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Abstract

We discuss how to solve variational constraint problems
involving points, lines and planes. We concentrate on small
problems that must be solved simultaneously.

1. Introduction

Geometric constraint solving is an integral part of com-
puter aided design, serving the role both of precisely situ-
ating geometric elements in relation to each other, as well
as dimensioning and constraining their shapes accurately.
There is a large literature on the subject, addressing the
problem with a variety of approaches. For a recent com-
prehensive survey of this literature see [4].

1.1. Multiple Solutions

Since geometric constraint systems correspond to non-
linear systems of equations, one difficulty that must be ad-
dressed is to select the “right” solution from a possible set
that can be exponential in size for well-constrained prob-
lems. Here, the meaning of “right” depends strongly on the
application. For example, if the constraint system is to ex-
press that two bodies should be mated on a common face
plane, an acceptable solution would have to ensure that the
bodies do not interpenetrate.

It is possible to express rigorously many of such applica-
tion requirements, but this is not normally done for reasons
of efficiency [3]. Rather, one relies on heuristics which in
many cases succeed. When the heuristics fail, it becomes
necessary to select a different solution, and this motivates
finding, for subproblems that cannot be decomposed fur-
ther,all possible solutions.

In earlier work we have investigated the case of planar
constraint solving, as well as some spatial constraint prob-
lems; e.g., [7, 11, 12]. The spatial problems were restricted

to a vocabulary of points and planes only, and involved only
six primitives. In this paper, we investigate the larger class
of problems involving lines as well.

1.2. Instance and Generic Solvers

We classify geometric constraint solvers by the manner
in which they use the geometric information. In particular,
the family of instance solverssolves a constraint problem
using only specific instance information with fully valuated
constraints. In contrast,generic solversfirst analyze the
constraint problem without regard of the specific constraint
values, deriving a plan on how to decompose the problem
and solve it subsequently. In a subsequent phase, the plan is
then executed and the constraint problem instance is solved.

We advocate generic solvers because they allow the for-
mulation of templates to solve entire classes of constraint
problems, increasing solver efficiency. Moreover, interac-
tive changes of dimensional constraint values allow recom-
putation with the same solution plan. In such cases, deriving
the solution plan becomes a preprocessing step, another ef-
ficiency gain. In this paper, we look at the problem of how
a generic solver would solve certain templates that arise in
spatial constraint systems. The formulation of templates has
been explored in [11] and [10].

2. Two Sample Problems

We illustrate the issues we are facing in spatial constraint
solving by considering two simple configurations, each in-
volving six primitives. The first such configuration consists
of six points, with distance constraints between them in the
topology of octahedron edges.

The problem has been analyzed before. In [22], the prob-
lem is studied in the context of kinematics of mechanisms
and, in [6], as a problem in molecular design. In [11], it
was studied using geometric reasoning and applying deter-
minant theory.
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Figure 1. Octahedron Problem: Vertices
p1; :::; p6 represent points, edges represent
distance constraints.

We will show that this problem is approachable by a mix
of standard symbolic and numerical techniques in a system-
atic framework. Furthermore, variations of the problem, in
which some of the points are replaced with planes and some
of the distance constraints with angle constraints, are also
solvable with this generic approach.

The second problem to be considered also involves six
primitives, but they are now three points and three lines. Be-
tween each pair of primitives there is a constraint, distance
for point pairs and point/line pairs, and angle constraints
between line pairs. Here we encounter significantly greater
complexity.
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Figure 2. 3p3l Problem: Vertices p1, p2, p3
represent points, vertices l1, l2, l3 lines.
Solid edges represent distance constraints,
dashed edges angle constraints.

The proposed framework combines geometric reasoning
with algebraic and analytical methods.

The geometric problem is translated into anassociated
algebraic systemusing an algebraic representation of the
primitives. The associated algebraic system is reduced to a
core systemafter symbolic simplification. The coefficients
of the core system depend only on the constraint values.
Moreover, the solutions of the constraint problem and the
associated algebraic system can be computed easily from

the solutions of the core system.
We find the solutions of the core system using homo-

topy continuation. Homotopy continuation has been applied
successfully to problems in many areas, including robotics,
kinematics of mechanisms, chemical equilibrium determi-
nation, geometric intersection [19, 29, 23, 26, 28, 14, 13]
and, more recently, to constraint solving [15]. The method
employs a predictor-corrector scheme to deform all the so-
lutions of a known system, thestart system, into the solu-
tions of the system we want to solve (thetarget system). The
process is also calledpath tracking, because it evaluates a
homotopy pathbeginning at a solution of the start system,
and the path may converge to a solution of the target sys-
tem. Therefore, the number of paths to be tracked depends
on the number of solutions of the start system. It is impor-
tant to minimize the number of paths by choosing a good
start system; [4].

We use two software packages, which implement dif-
ferent flavors of homotopy continuation:Continuum[5],
which we implemented, uses a projective approach (also
referred as standard homotopy) based on B´ezout’s theo-
rem [18]. PHC, [28, 27], implements real homotopy con-
tinuation based on Bernstein’s theorem. For more theory
see [18, 26, 1, 16].

Since the coefficients of the system depend on the con-
straint values, we can further exploit the structure those pa-
rameters impose on the solution set by using parameter ho-
motopy. Morgan and Sommese [21] have shown that, if the
coefficients of a system are given by parameters, we can
solve a system for generic set of parameter values (i.e. by
standard homotopy), and then use that system andonly its
affine solutions in a homotopy to find all the affine solu-
tions of any other system with the same parameter structure.
Solving the generic system is now only preprocessing.

This technique is specially useful when a system has to
be solved repeatedly for different parameter values, which is
the case here. We have used Continuum for our experiments
with parameter homotopy and have found that this reduces
the number of paths significantly and so sharply reduces the
computation time.

The representation of the primitives, simplification of the
associated system, and the selection of the core system are
driven by the following quantities which constitute a mea-
sure of the complexity of a system; [20, 19]:

1. Number of terms per equation,

2. Number of variables per equation,

3. Total degree (or Bezout bound),

4. Mixed volume (or BKK bound),

5. Numerical conditioning of the Jacobian matrices
along the homotopy paths.
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Intuitively, the number of terms per equation and the num-
ber of variables per equation provide a measure of the
sparseness of the system. The total degree and the mixed
volume give an upper bound on the number of solutions,
and so give an intrinsic measure of the number of paths to
be tracked by the homotopy method. Finally, well condi-
tioned Jacobian matrices along the paths indicate that the
numerical computation is stable.

Note that a system with fewer variables need not be a
simpler system. Morgan [20] gives a number of examples
where symbolic reduction degrades the numerical stability
of a system, especially when the reduction is carried be-
yond a certain point. Therefore, a balance should be struck
between seeking to reduce the number of variables, by sym-
bolic algebraic computation and maintaining stable paths.

Finally, unless otherwise noted, all the running times re-
ported in were obtained on a Sun Sparc Station 20 with
128MBytes of memory and SunOS 5.5.1.

3. The Octahedron Solved

We present the framework used to solve the the octahe-
dron problem shown on Figure 1.

3.1. Representation

A point pi is represented by its Cartesian coordinates

pi : (xi; yi; zi);

and the distance between two pointspi and pj , by

dist(pi; pj) = dij

vector jjpipj jj = dij
Cartesian (xi � xj)

2 + (yi � yj)
2 + (zi � zj)

2 = d2ij

3.2. Equation Formulation

The solutions of well-constrained problems are rigid re-
alizations with six degrees of freedom (3 translational and3
rotational). The remaining degrees of freedom will be elim-
inated by a suitable placement of some of the primitives.1

We assume nonzero distances to avoid enumerating degen-
erate cases.

For the octahedron problem there is only one placement
choice:

1This can also be thought of as choosing the coordinate systems such
that (some of) the coordinates of those primitives are known in advance.
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Figure 3. Placement of 3 points.

Placement of3 Points:

Let p1, p2 andp3 be 3 points with pairwise distance con-
straintsdi;j . A generic placement can be obtained by the
following rules:

1. p1 is placed at the origin.

2. p2 is placed on the positive side of thex-axis at dis-
tanced12 from p1.

3. p3 is placed on thexz-plane according to the dis-
tancesd13 andd23, with z � 0.

See Figure 3. The points are now represented by

p1 : (0; 0; 0)
p2 : (x0; 0; 0)
p3 : (x1; 0; x2)

Moreover, the placement rules and the constraints com-
pletely determine the values ofx0, x1 andx2:

x0 = d12 x1 =
1

2

x20 � d223 + d213
x0

x2 =
p
�x21 + d213

The associated system, obtained in this way, has12 equa-
tions and12 variables. Furthermore its total degree and
BKK bound equal212. Therefore4096 homotopy paths
must be tracked to solve the system. Considering that each
path is computed in1 second, more than one hour would
required to solve the problem.

3.3. Algebraic Simplification

The associated system can be simplified in the following
steps (refer to [4] for the details):

1. Gaussian elimination. The resulting system should
have as few squared variables as possible.

2. Eliminate univariate equations, since the variables in-
volved can be determined directly.
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3. Parameterize all bilinear equations and replace the
occurrence of each parameterized variable, by the
corresponding parametric expression.

4. Parameterize the bivariate quadratic equations (using
sin andcos) and replace the occurrence of each pa-
rameterized variable, by the corresponding paramet-
ric expression.

5. Use the standard trigonometric sub-

stitution cos(�i) =
1�y2

i

1+y2
i

, sin(�i) = 2yi
1+y2

i

, where

yi = tan
�
�i

2

�
.

The resulting core system
8<
:

(�1 y2
2 + �2) y1

2 + �3 y2 y1 + �4 y2
2 + �5 = 0

(�1 y3
2 + �2) y1

2 + �3 y3 y1 + �4 y3
2 + �5 = 0

(1 y3
2 + 2) y2

2 + 3 y3 y2 + 4 y3
2 + 5 = 0

(1)
has only3 equations of degree4. The coefficients�i, �i,
andi, i = 1; : : : ; 5 depend ultimately on the distance con-
straints. Furthermore, given a solution of the core system,
a solution of the original system, and, consequently, a real-
ization of the problem can be easily computed.

The total degree of the system 1 is64 and its BKK
bound is16. Moreover, we used Continuum to solve various
generic instances of system 1 and found that it has indeed
16 affine solutions.

3.4. Solution with Homotopy Continuation

Table 1 summarizes the application of homotopy con-
tinuation to a typical octahedron problem. Figures 4, 5, 6,

Typical problem

Continuum # paths 64
Std. Homotopy time (in sec.) 27

Continuum # paths 16
Par. Homotopy time (in sec.) 2

PHC # paths 16
time (in sec.) 2

Real 8
Solutions Complex 8

Geometric 8

Table 1. Summary of the results of the appli-
cation of homotopy continuation on a typical
octahedron problem.

and 4, show the realizations of a typical octahedron prob-
lem.

Figure 4. Realization #1 of a typical octahe-
dron problem

Figure 5. Realization #2 of a typical octahe-
dron problem

4. The Points/Lines Problem

We consider now how to solve the 3p3l problem of Fig-
ure 2.

4.1. Representation

Points and distance between points are represented as de-
fined in section 3. A lineli is represented by the pair(bi; ti),
wherebi = (bxi; byi; bzi) is the point on the line closest
to the origin andti = (txi; tyi; tzi), the unit tangent; i.e.,
jjtijj = 1 andbi � ti = 0:

li : (bxi; byi; bzi : txi; tyi; tzi);

Based on this representation, we can define the equations
associated with the following constraints:
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Figure 6. Realization #3 of a typical octahe-
dron problem

Figure 7. Realization #4 of a typical octahe-
dron problem

Distance Point-Line

dist(pi; lj) = dij

vector jjbj � pijj
2 = d2ij+ < pi; tj >

2

Cartesian (bxi � xi)
2 + (byi � yi)

2(bzi � zi)
2�

(xi txi + yi tyi + zi tzi)
2 = d2ij

Angle Line-Line

ang(li; lj) = aij

vector ti � tj = cos(aij)
Cartesian txitxj + tyityj + tzitzj = cos(aij)

We could represent lines alternatively with Grassmann-
Plücker coordinates [25, 24]. However, we found that the
resulting equations are more complex according to our cri-
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Figure 8. Placement of 1 point and 1 line

teria.
Blaschke [2] used dual quaternions to represent points,

planes and lines, and to establish certain geometric con-
straints. Hestenes [8, 9] extends Blaschke’s idea by using
the concept of Geometric Algebras (also referred to as Clif-
ford Algebras) to create a uniform representation for ge-
ometric primitives. Both approaches are attractive from a
theoretical point of view, but must rely ultimately on the
Euclidean or projective representations for the actual com-
putation.

4.2. Equation Formulation

We assume nonzero distances and nontrivial angles (6=
0�; 180�) to avoid enumerating degenerate cases.

For the 3p3l problem, there are three placement choices
which yield to different associated systems.Fppp is ob-
tained by placing3 points, as described in section 3.Fpl

andFll are obtained, respectively, by placing one point and
one line, or else two lines, as follows:

Placement of 1 Point and 1 Line:Fpl

Let l1 = (b1; t1) be a line,p2 a point, andd12 the distance
betweenl1 andp2. They can be placed as follows:

1. l1 is put on thex-axis (with tangent vector(1; 0; 0)).

2. p2 is placed on the positive side of thez-axis and at
distanced12 from l1.

See Figure 8.
For l1 andp2 we obtain

l1 : (0; 0; 0 : 1; 0; 0)
p2 : (0; 0; x0)

wherex0 = d12.
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Figure 9. Placement of 2 lines

Placement of 2 Lines:Fll

Let l1 = (b1; t1) andl2 = (b2; t2) be two lines, and let
a12 be the angle between them. Then the lines can be placed
as follows:

1. l1 is placed as thex-axis (tangent(1; 0; 0)).

2. l2 lies in the planez = x0, intersects thez axis, and
satisfies the angle constrainta12.

The situation is depicted on figure 9
The generic coordinates ofl1 andl2 are

l1 : (0; 0; 0 : 1; 0; 0)
l2 : (0; 0; x0 : x1; x2; 0)

The values ofx1 andx2 depend only on the angle between
the two lines,

x1 = cos(a12) x2 =
p

1� x21 = sin(a12)

The value ofx0 cannot be determined in advance. It de-
pends on the other primitives and the constraints of the
problem.

4.3. Algebraic Simplification

How much each system can be simplified (according to
our criteria) depends solely on its structure. Table 2 sum-
marizes the simplification of the three systems of the dif-
ferent placement choices. The columns show the number
of equations and the total degree of the systems before and
after simplification. The simplification steps are detailed
in [4]. The techniques included computation steps similar
to those used in section 3, but also include steps familiar
from Gröbner basis computations and other parameteriza-
tions.

Table 3 summarizes some of the complexity parameters
for systems�Fppp, �Fpl, and �Fll, after simplification. These

System Before Simplification
# Eq. Total degree

Fppp 21 221 = 2097152

Fpl 19 219 = 524288

Fll 18 218 = 262144

System After Simplification
# Eq. Total degree

Fppp 9 26 � 63 = 13824

Fpl 16 216 = 65536

Fll 12 212 = 4096

Table 2. Summary of the simplification of the
systems for the different placement choices.

parameters are used to select the core system to be solved
by homotopy continuation.

System�Fpl can be excluded, because it has a very high
total degree and BKK bound. System�Fppp seems like the
natural choice. Even though it has a large total degree, the
BKK bound indicates that it may have fewer affine solutions
than the other systems.

System terms/equation vars/equation
�Fppp 96=11 = 10:67 36=9 = 4
�Fpl 101=16 = 6:31 72=16 = 4:5
�Fll 87=12 = 7:25 52=12 = 4:33

System Total degree BKK bound
�Fppp 2663 = 13824 3456
�Fpl 216 = 65536 6144
�Fll 212 = 4096 4096

Table 3. Complexity parameters of the simpli-
fied systems �Fppp, �Fpl, and �Fll.

In this case, however, the BKK bound overcounts the
number of affine roots. Practical experiments solved sys-
tem �Fppp for various (consistent) constraint values. It was
found that1904 out of the3456 paths converge to affine so-
lutions. Similar experiments performed on�Fll found that
only 960 paths out of the4049 paths lead to affine solu-
tions. Therefore�Fll should be chosen as the core system of
the 3p3l problem.

6



Typical Example

Continuum # paths 4096
Std. Homotopy time 4h18m

Continuum # paths 960
Par. Homotopy time 1h34m

PHC # paths 3456
time (in sec.) 16h20m

Real 48
Solutions Complex 912

Geometric 48

Table 4. Typical running times of Continuum
and PHC for a 3p3l problem where the lines
are orthogonal.

4.4. A Special Case

Even though�Fll is the simplest core system, it cannot be
used to solve the 3p3l problem interactively, since there are
still too many paths leading to affine solutions.

We analyzed a special case of the 3p3l problem in which
the lines are pairwise orthogonal. The system that results
is simpler, when considering the number of variables and
terms per equation, but the bounds on the number of solu-
tions remain the same. As in the general case, the system
obtained by using different random distance values has960
affine solutions.

4.5. Solution with Homotopy Continuation

Table 4 summarizes the running times of Continuum and
PHC for a 3p3l problem with orthogonal lines. The best
performance is achieved with parameter homotopy.

5. Discussion

We stated in the introduction that instance solvers, such
as the Newton-Raphson solvers familiar from [17], are not
well suited to explore alternative solutions. Moreover, they
have very limited ability to decompose large constraint
problems into a set of smaller ones that may be solved in
isolation. While the latter problem can be remedied by us-
ing Newton iteration in the second phase of a generic solver,
the former deficiency cannot be so addressed. This has mo-
tivated us to augment the possibility of solving template
problems algebraically with the comprehensive numerical
family of homotopy continuation methods.

With six geometric primitives, the 3p3l pattern explored
in Section 4 can hardly be considered very large. Never-

theless, this template, and others involving line primitives,
have so far resisted an adequate solution that is capable of
determining all finite solutions. In our research, we have
considered the nature of this template by exploring the fol-
lowing choices:

1. Different coordinatizations of the line primitive;

2. different ways to position the coordinate system, or,
equivalently, a subset of primitives in the template;

3. a variety of symbolic algebraic techniques; and

4. several different ways to structure homotopy contin-
uation solvers.

Unfortunately, none of these different ways to approach the
3p3l problem has resulted in a template solver sufficiently
efficient to provide interactive solvers for those templates.

The implication of the technology barrier we have en-
countered is this: Allowing the application user to revisit
the solution tree interactively and exploring other, perhaps
more appropriate solution choices by choosing a different
path through the tree, is not going to be sufficiently fast in
practice. Thus, variational spatial constraint solvers built
on a comprehensive, generic approach are not sufficiently
attractive for interactive use.

We already mentioned that the formal incorporation of
side conditions is unattractive, because it leads us to solv-
ing nonlinear optimization problems. Therefore, a way out
of the apparent dilemma would be to severely restrict the
vocabulary of spatial primitives. In particular, it appears
that the use of lines as primitives must be restricted so as
to allow interactive solvers that are capable of finding, in
principle, all solutions of spatial constraints systems.

In the case of planar constraint problems, there are fast
variational solvers based on restrictions that do not con-
fine applications in CAD. In the case of spatial variational
constraint solving, such pragmatic restrictions have not
yet been demonstrated. It would be nice if technological
progress would obviate the need to do so.
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