the parabola perpendicular to the axis of symmetrY.
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Figure 15: Voronoi Surface of Cone and Sphere

Theorem 4.8
Let I = Vor(f,g), where f is a cylinder.

(i) If g is a cylinder of equal radius, then the even Voronoi surface is a hyper-
bolic paraboloid if the axes are skew, a pair of planes if the axes intersect.
and a single plane if the axes are parallel. If g is a cylinder of difrerent
radius with a parallel axis, then h is an elliptic or a hyperbolic cylindlr.

(ii) If g is a cone and the axes of f and g coincide, the odd and even Voioioi
surfaces are cones.

(iii) If g is a torus and the axes of f and g coincide, then h is a paraboloid of
revolution. If the cylinder diameter does not exceed the smaller radius ol
the torus, then the Voronoi surface does not contain a spindle, otherwise
it does.

Proof
Case (i): Assume that f and g have equal radius. If the axes of f and y ari
parallel and not coincident, then h is a plane by Propositions 4.3 and 4.1. If the
axes intersect, then the intersection curve of f and g is a pair of ellipses that lie
in two planes, say P1 and P2. Note that these planes bisect the angle betVeen, the
intersecting axes of f and g. Consider enlarging the radius of both cylinders by
the same distance d. Evidently, the intersection curve of the enlarged cylinders
is on h, and is also in P and P2. Hence h consists of PI and Pi.

Assume that f and g have equal radius but skew axes. Without loss of
generality, the equation of f is x2 + y2 - r2 = 0, and the equation of g is
g(x,y,z) - r2 = 0, where g, is a quadratic polynomial in x,y,z without a
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Figure 16: Voronoi Surface Point for two skew Cylinders

constant term. The even Voronoi surface is therefore obtained from

z2 +y 2 -(r+d) 2 = 0

gi(x,y,z)-(r+d) 2  = 0

by climination of d, effected by subtraction. Since x2 + y' - gY is quadratic.
the even Voronoi surface is quadratic. Let I be the line of closest approach of
the axes of f and g, and assume that the axes of f and g pass at right angle.
at distance "i. The plane P containing both I and the axis of f intersects f in
a pair of lines and g in a circle. It is not hard to see that h intersects 1P ini ;,

parabola. By symmetry, h intersects the plane P' containing I and the axis ol
g also in a parabola. Next, consider a plane P parallel to P, at distance c. Let

p be a point on the intersection of h and P1 , at distance d from both cylindels.
Referring to Figure 16, we have (m + x) 2 + y2 = (r + d) 2 and c2 + ' = (i + dW.
Subtracting, we obtain m 2 + 2mx + y2 

- c = 0, hence h intersects I) ini a
parabola. It follows that h is a hyperbolic paraboloid. If the angle between the
skew axes is not a right one, then a purely algebraic argument can be given.
roughly as follows. Consider h = x 2 + y2 - g, and compute its invariants. The
invariants certify that h is a hyperbolic paraboloid in this case also.

If f and g have different radii but have parallel axes, then the statement
follows from Propositions 4.3 and 4.4.

Case (ii): Consider the even Voronoi surface h. it is a surface of revoltioll
about the common axis. Consider the plane P through the axis. It initerscts f
in two parallel linos L, and L-2 and g in two intersecting lines L 3 and L4 that
meet at a point v on the common axis. The bisectors H, and H 2 of the angles
formed by L, L 3 and LIL 4 are lines consisting of points that are equidistant flont
f and g. Also H1 and 12 meet at a point u on the common axis. The snrfacc,
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of revolution, h, formed by H, and H2 is a cone with vertex at u. Moreover.
since the two triangles on P with vertices on L, and L,2 and tile common base
uv are equal in all respects, the apex angles of h and g are also equal. It is easy
to see that the odd Voronoi surface is also a cone since it is generated by the
perpendiculars to H and H2 at the points of intersection with Ll and L2.

Case (iii): Consider any plane P containing the coincident axes of f and g.
The point Pf on f of closest approach to a given point p in P must lie in P,
and the same is true for the point p. on g. Hence h is a figure of revolutiol.
P intersects f in two fines parallel to the axis, and g in two circles. If g and
f intersect, By Proposition 4.2, P intersects h in a pair of intersecting and a
pair of non-intersecting parabolas. Since the lines in which P intersects f are
parallel to the axis of f, the parabolas revolve around a line perpendicular to
the line of symmetry.

If the cylinder diameter is less than the smaller diameter of the torus, h is a
paraboloid of revolution. Moreover, the parabola orientation is such that there
is no spindle. If the cylinder diameter is larger than the smaller diameter of the
torus, then the odd Voronoi surface contains a spindle. C0

Theorem 4.9
Let h = Vor(f,g), where f is a cone.

(i) If g is a cone, and the axes of f and g are coincident, then the components
of h consists of cones.

(ii) If g is a torus and the axes of f and g coincide, then h is a figure of
revolution obtained by rotating a parabola about a line not perpendicular
to the axis of symmetry.

Proof
Case ii): If f and g have the same axis, then h is clearly a figure of revolution.
A plane P containing the axis intersects f and g in two pairs of intersecting
lines, and the bisectors of two lines, one from f and the other from g, are the
generators of h. Therefore, h has right-circular cones as components.

Case (ii): Clearly h is a figure of revolution. Let P be a plane containing the
common axis of f and g. P intersects f in two lines and g in two circles. By
Proposition 4.2, P intersects h in four parabolas. Since the lines in which P
intersects f are at an angle with respect to the axis of f, none of the parabolas
revolves around a line perpendicular to the line of symmetry. 0

Theorem 4.10 Let h = Vor(f,g), where f and g are tori with coincident axes.
Then h is a figure of revolution obtained by rotating an ellipse or a hyperbola
about a line perpendicular to one of their axes. If the minor radii of the tori
are equal, then the even Voronoi surface is a cylinder or a cone. If f and g
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aie congruent with a common center, then the even Voronoi surface is a pair of
planes containing the intersection curve.

Proof
Obviously h is a figure of rotation. Hence the the first two parts of theorem
follows from Propositions 4.3 and 4.4. If f and g are congruent and have the
same centers, then their intersection consists of two plane curves, in the planes
P and P2 . The d-offsets of the tori are also congruent with common centers.
and their intersection curves lie in P and P2. Hence ,he Voronoi surface has
two planes as components. By symmetry, there is no additional component. 0

5 Conclusion

We have presented a conceptually simple method for constructing the iitcrior
skeleton of CSG objects. The individual elements of the skeleton were showii to
be the well known Vorouoi curves and surfaces. In general, the Voronoi elements
have a complicated geometry. We analyzed a number of special cases in which
the Voronoi surface of pairs of CSG surfaces has a simple geometric structure.

Skeleton surfaces have been proposed for use in a variety of important appli-
cations such as computer-aided design, motion planning, mesh generation and
shape analysis. Our investigations, while illuminating the intrinsic geometric
complexity of such surfaces, provides insights that can be exploited in skeleton
construction algorithms.
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