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A systematic framework is presented for solving algebraic equations arising in geometric
constraint solving. The framework has been used successfully to solve a family of spatial

geometric constraint problems. The approach combines geometric reasoning, symbolic

reduction, and homotopy continuation.
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1. Introduction

A geometric constraint solver accepts instances of geometric constraint problems. A geo-
metric constraint problem instance consists of a set of geometric elements, such as points,
lines and planes, and constraints upon them, such as constraints of distance, angle, co-
incidence, and so on. The constraint solver then computes a suitable set of coordinates
for each geometric element such that the constraints are satisfied, or else announces that
no solution could be found.

Applications of geometric constraint solving abound in solid modeling, graphics, en-
gineering, and many other fields (Durand, 1998). We are especially interested in appli-
cations in solid modeling, hence we concentrate on solvers that have to tackle nonlinear
problems to satisfies the constraints. Incremental constraint satisfaction, an important
subject in graphics and simulation, is not addressed in this paper.

A geometric constraint solver can operate in a single phase or in two phases. Single-
phase solvers, also called instance solvers, directly translate the constraint problem in-
stance into a representation suitable for solving the problem instance immediately—and
then solve the instance. Two-phase solvers first preprocess the constraint system instance,
making use of the structure of the constraints and using the constraints symbolically. A
fundamental advantage of generic solvers is their ability to create templates to solve
classes of constraint problems, e.g. Hoffmann and Vermeer (1994).

After a two-phase solver has preprocessed the problem, a second phase is required
to determine actual coordinate values for the geometric elements subjected to the con-
straints. The work of this second phase differs from the work of single-phase solvers only
in that the preprocessing has decomposed the constraint problem and possibly recognized
characteristic patterns that are solvable by a repertoire of templates. The second phase
has been described in Fudos (1995).
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We are interested in how to approach the second phase of two-phase solvers when the
nonlinear systems that must be solved become daunting. We note that spatial constraint
solving configurations with as few as six geometric elements may pose serious challenges
to reliably finding one or more solutions.

The problems that arise for the second phase very naturally correspond to systems of
simultaneous nonlinear equations. For reasons explained in detail in Durand (1998) and
briefly noted in the next section, it is often insufficient to find only one solution of such
systems: equation solvers that find only one solution may find one that is not acceptable
to the application that formulated the constraint problem. For this reason we look for
an algebraic approach that can, in principle and actuality, compute all solutions of the
system. It is with this requirement in mind that we undertake to formulate a framework
for solving nonlinear algebraic equations.

Our main goal is to provide a systematic solution framework for octahedral problems,
which combines geometric reasoning, symbolic simplification and homotopy continuation.
Previous solutions, e.g. Hoffmann and Vermeer (1994), have relied on reasoning about
the geometry of the configuration. We do not consider degenerate cases. Unless otherwise
stated, all the problems involve only nonzero distances and angles in the interval (0, π).

Moreover, throughout the text, solving a constraint problem can be regarded as finding
all the possible realizations which satisfy the given constraints.

Finally, note that all the running times reported were obtained on a Sun Sparc Sta-
tion 20 with 128 MBytes of memory and operating system SunOS Release 5.5.1.

Section 2 presents a brief survey of constraint solving techniques. Section 3 introduces
definitions, terminology and basic concepts which are used throughout the paper. It also
defines the scope of this work. Section 4 reviews homotopy continuation methods for
solving systems of algebraic equations. Section 5 introduces our solution framework and
uses it for solving a family of basic constraint problems. Section 6 concludes this work.

2. Constraint Solving Techniques

2.1. analytical solvers

In analytical solvers, the constraints are represented by a system of nonlinear equations.
Analytic solvers can be further classified as numerical and symbolic algebraic solvers.

numerical solvers

Numerical solvers are instance solvers that use iterative methods to solve the system
of equations representing the constraints.

An iterative technique in wide use is the Newton–Raphson method (Ortega and Rhein-
boldt, 1970; Stoer and Bulirsch, 1993). This method is distinguished by the ability to
solve large problems, but it is very sensitive, requiring a sufficiently good initial guess.
The difficulty predicting to which root the method will converge relies on the fact that
the attraction basins† for the Newton–Raphson method are fractals (Peitgen and Ritcher,
1986). Therefore, if the sketch is used as the initial approximation, then it should nearly

†The set of points in the space of system variables such that an initial approximation chosen in this
set evolves to a particular solution of the system.
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satisfy the constraints to guarantee that the method would converge to the desired solu-
tion. In applications, this is seldom the case.

Based on the theory of nonlinear optimization, methods with global convergence prop-
erties were proposed (Dennis and Schnabel, 1983). These methods are referred as global,
and converge to a solution from almost any initial guess. Convergence is achieved by
defining an energy function that decreases as progress is made towards a solution, there-
fore assuring improvement at each iteration. However, this method can still occasionally
fail by ending in a local minimum of the energy function. A combination of heuristics and
a variation of this method were used in EMBED (Crippen and Havel, 1988), a practical,
but complex, algorithm for solving molecular conformation problems.

The major drawback of the foregoing techniques is that they can converge to unwanted
solutions. In that case, the method should be re-applied with different initial guesses until
the desired solution is produced. However, there is no guidance on how the subsequent
guesses might be made.

Homotopy continuation methods can be used to circumvent this problem (Allgower
and Georg, 1990; Li, 1997; Rojas, 1999). Continuation methods are robust and versatile
global methods capable of finding all solutions of a given system (Allgower and Georg,
1993). Although the theoretical foundations encompass many different areas of mathe-
matics, the idea behind homotopy is rather intuitive: the solutions of a known “easy”
system are deformed into the solutions of the wanted system. The method has been ap-
plied to problems in many areas, including robotics, kinematics of mechanisms, chemical
equilibrium, geometric intersection (Morgan, 1987; Wampler et al., 1990; Patrikalakis,
1992; Huber and Sturmfels, 1995; Huber, 1996; Verschelde, 1996, 1997b) and, more re-
cently, to constraint solving (Lamure and Michelucci, 1995). Albeit powerful, homotopy
requires a significant amount of computational work, usually limiting the set of solvable
systems to those which are “small”. Fortunately, algebraic tools can be used to reduce
the size of the systems we are interested in, and broaden the applicability and relevance
of continuation methods (Morgan, 1992).

symbolic algebraic solvers

Symbolic algebraic solvers use algebraic elimination methods to solve the system of
equations representing the constraints coupled with (univariate) root finding.

The first approach is based on polynomial ideal theory, and generates special bases
for the system, called Gröbner bases (Buchberger, 1965, 1985; Cox et al., 1992). The
original system is transformed into an equivalent triangular system (a Gröbner basis)
which, therefore, can be easily solved by back-substitution and univariate root finding.
The computation of a Gröbner basis is known as Buchberger’s algorithm. Gröbner bases
have been used extensively in algebra and geometry (Hoffmann, 1989; Cox et al., 1992).
In Kondo (1992), Gröbner bases are used in constraint solving.

The second approach is based on Ritt’s construction of characteristic sets (also referred
as triangular sets) (Ritt, 1932, 1950), a technique rediscovered and extended by Wu in
the context of mechanical geometry theorem proving (Wu, 1986, 1994; Chou, 1988).
This method decomposes the solution set of an algebraic system into set expressions
involving the solutions of simpler systems. It is argued in Wang (1991) that the method
can be used to solve a large number of systems found in the current literature. Wang
(1998) generalized the notion of triangular sets to pairs of polynomials called simple
systems, which were used to devise a method for solving polynomial systems. Lazard
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(1991) and Kalkbrener (1993) also present methods for decomposing the solution set
of polynomial systems into triangular sets. An extensive discussion about the different
notions of triangular sets is presented in Lazard (1999).

The third approach uses resultants and is based on the theory of determinants. The
main idea is to use the original system to generate a larger system where the terms of
the original equations are regarded as distinct variables (Gelfand, 1994; Sturmfels, 1997).
Sederberg uses this method in the context of curve and surface modeling (Sederberg,
1983). In Manocha (1993) and Manocha and Canny (1993), sparse resultants are used to
compute the solutions of polynomial systems. Emiris and Mourrain (1996) and Emiris
and Verschelde (1997) use a solver based on sparse resultants to solve problems arising
in computational biology and chemistry.

Symbolic algebraic solvers can be regarded as instance solvers if the constraints values
are used when manipulating the equations. The power of the approach is due to the fact
that the constraints can be manipulated symbolically, producing parameterized solutions.
Those solutions can be re-evaluated for different sets of constraint values.

Symbolic solvers are often very slow, usually requiring exponential running time. More-
over, symbolic computations are memory intensive. Therefore, some geometric restric-
tions are usually imposed in practice.

2.2. graph-based solvers

In graph-based solvers, the constraints are represented by a constraint graph which
encodes the geometric and topological structure of the sketch. It is a two-phase approach:
in the first phase, the constraint graph is analyzed and a decomposition and construction
sequence is determined. In the second phase, the geometric elements are placed, i.e. their
coordinates are computed, as the construction steps are carried out.

The solver described in Bouma (1995) uses this approach to solve problems in 2D.
The construction sequence groups the vertices of the graph recursively into sets, called
clusters. The clusters induce subgraphs whose underlying geometry can be solved al-
gebraically. The algorithm recursively merges three clusters (forming a new augmented
cluster), provided they are pairwise adjacent (when regarded as super-vertices of the
graph). For a complete solution, all vertices must be grouped into a single cluster upon
termination. Regardless of the fact that the clusters can be merged in many different
ways, the solution is unique when applying simple rules for selecting from arising mul-
tiple roots (Fudos and Hoffmann, 1993). In Fudos and Hoffmann (1996), the authors
describe how to construct conic blending arcs from constraints using the same approach.
In Hoffmann and Joan-Arinyo (1997), a method that combines graph-based and numer-
ical techniques is presented.

DCM (D-Cubed, 1994) is a commercial solver that also uses a graph-based approach.
The constraint graph is partitioned into subgraphs that can be solved algebraically with
respect to local coordinates. In the next phase, the subgraphs are placed with respect to
each other by the application of rigid-body transformations to the underlying geometry
of each subgraph (Owen, 1991).

The graph-based approach is fast and methodical. However, it is very sensitive to
the types of geometric objects and constraints considered. Extensive modifications are
required after adding new geometric types or new constraint types.
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Figure 1. Sketch involving planes P1, P6, and P7, and points p2, p3, p4, and p5.

2.3. rule-based solvers

In the rule-based approach, the constraints are represented as a set of rules and predi-
cates. Rewrite rules are used to find a construction sequence that satisfies all constraints.
Based on this procedure, the predicates representing the desired constraints are trans-
formed into predicates defining the position of the geometric objects involved.

One of the first attempts to represent constraints as rules is described in Borning
(1981), where the rules are classes in Smalltalk associated with methods that can be
invoked to solve the constraints. Brüderlin (1987) calculates all solutions symbolically.
Predicates are stored in a Prolog database with calls to the procedural language Modula-2
to evaluate the construction steps. Aldefeld (1988) presents a method based on geometric
reasoning that uses a forward inference mechanism to solve problems in 2D involving
points, tracks and line segments. Verroust et al. (1992) describes an approach capable of
modeling dimensional, tangency and radius constraints. The sketch is represented by a
set of mutually constrained distances (CD sets) and angles (CA sets) which are evaluated
simultaneously. Joan-Arinyo and Soto (1997a,b) provide a correctness proof of a method
based on an extension of the repertoire of the rules presented in Verroust et al. (1992).

Rule-based solvers are valued for the explicit and transparent representation of the geo-
metric knowledge and separation of the knowledge from its processing. As a consequence,
this approach is very flexible in the sense that new rules can be added incrementally with-
out modification of the inference component. Nevertheless, it is a potentially slow method
due to the exhaustive search and matching inherent in the inference mechanism.

3. Theoretical Background

3.1. primitives and constraints

A point or a plane in 3-space is referred to as a primitive. We denote points by p, p1, . . .
and planes by P, P1, . . . . By sketch we mean the (finite) set of primitives of a geomet-
ric constraint problem. We allow constraints of distance, angle, denoted dist and ang,
respectively. We also allow the relations of incidence, perpendicularity, and parallelism,
denoted in order by on, perp, and para.

The constraint graph captures the relationship between the primitives of a sketch. The
graph vertices denote the primitives, and the graph edges denote the constraints and
relations on them. Figure 1 shows a sketch involving planes P1, P6, and P7, and points
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Figure 2. Constraint graph for the sketch of Figure 1.
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Figure 3. Constraint graph involving four points p1, p2, p3, and p4, constrained by distances.

Table 1. Two possible realizations of the constraint graph shown in Figure 3.

p1 p2 p3 p4

(0,0,0) (1.2,0,0) (0.7125,0,−1.20513) (0.366667,1.03217,−0.700131)

(0,0,0) (1.2,0,0) (0.7125,0,−1.20513) (0.366667,−1.03217,−0.700131)

p2, p3, p4, and p5. Figure 2 shows the corresponding constraint graph. Edges labeled dij
or aij denote a distance or an angle constraint on the primitives i and j, respectively.
The label on indicates that the adjacent primitives are incident.

For different sets of constraint values, we can compute one or more placements of the
primitives that satisfy the given constraints. The placements are referred as realizations
of the constraint graph. Figure 3 shows a graph involving four points p1, p2, p3, and
p4, constrained by distances. The labels on the edges correspond to the distance values.
Table 1 shows two possible realizations of Figure 3.
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The problem of finding one or more realizations of a constraint graph is called a
geometric constraint problem or simply a constraint problem.

If a constraint problem has infinitely many solutions, then it is underconstrained. If
a problem has a finite number of solutions after deleting one or more constraints, then
it is called overconstrained. If the solutions satisfy the deleted constraints, the over-
constrained problem is said to be consistent, otherwise, it is inconsistent and has no
solution. A problem with a finite number of solutions is called well constrained if it is
not overconstrained.

3.2. basic configurations

Deciding whether a problem is well constrained by inspection of the constraint graph
is nontrivial. A survey of concepts and techniques can be found in Durand (1998).

In the plane, Laman’s (1970) theorem provides a basis for such a test, but it is re-
stricted to primitives with 3 degrees of freedom, such as points, planes, and circles with
fixed radii. Another characterization is based on Henneberg n-sequences (Henneberg,
1911), which also leads to an algorithm for finding realizations for a restricted class of
graphs, called 2-simple or sequentially constructible. In Bouma (1995), the idea is ex-
tended to a more general class of graphs. Initially, the constraint graph is partitioned
into 2-simple subgraphs, called clusters, and their realizations computed locally. The re-
alizations corresponding to three clusters can then be recursively merged, provided the
clusters share a primitive with each other. Regardless of the effort, finding a fast algo-
rithm to systematically produce a realization for any 2D abstract constraint system is,
at the present time, an open problem that deserves further attention.

In three dimensions, the constraint solving is even more difficult. Even a test to check if
a problem is well constrained is still unknown. Laman’s and Henneberg’s results, which
provided the algorithmic foundation in two dimensions, cannot be fully extended to
higher dimensions (Crippen and Havel, 1988).

Hoffmann et al. (1997a,b) propose an approach based on degree-of-freedom analysis
where the constraint graph is augmented with a weight function that accounts for the
number of degrees of freedom of a primitive and the number of degrees of freedom elim-
inated by a constraint. In Hoffmann and Vermeer (1994), the algorithm from Bouma
(1995) is extended to three dimensions. Since the primitives considered there (points and
planes) have 3 degrees of freedom, three pairwise constrained vertices are necessary to
begin a cluster. Additional vertices can be added to the cluster provided they are inci-
dent to three nodes already in the cluster. This corresponds to a tetrahedral structure in
the constraint graph. When no more vertices can be added, the cluster is deleted from
the constraint graph and the process repeated. There may be unused edges in the con-
straint graphs since three pairwise constrained vertices are needed to start the cluster.
These edges with the adjacent vertices form a degenerate cluster. A local realization is
then computed for each cluster and the clusters are merged to produce the final real-
ization. However, the necessary relationships between clusters required for merging are
much more complicated than the ones found in the two-dimensional case. The Hoffmann
and Vermeer (1994) paper identifies four configurations which define a well-constrained
problem in general. They are shown in Figure 4(a)–(d).

The double tetrahedron and the decahedron can be decomposed into tetrahedra. The
tetrahedron and the octahedron cannot be further decomposed and, for this reason, are
called basic configurations. The corresponding problems are basic problems. They define
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(a) (b) (d)(c)

Figure 4. (a) Tetrahedron, (b) double tetrahedron, (c) decahedron and (d) octahedron.

intrinsically different construction steps and can be regarded as building blocks of more
complex designs. In fact, by solving these two families of basic problems, one can, in
principle, solve any problem which can be decomposed into tetrahedra and octahedra.
This justifies our interest in finding efficient solution strategies for these problems.

3.3. tetrahedral and octahedral problems

Tetrahedral problems involve four primitives which can be points and planes, con-
strained by distances and angles. There are four possible cases, which are shown in
Figure 13 (Appendix B). The problems Tetrai, i = 1, . . . , 4 involve i−1 planes. Problems
involving three planes are underconstrained. The Tetra family of problems can be solved
directly by using many analytical methods (see Durand, 1998).

Octahedral problems involve six primitives among points and planes constrained by
distances and angles. They are shown in Figures 14 and 15 (Appendix C). We consider
six configurations which differ on the number of planes and points involved and on their
topology. Problems with more than four planes are underconstrained and are therefore
not discussed. Section 5 addresses the solution of octahedral problems.

3.4. the algebraic system associated with a constraint problem

With || ||, · and × we denote Euclidean norm, dot product and vector product, respec-
tively. The point pi is represented by its Cartesian coordinates

pi : (xi, yi, zi),

and the plane Pi, by the unit normal vector ni = (nxi, nyi, nzi) and the signed distance
from the origin di

Pi : (nxi, nyi, nzi : di), q ||ni|| = 1.

Note that the plane Pi has the implicit equation

nxix+ nyiy + nzix+ di = 0.

The condition ||ni|| = 1 is an implicit constraint. We give an algebraic representation of
the constraints. The equations are presented in the vectorial and Cartesian format.
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angle between two planes Pi and Pj

ang(Pi, Pj) = aij
Vector ni · nj = cos(aij)
Cartesian nxinxj + nyinyj + nzinzj = cos(aij)

The constraints para and perp are special cases of the ang constraint where the angles
are 0◦ and 90◦, respectively. Note that the definition of parallelism is different from the
one presented in most geometry books, where the angle between the primitives can be
either 0◦ or 180◦. We choose oriented parallelism because it reduces the degree of the
corresponding equation and, consequently, the number of solutions of the problem.

distance between two points pi and pj

dist(pi, pj) = dij
Vector ||pipj || = dij
Cartesian (xi − xj)2 + (yi − yj)2 + (zi − zj)2 = d2

ij

distance from point pi to plane Pj

dist(pi, Pj) = dij
Vector nj · pi + dj = dij
Cartesian xinxj + yinyj + zinzj + dj = dij

The constraint on is a special case of the dist constraint where the distance is 0.
Given a constraint problem, we define the associated algebraic system as the polynomial

system obtained by the union of the equations corresponding to the implicit and explicit
constraints. Consider Tetra3 in Figure 13(c), for instance. If the primitives are represented
by

P1 : (x0, x1, x2 : x3)
P2 : (x4, x5, x6 : x7)
p3 : (x8, x9, x10)
p4 : (x11, x12, x13),

then the algebraic system associated with Tetra3 is

x2
0 + x2

1 + x2
2 − 1 = 0

x2
4 + x2

5 + x2
6 − 1 = 0

x0x4 + x1x5 + x2x6 − cos(a1) = 0
x8x0 + x9x1 + x10x2 − x3 − d2 = 0
x11x0 + x12x1 + x13x2 − x3 − d3 = 0
x8x4 + x9x5 + x10x6 − x7 − d4 = 0
x11x4 + x12x5 + x13x6 − x7 − d5 = 0
(x11 − x8)2 + (x12 − x9)2 + (x13 − x10)2 − d2

6 = 0.

The first two equations correspond to the implicit constraints on P1 and P2. The other
equations correspond to the distance and angle constraints.
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Figure 5. Placement of three points.

3.5. placement rules

The solutions of well-constrained problems are in general rigid realizations with 6
degrees of freedom (three translational and three rotational). Therefore some of the
primitives must be placed with respect to a coordinate system to guarantee that the
associated system can be solved.

Six degrees of freedom have to be eliminated. Since we are dealing only with points and
planes, which have 3 degrees of freedom, we need to place three primitives constrained
with respect to each other, i.e. forming a triangle on the constraint graph (Hoffmann
and Vermeer, 1994). We use the following placement rules. Only distance and angles are
considered. Moreover, in order to avoid degenerate cases, we assume that only nonzero
distances and nontrivial angles (6= 0◦, 180◦) occur.

placement of three points (rule ppp)

Let p1, p2 and p3 be three points with distance constraints di,j . A generic placement
can be obtained by the following rules; see also Figure 5:

(1) p1 is placed at the origin.
(2) p2 is placed on the positive side of the x-axis at distance d12 from p1.
(3) p3 is placed on the xz-plane according to the distances d13 and d23.

In terms of generic coordinates, the primitives can be represented by

p1 : (0, 0, 0)
p2 : (x0, 0, 0)
p3 : (x1, 0, x2).
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The placement rules and the constraints then determine the values of x0, x1 and x2:

x0 = d12 x1 =
1
2
x2

0 − d2
23 + d2

13

x0
x2 =

√
−x2

1 + d2
13.

placement of two points and one plane (rule ppP )

Let P1 be a plane, p2 and p3 two points, and di,j the distance constraints between them.
A generic placement can be obtained by the following rules, illustrated in Figure 6:

• P1 is placed as the xy-plane (with normal vector (0, 0, 1)).
• p2 is placed on the positive side of the z-axis at distance d12 from P1.
• p3 in placed on the xz-plane according to the distances d13 and d23.

In terms of generic coordinates, the primitives can be represented by

P1 : (0, 0, 1 : 0)
p2 : (0, 0, x0)
p3 : (x1, 0, x2).

Then the placement rules and the constraints determine the values of x0, x1 and x2

x0 = d12 x1 =
√
d2

23 − d2
12 − d2

13 + 2d12d13 x2 = d13.

placement of one point and two planes (rule pPP )

Let P1 and P2 be two planes and p3 a point, and assume the constraints ang(P1, p2) =
a12, dist(P1, p3) = d13, and dist(P2, p3) = d23. As shown in Figure 7, a generic placement
can be obtained as follows:

• P1 is placed as the xy-plane (with normal vector (0, 0, 1)).
• P2 is placed in such a way that it satisfies the angle constraint a12, and the inter-

section of P1 and P2 coincides with the y-axis.
• p3 is placed on the xz-plane according to the distances d13 and d23.

Therefore their coordinates can be represented generically by

P1 : (0, 0, 1 : 0)
P2 : (x0, 0, x1 : 0)
p3 : (x2, 0, x3).

The values of x0, x1, x2 and x3 can be computed directly based on the constraints and
placement rules

x1 = cos(a12) x0 =
√

1− x0 = sin(a12) x3 = d13 x2 =
d23 − d13 cos(a12)

sin(a12)
.
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Figure 6. Placement of two points and one plane.
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Figure 7. Placement of two planes and one point. Only the projection on the plane xy is shown.

placement of three planes (rule PPP )

Let P1, P2 and P3 be three planes, and let aij denote the angle constraints between
them. A generic placement can be obtained by the following rules:

• P1 is placed as the xy-plane (with normal vector (0, 0, 1)).
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• P2 is placed in such a way that it satisfies the angle constraint a12, and the inter-
section of P1 and P2 coincides with the y-axis.
• P3 is placed in such a way that it contains the origin and satisfies the angle con-

straints a13 and a23.

Therefore their coordinates can be represented generically by

P1 : (0, 0, 1 : 0)
P2 : (x0, 0, x1 : 0)
P3 : (x2, x3, x4 : 0).

The placement rules and constraints completely determine the values of x0, x1, x2, x3

and x4. In this case x3 can assume two distinct values.

x1 = cos(a12) x0 =
√

1− x0 = sin(a12) x4 = cos(a13)

x2 =
cos(a23)− cos(a13) cos(a12)

sin(a12)
x3 = ±

√
1− x2

2 − x2
4.

4. Homotopy Continuation Methods

4.1. overview

For more than a century, homotopy has played an important role in many areas of
modern mathematics, and its use as a tool to solve systems of linear equations can be
traced back at least to Lahaye (1934).

Let F (x) = 0, x = (x1, x2, . . . , xn), F = (f1, f2, . . . , fn), be a system with finitely
many solutions in Cn. The homotopy equation is defined by

H(x, λ) = (1− λ)G(x) + λF (x), (1)

where λ ∈ [0, 1). F (x) is called the target system and G(x) the start system.
The system (1) is underdetermined and implicitly defines a curve in Cn × [0, 1), the

homotopy path. The term homotopy continuation refers to a set of techniques for numer-
ically approximating the homotopy path. The solutions of H(x, 0) = G(x) = 0 are the
start points, and, as λ approaches 1, the start points are deformed into the solutions of
the target system.

Most homotopy continuation methods use a predictor–corrector scheme, similar to the
one depicted in Figure 8. Suppose x∗ is on the homotopy path for λ = λ0. The predictor
function computes x′, which approximates H(x, λ0 + δ) = 0, and the corrector uses x′

to compute the point on the homotopy path for λ0 + δ. For a review of path-following
techniques, see Allgower and Georg (1990, 1997).

The choice of the start system, and the start points to follow, is crucial for designing an
efficient homotopy, because the number of paths to be followed corresponds to the number
of start points selected. The problem arises because some start points may produce
divergent paths, corresponding to solutions at infinity of F (x) = 0 (Morgan, 1987).
Solutions at infinity are difficult to detect, expensive to compute, and usually have no
practical interpretation.

The topology of the homotopy paths may also impose extra difficulties: paths may
cross, have singularities, or become arbitrarily close, causing many numerical problems.
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correct

x∗

x′

λ = 0 λ = 1

predict

Figure 8. Predictor–corrector scheme. x∗ is a point on the homotopy path and x′ is the predicted point.

Fortunately, an adequate selection of the start system can usually minimize such situ-
ations in practice. In our situation, start system selection was adjusted after solving a
configuration for the first time, using the approach of cheater homotopy described later.

4.2. types of homotopy continuation methods

Homotopy continuation methods are used to compute all solutions of polynomial sys-
tems. Even though the underlying idea is the same, they can rely on different theoretical
principles, which define the strategy used for computing the start system and correspond-
ing start points, and the space in which the computations are going to be performed.

Projective homotopies are based on Bezout’s theorem (Morgan, 1987), which states
that the number of isolated solutions of F (x) = 0 is bounded above by its total degree.
Morgan (1986a) describes how to build a generic start system, whose number of solutions
is equal to the total degree of the target system. In Morgan (1986b), he also introduces
a projective transformation, which avoids path crossing and solutions at infinity. The
resulting homotopy is known as standard homotopy.

Bezout’s theorem uses only the degree of the polynomials and often overcounts the
actual number of isolated solutions. Consequently, standard homotopy usually finds a
large number of homotopy paths that lead to solutions at infinity.

Polyhedral homotopies take into account the sparse structure of the system, based on
the monomials that appear in each equation. These homotopies rely on Bernstein’s theo-
rem, which states that the number of isolated solutions of a system in (C∗)n is bounded
above by the mixed volume of the Newton polytopes (Verschelde, 1996). The theorem
forms the basis of sparse elimination theory with methods, also known as polyhedral
methods, that use a geometric approach to exploit the structure of the equations.

Bernstein’s bound is at most as high as Bezout’s bound, but is significantly smaller
for systems we have encountered in our applications. The bound is also known as the
BKK bound, because it relies on work by Bernstein, Khovanskii and Kushnirenko (see
Kushnirenko, 1975; Khovanskii, 1977, 1978; Dyer et al., 1998). Mixed volumes can be
computed by several methods; in particular, those of Emiris and Canny (1995), Huber
and Sturmfels (1995), Verschelde et al. (1996) and Dyer et al. (1998). For additional
theoretical background and standard tools refer to Bonnesen and Fenchel (1987), Betke
(1992), Schneider (1993) and Dyer et al. (1998).

Sparse elimination also provides the basis for solving systems of equations by continu-
ation (Huber and Sturmfels, 1995; Verschelde et al., 1996; Huber and Sturmfels, 1997).
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The central computation in this method is finding a mixed subdivision of the supports
associated with the polynomials of the system, which defines a monomial basis of the
coordinate ring and permits the computation of the number of solutions and numeric
approximation of the solution vectors. This method is called polyhedral homotopy con-
tinuation.

Unlike projective homotopies, it is not necessary to homogenize any of the systems
involved, because the continuation is performed in affine space, not in projective space.

Note that polyhedral homotopies have to follow a number of paths equal to the BKK
bound of the target system, and do not take into account any relationship between the
coefficients, which happens, for instance, when the coefficients are given by parameters.
Therefore, the BKK bound can still overcount the number of affine solutions of the
system. For more details refer to Verschelde (1996).

In many practical applications we need to solve different instances of a system. That is
particularly true when the coefficients of the target system depend on certain parameters.
For instance, the coefficients of systems associated with geometric constraint problems
depend on the constraints defined between the primitives.

Morgan and Sommese (1989) show that such parametric structure can be exploited, by
performing the continuation in parameter space, instead of coefficient space. Therefore,
fewer paths need to be tracked, and the total numerical cost is substantially reduced.
The method is called in the literature parameter-based homotopy.

The same idea is the basis of the so-called cheater’s homotopies (Li et al., 1989; Ver-
schelde, 1998), which are introduced to solve repeatedly a polynomial system with para-
metric structure. The procedure assumes that one has solved the polynomial system
once—the cheating part—for a generic set of complex parameter values. Afterwards, we
can use that system and only its nonsingular affine solutions as the start system and
start points in a homotopy to solve any other system with the same parameter structure.
Since only the nonsingular affine solutions are used as start points, much fewer paths
have to be tracked, when compared with standard homotopy, for instance. See Morgan
and Sommese (1989) for further detail.

4.3. implementations used

We use two software packages that implement different flavors of homotopy: Contin-
uum (Durand and Hoffmann, 1998), which uses the projective approach, and PHC (Ver-
schelde, 1997a,b), which implements polyhedral homotopy.

5. Solving the Octahedron

Some octahedral problems have been studied in different contexts, from kinemat-
ics (Nanua et al., 1990) to computational chemistry (Emiris and Mourrain, 1996). For
geometric constraint solving, the interest in the octahedron comes from the fact that it
is the smallest nontrivial configuration which cannot be decomposed into tetrahedra.

Due to its topological symmetry, any of the eight triangular faces of the octahedron
can be selected to be placed, and this gives some flexibility when choosing a placement
order that leads to the simplest associated system. Usually, we found that placing the
faces with planes produces an associated system which is easier to simplify. Therefore,
we use rule ppp in Octa1, rule ppP in Octa2 and Octa4, rule pPP in Octa3 and Octa6,
and rule PPP in Octa5, Octa7, and Octa8.
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We define a four-step framework for solving octahedral problems:

(1) Equation formulation: in this phase, we compute the system associated with the
problem using the placement rules and representation of primitives and constraints
introduced in Section 3.

(2) Algebraic simplification: in this phase, we simplify the associated system by apply-
ing the following sequence of predefined steps.

(a) Gaussian elimination. The resulting system should have as few squared vari-
ables as possible.

(b) Eliminate univariate equations, since the variables involved can be determined
directly.

(c) Parameterize the variables appearing in all bilinear equations and replace them
with their corresponding parametric expressions.

(d) Parameterize the variables appearing in all bivariate quadratic equations (using
sin and cos) and replace them with their corresponding parametric expressions.

(e) Use the standard trigonometric substitution cos(αi) = 1−y2
i

1+y2
i
, sin(αi) = 2yi

1+y2
i
,

where yi = tan
(
αi
2

)
.

The resulting system is called the core system which is used as a pattern to solve
all problems with the same structure.

(3) Homotopy continuation: in this phase, we use homotopy continuation to compute
all the solutions of the core system.

(4) Realization: in this phase we compute the realizations using the solutions of the
core system.

In what follows, we apply the the framework to solve Octa1. The solutions of the other
octahedral problems follow the same steps.

Initially, we position three points according to rule ppp defined in Section 3.5. The
primitives can be represented in terms of coordinates by:

p1 : (0, 0, 0), p2 : (x0, 0, 0), p3 : (x1, 0, x2),
p4 : (x3, x4, x5), p5 : (x6, x7, x8), p6 : (x9, x10, x11),

where x0, . . . , x11 are the unknowns of our problem. The associated system obtained
using this coordinatization is

{fi}12
i=1 =



x2
0 − d2

1 = 0
x2

1 + x2
2 − d2

2 = 0
x2

3 + x2
4 + x2

5 − d2
3 = 0

x2
6 + x2

7 + x2
8 − d2

4 = 0
(x1 − x0)2 + x2

2 − d2
5 = 0

(x3 − x1)2 + x2
4 + (x5 − x2)2 − d2

6 = 0
(x6 − x3)2 + (x7 − x4)2 + (x8 − x5)2 − d2

7 = 0
(x0 − x6)2 + x2

7 + x2
8 − d2

8 = 0
(x0 − x9)2 + x2

10 + x2
11 − d2

9 = 0
(x1 − x9)2 + x2

10 + (x2 − x11)2 − d2
10 = 0

(x3 − x9)2 + (x4 − x10)2 + (x5 − x11)2 − d2
11 = 0

(x6 − x9)2 + (x7 − x10)2 + (x8 − x11)2 − d2
12 = 0.

(2)

System (2) has 12 equations in 12 variables. Furthermore, despite its sparseness, its total
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degree and BKK bound equal 212. Therefore 4096 homotopy paths must be tracked to
solve the system directly. Considering that each path is computed in one second, more
than one hour would be required to solve the problem.

We apply Gaussian elimination to system (2) (Step 2(a)). The following steps are
performed sequentially:

f5 := f5 − f1 − f2

f6 := f6 − f2 − f3

f7 := f7 − f3 − f4

f8 := f8 − f1 − f4

f9 := f9 − f1

f10 := f10 − f2 − f9

f11 := f11 − f3 − f9

f12 := f12 − f4 − f9.

The resulting equations f1, f2, f5, and f8 can be eliminated (Step 2(b)) since the values
of x0, x1, x2, and x6 are completely determined. We use rule ppp to decide the sign of
x0 and x2. The total degree of the resulting system is 64.

We parameterize the variables appearing in bilinear equations (Step 2(c)). For instance,
we can derive parametric expressions for x5 (in terms of x3) and x11 (in terms of x9) from
equations f6 and f10, respectively. The resulting system has only six quadratic equations,
namely, f3, f4, f7, f9, f11, and f12, in the variables x3, x4, x7, x8, x9, and x10. Note that
this step does not reduce the degree of the system any further.

Equations f3, f4, and f9 are biquadratic, involving the pairs of variables (x3, x4),
(x7, x8), and (x9, x10), respectively. Each pair can be parameterized in terms of sines
and cosines of an angle θi, i = 1, 2, 3, 0 ≤ θi ≤ 2π (Step 2(d)). Finally, we perform
the standard trigonometric substitution (Step 2(e)). This step does not reduce the total
degree of the system, but simplifies the structure of the system. The resulting core system (α1 y

2
2 + α2) y2

1 + α3 y2 y1 + α4 y
2
2 + α5 = 0

(β1 y
2
3 + β2) y2

1 + β3 y3 y1 + β4 y
2
3 + β5 = 0

(γ1 y
2
3 + γ2) y2

2 + γ3 y3 y2 + γ4 y
2
3 + γ5 = 0,

(3)

has only three equations of degree 4 in y1, y2, and y3. The coefficients αi, βi, and γi,
i = 1, . . . , 5 depend exclusively on the distance constraints and can be recomputed for
different instances of the problem. Furthermore, given a solution of the core system, a
solution of the original system, and, consequently, a realization of the problem can be
easily computed (Durand, 1998). The core systems of problems Octa2, . . . , Octa8 are
obtained by following the same steps. Their structures are shown in Appendix A.

The total degree of the system (3) is 64 and its BKK bound is 16. Therefore, standard
homotopy requires 64 paths to be tracked, and polyhedral homotopy, only 16. Moreover,
we solved generic instances of system (3) using Continuum and found that 48 out of the
64 paths lead to solutions at infinity. Consequently, we can use cheater’s homotopy to
our advantage, by following only the paths leading to the remaining 16 affine solutions.

Selecting the core system for a specific constraint problem is not a deterministic proce-
dure. The applicability of some symbolic reduction and simplification techniques depends
strongly on the structure of the system, which, in its turn, relies on the algebraic repre-
sentation selected for primitives and constraints involved in the problem. The framework
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Table 2. Summary of the results of the application of homotopy continuation on a generic instance of

Octa1.

Octa1

Continuum # paths 64
Standard homotopy time (in seconds) 27

Continuum # paths 16
Cheater’s homotopy time (in seconds) 2

PHC # paths 16
time (in seconds) 2

Real 8
Solutions Complex 8

Geometric 8

introduced here provides a systematic tool to find the core systems and solve octahedral
problems, in a way consistent with results previously reported in the literature (Nanua
et al., 1990; Hoffmann and Vermeer, 1995; Emiris and Mourrain, 1996).

As pointed out by one of the referees, computing the BKK bound can be as hard
as solving the original system. We emphasize that computing the BKK bound for the
systems is not part of the solution process. It is a valuable tool for selecting the core
system. Once such a system is chosen, it can be used in a numeric context to solve
various instances of the same problem.

Since αi, βi, and γi, i = 1, . . . , 5 are functions of the distance constraints, we can
determine a generic set of coefficients for system (3) by selecting random distance values.
The resulting system and its solutions are then used in a continuation to solve any other
Octa1 problem (cheater’s homotopy).

Table 2 summarizes the application of homotopy continuation to a generic instance of
Octa1 (Step 3). Continuum (using cheater’s homotopy) and PHC can solve the problem
in two seconds. System (3) has eight real and eight complex solutions. The number of
Geometric solutions corresponds to the number of realizations. In this example, it equals
the number of real solutions. Nevertheless, we point out, that the number of realizations
may be different from the number of real solutions in some problems (Durand, 1998).

Figures 9–12 show four realizations of an instance of Octa1 where:

d1 = 1.00796 d2 = 1.15857 d3 = 1.19071 d4 = 1.18592
d5 = 1.12482 d6 = 1.16643 d7 = 1.17417 d8 = 1.17389
d9 = 1.18117 d10 = 1.06129 d11 = 1.07569 d12 = 1.11983

The other four realizations can be obtained from these by reflecting the solutions with
respect to the xz-plane.

6. Discussion

6.1. application considerations

In our view, instance solvers that find only one solution, such as Newton–Raphson-
based solvers, are not very well suited to geometric constraint solving. We believe that it
is necessary, from time to time, to explore other solutions of an equation system, since the
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Figure 9. Realization #1 of a typical instance of Octa1.
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Figure 10. Realization #2 of a typical instance of Octa1.

process of identifying a solution that realizes the application intent is not well understood
and can have high computational complexity.

It has been argued that users of constraint solvers would probably present the input
problem in a shape that is already close to the intended solution, and that this would lead
with high probability to good starting values for iterative instance solvers. This argument
is plausible in applications where the use of the solver is only for one-time problems.
However, it is often the case that the input problem is understood as a generic design,
and that different instances, or variants, are sought from different dimensional constraint
values. In such a situation starting values for one instance, to a Newton iteration, are
not necessarily good starting values for a different instance. However, as we pointed out,
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Figure 11. Realization #3 of a typical instance of Octa1.
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Figure 12. Realization #4 of a typical instance of Octa1.
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cheater’s homotopy is ideally suited to that situation, because it leverages the knowledge
of which paths lead to affine solutions. Other paths need not be re-evaluated. Thus, the
techniques of this paper apply especially well to variational constraint problems in which
different instances are constructed from the same input problem using various values for
distance and angle constraints.

6.2. nonlinear equations

General solutions to large-scale nonlinear equation systems are too complex, hence
are not an attractive alternative. This has motivated us to approach the problem by
decomposing it into patterns and devising solution templates. Restricting those patterns
to small simultaneous problems involving only planes and points, the case we considered
here, allows the systematic approach we have presented. This result has been foreshad-
owed in earlier work that approached the problem analysis with a pragmatic mixture of
geometric reasoning and classical algebraic tools such as resultants.

Having a successful systematic analytical technique is encouraging, because a geometric
reasoning approach must use specific individual properties of the problem, and is therefore
hard to transfer to other problems with different combinations of geometric elements and
different patterns of constraints between them. What is needed is a systematic approach
that establishes a good methodology. This has been the objective of our work.

Instead of using elimination and reducing the numerical part to root finding, we opted
to explore homotopy continuation. Our motivation is that the variable elimination com-
putations needed to reduce the system to triangular form can become prohibitive. For
example, a straightforward attack on octahedral problems without first reducing to the
core system, using Gröbner bases, is at the limits of what can be computed with the
current technology. Hence it does not lend itself to interactive spatial constraint solving.
Clearly, future research is needed to expand the scope of problems amenable to systematic
solution. This research could progress along the following lines.

BKK bounds work well for generic systems. However, as evident from the core system,
the equations we eventually obtain using a systematic sequence of transformations have
structure that could be exploited. In past research of this and related problems geometric
reasoning was employed. It should be possible to focus exclusively on the algebraic struc-
ture instead, thereby unlocking a greater generality of solution techniques and making
progress on some of the more challenging configurations with a richer set of geometric
elements. Progress in this direction could help close the current gap of understanding the
relationship between structure in the algebraic sense and geometric structure.
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Lahaye, E. (1934). Une méthode de resolution d’une categorie d’equations transcendantes. Comptes
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Appendix A. Structure of the Core System of the Remaining Octahedral
Problems

In the following systems, the coefficients αi, βi, and γi depend solely on the constraint
values and are different in each case.

Octa2

 (α1 y
2
2 + α2) y2

1 + α3 y2 y1 + α4 y
2
2 + α5 = 0

(β1 y
2
3 + β2) y2

1 + β3 y3 y1 + β4 y
2
3 + β5 = 0

(γ1 y
2
3 + γ2) y2

2 + γ3 y3 y2 + γ4 y
2
3 + γ5 = 0

(A1)

Octa3

 (y2
2 + α1) y2

1 + α2 y2 y1 + y2
2 + α3 = 0

(β1 y
2
3 + β2) y2

1 + β3 y3 y1 + β4 y
2
3 + β5 = 0

(y2
3 + γ1) y2

2 + γ2 y3 y2 + y2
3 + γ3 = 0

(A2)

Octa4

 (α1 y
2
2 + α2) y2

1 + α3 y2 y1 + α4 y
2
2 + α5 = 0

(β1 y
2
3 + β2) y2

1 + β3 y3 y1 + β4 y
2
3 + β5 = 0

(γ1 y
2
3 + γ2) y2

2 + γ3 y3 y2 + γ4 y
2
3 + γ5 = 0

(A3)

Octa5

α1 + α2 y1 + α3 y2 + α4 y
2
1 + α5 y

2
2 + α6 y2 y1 = 0

β1 + β2 y1 + β3 y3 + β4 y
2
1 + β5 y

2
3 + β6 y3 y1 = 0

γ1 + γ2 y2 + γ3 y3 + γ4 y
2
2 + γ5 y

2
3 + γ6 y3 y2 = 0

(A4)

Octa6

 (y2
2 + α1) y2

1 + α2 y2 y1 + y2
2 + α3 = 0

(β1 y
2
3 + β2) y2

1 + β3 y3 y1 + β4 y
2
3 + β5 = 0

γ1 y
2
2 + γ2 y3 y2 + γ3 = 0

(A5)

Octa7

 (α1 + α2y3 + α3y1)y2 + α4y1 + α5 = 0
β1y

2
2 + β2y2 + β3 = 0

γ1y
2
3 + γ2y3 + γ3 = 0

(A6)
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Octa8

 (α1y
2
2 + α2)y2

1 + α3y1y2 + α4y
2
2 + α5 = 0

β1y
2
1 + β2y1y3 + β3 = 0

γ1y
2
2 + γ2y2y3 + γ3 = 0.

(A7)

Appendix B. Tetrahedral Problems

P1

p2 p3

p4

d4

d5 d6d3

P1

P2 p3

p4

a1

d4

d5 d6

P1

P2 P3

p4

a4

d5 d6

(a)

(c) (d)

(b)

a1

d1

p1

p2 p3

p4

d4

d5 d6d3

d1

d3d3

d2 d2

a2d2

Figure 13. (a) Tetra1, (b) Tetra2, (c) Tetra3 and (d) Tetra4.
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P1p1

p2p5

p4 p3

d1d4

d7

d11 d10

d5

d2

d8

d3

d12

d6

d9

P6

P2p5

p4 p3

a1d4

d7

d11 d10

d5

d2

d8

d3

d12

d6

d9

p6

p2p5

p4 p3

d4

d7

d11 d10

d5

d2

d8

d3

d12

d6

d9

p6

p2p5

p4 p3

d4

d7

d11 d10

d5

d2

d8

d3

d12

d6

d9

p6

d1 d1

P1 P1

(c) (d)

(b)(a)

Figure 14. (a) Octa1, (b) Octa2, (c) Octa3, (d) Octa4.

p6 P6

(c)

P2p5

P3

a1d4

d7

d11 d10

a5

a2

d8

a3

d12 d9

P1

P2p5

p3

a1d4

d7

a11 d10

d5

d2

d8

d12

d6

a9

P1

p6 P6

(a) (b)

P2p5

p4 P3

a1d4

d7

d11 d10

a5

a2

d8

d3

d12

d6

d9

P1

P2p5

p4 p3

a1d4

d7

d11 d10

d5

d2

d8

d3

d12

d6

a9

P1

(d)

P4
a6 P4

a3

Figure 15. (a) Octa5, (b) Octa6, (c) Octa7, (d) Octa8.

Appendix C. Octahedral Problems

• Octa1: six points.
• Octa2: five points and one plane.
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• Octa3: four points and two planes that are adjacent in the constraint graph.
• Octa4: four points and two planes that are not adjacent in the constraint graph.
• Octa5: three points and three planes that form a triangle in the constraint graph.
• Octa6: three points and three planes that form a path in the constraint graph.
• Octa7: four planes and two points that are adjacent in the constraint graph.
• Octa8: four planes and two points that are not adjacent in the constraint graph.
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