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Abstract— The demand for 3D city-scale models has been significantly increased due to the proliferation of urban planning, 
city navigation, and virtual reality applications. We present an approach to automatically reconstruct buildings densely spanning 
a large urban area. Our method takes as input calibrated aerial images and available GIS meta-data. Our computational 
pipeline computes a per-building 2.5D volumetric reconstruction by exploiting photo-consistency where it is highly sampled 
amongst the aerial images. Our building surface graph cut method overcomes errors of occlusion, geometry, and calibration in 
order to stitch together aerial images and yield a visually coherent texture-mapped result. Our comparisons show similar quality 
to the manually modeled buildings of Google Earth, and show improvements over naive texture mapping and over space-
carving methods. We have tested our algorithms with a 12 square kilometer area of Boston, MA (USA), using 4667 images (i.e., 
280GB of raw image data) and producing 1785 buildings. 

 
Index Terms — automatic, urban, photo-consistency, graph cuts, volumetric reconstruction. 

 
——————————      —————————— 

1 INTRODUCTION

We present a method for automatic reconstruction of build-
ings densely spanning a city or portion thereof. The demand for 
such 3D volumetric content has been significantly increased due 
to the proliferation of urban planning, city navigation, and vir-
tual reality applications (Figure 1). Nevertheless, automatic 
widespread reconstruction of urban areas is still an elusive tar-
get. Services, such as Google Earth/Maps, Apple Maps, Bing 
Maps, and OpenStreetMap have fomented the capture and 
availability of ubiquitous urban imagery and geographic infor-
mation system (GIS) style data. Using LIDAR data is one op-
tion for city modeling however it still has challenges and is not 
always available. Ground-level imagery provides high resolu-
tion but such images are usually scattered and incomplete. Aeri-
al images provide extensive and uniform coverage of large are-
as, albeit at lower resolution, and are widely available for most 

cities. Hence, to reconstruct large urban areas we focus on aerial 
imagery.  

There have been several fundamental approaches for pro-
ducing urban volumetric reconstructions. In contrast to partial 
(or facade-level) reconstructions (e.g., Müller et al. [24], Xiao et 
al. [43]), we seek to automatically create texture-mapped build-
ing envelopes spanning a large-portion of a city (i.e., akin to the 
crowd-sourced created models visible in Google Earth) – such 
complete models are suitable 3D content for the aforementioned 
graphics and visualization applications. Inverse procedural 
modeling approaches pursue generating parameterized 2D and 
3D models from observations (e.g., Stava et al. [35], Bokeloh et 
al. [3], Park et al. [27]), but have not been demonstrated for 
large-scale urban areas due to the inherent complexity and am-
biguity in the inversion process. Relevant volumetric recon-

Figure 1. Urban Modeling. A complex urban area (left) is automatically obtained using volumetric reconstruction with surface 
graph cuts (middle) computed from aerial imagery and GIS-style parcel/building data (right). Our methodology uses photo-
consistency to robustly recreate 2.5D building structures and surface graph cuts to assemble seamless and coherent textures 
despite occlusion, geometry, and calibration errors.
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struction methodologies from image-based modeling and com-
puter vision can be loosely divided into i) space carving and 
similar techniques (e.g., Kutulakos and Seitz [13], Matusik et al. 
[22], Montenegro et al. [23], Lazebnik et al. [17], Shalom et al. 
[32]) and ii) volumetric graph cuts (e.g., Vogiatzis et al. [41]). 
All of these methodologies exploit, in some form, photo-
consistency, visibility constraints, and smoothness assumptions.  

However, for our targeted large areas with high building 
density and thus a high-level of occlusion, we cannot assume a 
dense, complete, and un-occluded sampling of all building and 
ground surfaces. These facts about the input data spawn three 
important challenges. First, although in a typical aerial capture 
process each building might be at least partially observed in 25-
50 images, parts of each facade might only be seen by a few 
images (and sometimes none at all). This relatively sparse sam-
pling of the building walls hinders photo-consistency measures. 
Further, the limited visibility and high-level of occlusion also 
encumbers the silhouette usage and robust fore-
ground/background segmentation for space carving and ham-
pers the determination of the initial geometry (e.g., visual hull) 
for volumetric graph cuts. Second, since the captured images of 
building and ground surfaces may be plagued with the projec-
tions of nearby buildings, obtaining occlusion-free projective 
texture mapping (i.e., texture mapping without neighboring 
buildings unwillingly appearing on other buildings) would re-
quire very accurate geometry. Third, obtaining such very accu-
rate geometry is hindered by camera calibration error and by the 
grazing angle observations of the building facades. Naïve pro-
jective and view-dependent texture mapping would produce 
strong visual discontinuities or would compensate for the inac-
curacies by using significant blending/blurring. 

Our solution circumvents the aforementioned challenges 
by exploiting the following inspirations. 

• Buildings are, by and large, individual 2.5D struc-
tures; thus we assume each successive floor up the 
building is equal to or contained within the contour of 
the previous floor. 

• Since aerial images mostly sample the roof structures 
of a building, we exploit photo-consistency only for 
determining the roof structure; for the building walls, 
we exploit the 2.5D assumption and stitch together 
the visual observations using a surface graph-cut 
based technique (a surface graph cut is a 2D manifold 
in 3D space that has been stitched together using a so-
lution to the minimum-cost graph-cut problem); our 
surface graph cut assembles a seamless and visually-
coherent texture-mapping of the buildings and ground 
surfaces despite an imperfect building proxy, project-
ed occlusions, and camera calibration errors. 

• To solve the chicken-and-egg dilemma of needing to 
know the geometry to solve for visibility (and needing 
to know visibility to solve for geometry), we exploit 
the assumption of having approximate GIS data (e.g., 
building outlines) in order to formulate simple build-
ing shape estimates which we enhance. 

Our approach builds upon voxel occupancy and graph cuts 
(e.g., Kwatra et al. [14]) to automatically and robustly yield 
large-scale 3D urban reconstructions. Our largest example in-
cludes 1785 reconstructed and texture-mapped buildings span-
ning more than 12 square kilometers. Our system pipeline (Fig-
ure 2) takes as input a set of pre-calibrated high-resolution aeri-
al images captured from a multi-camera cluster flying over a 
city (courtesy of C3Technologies), approximate building out-
lines extracted from a GIS provider (i.e., OpenStreetMap 
(OSM)) and rough initial building heights per city zone.  

A coarse initial building geometry is subdivided into 
voxels which are then refined. Improved building outlines, 
heights, and roof structures are obtained by using a photo-
consistency and clustering algorithm. Then, we use surface 
graph cuts to add the remaining visual details to the building 
walls and to the ground. The roof structure is sampled by many 
images. Thus, texture mapping the roof voxels to display addi-
tional visual details can be straightforwardly done by selecting 
the most head-on observations. However, the building walls are 
sparsely sampled. Hence, in order to create a complete, coher-
ent, and occlusion-free colored appearance, we texture-map 
wall voxels using the aerial images for which a satisfactory 
graph cut with the roof and with the adjacent building walls is 
produced. Further, we solve two other surface graph cut prob-
lems in order to provide a smooth visual transition between the 
building walls and the ground surface as well to produce a top-
down high-resolution ground surface image that is free of un-
wanted projections of building geometry and shadows. 

Altogether, our method exploits photo-consistency only 
where it is highly sampled (thus less susceptible to outliers and 
noise) and uses a graph-cut based algorithm to stitch together a 
visually plausible result for the rest of the building surfaces and 
for the ground surface. Our examples are from a large metropol-
itan area (i.e., Boston, MA in USA) using a dataset of 4667 
aerial images and conservative initial building outlines and 
height estimates (e.g., often overestimates of 50%). Our com-
parisons show that our results are significantly better than tex-
turing a space-carving/visual-hull result and similar quality to 
crowd-sourced manual modeling efforts. 
Our main contributions are 

• a robust voxel- and photo-consistency based method 
for estimating building roof geometry, 

• a surface graph cut method to not only stitch textures, 
but also reduce, or eliminate, artifacts due to incorrect 
texture overlapping, missing texture fragments, incor-
rect camera pose, or an inaccurate geometric proxy,  

• a graph-cut based method for generating a top-down 
aerial view of a city free of unwanted building projec-
tions appearing on the ground, despite such projec-
tions being present in all captured aerial images, and 

• a complete automatic framework that generates 
closed, low polygon count, textured buildings and 
ground that are ready-to-use in 3D city modeling and 
computer graphics applications. 

Figure 2. System Pipeline. Our system uses (a) aerial images and GIS-like input data to (b) compute a geometric proxy, (c) generate 
surface graph cuts, and (d) assemble textured 3D building models of large urban areas. 
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2 RELATED WORK 

In this section, we relate our work to urban modeling ap-
proaches in procedural modeling, image-based algorithms, LI-
DAR-based methods, and volumetric reconstructions including 
graph cuts. Image-based algorithms, from computer graphics, 
computer vision, and photogrammetry, have generated very 
compelling urban reconstruction results. A recent survey by 
Musiaski et al. [25] provides an overview of numerous urban 
reconstruction techniques. Some representative works have 
created individual facades from images (e.g., Müller et al. [24], 
Xiao et al. [43], Teboul et al. [37]), individual buildings and 
statues (e.g., Lafarge et al. [15], Vanegas et al. [40]) and point 
cloud reconstructions (e.g., Liao et al. [20]). However, these 
methods have not produced volumetric building models (e.g., 
complete texture-mapped building envelopes) of large city are-
as. Approaches have also been proposed that use large online 
photo communities to perform reconstructions of popular areas 
(e.g., Goesele et al. [10], Agarwal et al. [1], Frahm et al. [6]). 
But, these results are fragmented and cannot necessarily pro-
duce all buildings in a given target area. 

Numerous methods exploit LIDAR data sources. For exam-
ple, Nan et al. [26] and Zheng et al. [44] provide interactive 
tools to improve partial scans of individual building models. 
Zhou and Neumann [45] provide striking results by extending 
dual contouring to 2.5D building structures. Poulis et al. [30] 
present an automatic method to reconstruct 2.5D buildings from 
aerial images and LIDAR data. They propose a framework us-
ing i) 2.5D graph-cuts, ii) automatic and interactive segmenta-
tion, and iii) automatic identification and reconstruction of line-
ar roof types. Lafarge and Mallet [16] segment data into ground, 
buildings, vegetation, and clutter. Then, buildings are formed by 
fitting points to a collection of template primitives. In general, 
these methods, and similar ones, rely on the availability of high-
resolution point cloud data, sometimes make assumptions of the 
roof/building geometry, and some do not produce col-
ored/textured models – a naïve projective texture-mapping us-
ing the available aerial images will not necessarily produce 
good results, as shown in our results section. Shen et al. [33] 
presents an adaptive partitioning of unorganized LIDAR data to 
find high-level facade structure repetitions. This method can be 
used to consolidate facades but it is not designed to recover 
geometry. Toshev et al. [38] detect building structures from 
city-scale 3D point clouds and construct a hierarchical represen-
tation for high-level tasks. Also Golovinskiy et al. [11] present 
another approach to recognize objects in 3D urban LIDAR data 
using specialized clustering and graph-cut segmentation. How-
ever, reconstruction is not the focus of these last three methods. 

Some methods focus on the registration of aerial images 
with LIDAR data or with 3D models. For example, Ding et al. 
[5] describe a new feature called 2DOC based on 2D corners 
that corresponds to orthogonal structure corners in 3D. Wang et 
al. [42] improve the registration by using a novel feature called 
3CS which uses sets of connected lines. To create a robust regis-
tration, they first overestimate the number of line segments and 
then perform a RANSAC-based refinement. Frueh et al. [7] 
automatically texture detailed 3D models. They improve the 
texture discontinuities of each triangle using a classification 
approach and reduce the graphic card memory footprint using 
an atlas approach. They present nice results but with clearly 
visible seams between ground-base and airborne textures. 

Volumetric reconstruction via space carving, graph cuts, and 
related methods have also received significant attention. Meth-
ods, such as space carving [13] and image-based visual hulls 
[22] assume the presence of many images observing the silhou-
ette of the object. Such observations are in general not possible 
using aerial images of dense urban environments. Another op-

tion is using a set of ground-level images to reconstruct the 
facades of buildings (e.g. Gallup et al. [8] uses a high resolution 
video with a priori calibrated street level video and per-pixel 
depth map as input; Frahm et al. [6] uses a scattered set of im-
ages; Grzeszczuk et al. [12] reconstructs building facades from 
street level images without significant occlusions) but it is im-
possible to fully sample all facades and all roofs of all buildings 
in a large urban area. Pollard et al. [29] present a voxel-based 
volumetric method to detect changes in a 3D scene. Despite 
presenting some similar inspiration, this approach is designed to 
detect changes instead of find similarities. 

Graph cuts have been extensively used in computer graphics 
(e.g., texture synthesis Kwatra et al. [14], Lefebvre et al. [18]). 
For volumetric reconstructions, graph cuts are applied to 3D 
subdivisions of space and combined with stereo processing 
(e.g., Vogiatzis et al. [41], Sinha and Pollefeys [34], Tran and 
Davis [39]). Nevertheless, these methods rely on high photo-
consistency over the entire building surface and require an ini-
tial building geometry, such as the visual hull. Using aerial im-
ages to obtain the visual hull as well as sufficient samples for 
robust photo-consistency metrics over the entire building sur-
face is challenging for dense urban environments. In our work, 
we also use graph cuts, but we define a surface graph cut that 
lies on building roofs and walls and on the ground surface. Fur-
ther, each graph node is positioned and oriented in 3D space but 
is only connected to its neighboring surface elements. 

Lempitsky and Ivanov [19] also use graph-cut optimizations, 
as well as gradient-domain techniques, to address the problem 
of texture fragmentation on a 3D surface. They assume i) all 
textures completely see the object, ii) there are no occlusions, 
iii) all images have the same quality (=importance), and iv) the 
cameras are perfectly calibrated. These assumptions allow them 
to simplify their cost function to only use the direction of the 
corresponding view and the surface normal and to discard any 
duplicated or overlapping texture segments. Allene et al. [2] 
alleviate the aforementioned equal image-quality assumption by 
including optimization terms to measure the effective texture 
resolution and the color continuity at edges between faces as-
signed to different (textured) images. Moreover, they use per-
pixel blending to minimize the difference due to lighting condi-
tions. In contrast, our approach tackles the problem when occlu-
sions are frequent, camera poses are not contiguous nor have 
similar angles, cameras are not perfectly calibrated, and the 
proxy model is not guaranteed to be accurate. 

Alternative approaches have been proposed. Gao et al. [9] 
directly operates on the points and splats/combines results to an 
output image without obtaining a geometric model. Mathias et 
al. [21] use structure-from-motion, image-based analysis, and 
shape grammars. The reconstruction results are promising how-
ever a grammar is required, which thus lacks automation for 
large-scale deployment. A related semi-automatic approach is 
that of Taillandier et al. [36]. However, their method has several 
requirements which make it not adequate for many urban areas: 
they only handle square buildings with slanted roofs; they re-
quire having an accurate outline of the building and not just the 
parcel contour or a rough approximation.  

In contrast to previous methods, our work focuses on auto-
matically obtaining complete (e.g., closed) building models of 
urban tall building areas (e.g., downtown, office buildings, fi-
nancial districts) spanning multiple square kilometers and rely 
only on aerial imagery and commonly available GIS data for 
cities around the world. In addition to estimating a building 
proxy, our method enables the creation of plausible texture-
mapped building models using stitched together imagery, even 
in the presence of imperfect geometric proxy estimates and 
imperfect camera calibration. Some commercial ventures, such 
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as C3 Technologies (purchased by Apple), pursue similar 3D 
reconstruction objectives but to our knowledge use manual-
intervention and wide-baseline stereo to obtain building models, 
thus making widespread deployment challenging. 

3 OVERVIEW 

We identify two main tasks to reconstruct a city: i) find the 
building geometry (Figure 2b), and ii) texture the models (Fig-
ure 2c). For the first task, we could discretize the space of the 
whole city and try to find the geometry at the same time, but 
this approach would not scale since the number of voxels is 
linear with the size of the city (e.g., in our case it would be  
O(10଼) voxels). Given the individual nature of each building 
(i.e. a building can be seen as an independent model surrounded 
by streets), we simplify the problem by processing each build-
ing individually. For each building, we first initialize the build-
ing with a set of voxels using the GIS data (Section 4.1) and 
find the photo consistency between aerial images (Section 4.2). 
Then, we find 2.5D building geometry (Section 4.3). 

For the second task, we could use a standard view-dependent 
texture mapping, but this would assemble imagery by blending 
together fragments from many different images. Such a method 
does not exploit the internal consistency of each capture image 
and might create seams along image transitions. In contrast, we 
use graph cuts to stitch together imagery from as few images as 
possible so as to exploit internal consistency as well as produce 
seamless texture mapping. Given that the complexity of graph 
cuts (solved using the min-cut algorithm) is O(ܸܧଶ), it would 
not scale to city level (in our case it would be O(10ଵଽ)). There-
fore, we also process each building individually. However, this 
does not completely solve the problem since the ground should 
be also textured, which in turn necessitates a smooth transition 
between building and ground surfaces. To overcome the prob-
lems of this task, we use graph cut for three different purposes: 
i) texturing building surface (Section 5.2), ii) improving the 
transition building-ground surfaces (Section 5.3), and iii) find-
ing an optimized ground surface (Section 5.4). 

4 VOLUMETRIC BUILDING PROXY 

We first describe our algorithm for computing a per-building 
volumetric proxy. Our method initializes each building model as 
a grid of voxels, calculates a weighted photo-consistency meas-
ure per voxel, and clusters the voxels of minimum variance. The 
output is a 3D un-textured proxy model. 

4.1 Appearance Editing 
Each individual building is initialized as a 3D array of 

voxels (Figure 3a). The voxels are obtained by subdividing a 
vertical extrusion of a coarse estimate of the 2D building foot-
print. Given a building of size ሾb୶, b୷, b୸ሿ and a voxel size r, we 

label each voxel v୧ for i ∈ ሾ1, Nሿ and N ൌ ቀ
ୠ౮
௥
ቁ ∗ ቀ

ୠ౯
௥
ቁ ∗ ቀ

ୠ౰
௥
ቁ. 

For notational brevity, we assume v୧ also refers to the 3D posi-
tion of the middle of voxel i. The upper bound for N is when a 
voxel of size r଴ corresponds roughly to one projected pixel. In 
practice, we choose values of r ൐ r଴ in order to reduce the per-
building computation time which is important when processing 
city-scale environments. 

Building footprints and building heights, or estimates there-
of, are frequently present in a city GIS’s and in some navigation 
service databases. With regards to building footprints, one op-
tion is to use the shape of the enclosing parcel which is roughly 
of the same shape for dense urban areas. In our case, we make 
use of the increasingly popular open data repository Open-
StreetMap.org. It contains top-down street, parcel, and approx-
imate building outlines for a very large number of cities world-
wide (as seen in Figure 2a and in our video). We extract build-
ing outline estimates from images such as this using image pro-
cessing; in particular, we detect a loop of edges per parcel and 
form a closed polyline. For building heights, if not available in 
the GIS, we make zonal estimates (e.g., residential zone apart-
ments are given a constant height, high-rise zones are given a 
higher constant height, etc.); however, the building height 
should be conservative (e.g., we frequently overestimate height 
by 50%). Photo-consistency will enable finding the actual roof 

Figure 3. Building Volumes. We show the steps of our volumetric building reconstruction. a) An initial model is divided into voxels.  
b) The per-voxel variance of our weighted photo-consistency measure is computed. c) The most consistent voxel per column is chosen, 
potentially reducing building height. d) The voxels are clustered by height, e) placed in a height-map, and filtered. f) The final proxy 
model is obtained.  
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heights and building outlines.  

We must also establish an initial surface normal per voxel. 
After inspecting many buildings, we found that a good prior is 
to represent a building as a half ellipsoid (Figure 4, bottom). At 
this stage in the pipeline, the voxel normal is solely used to 
determine the subset of the aerial images that potentially “see” 
the voxel. This approximation does not directly affect the result-
ing building geometry but rather helps select which images are 
used in later stages. Because it is not known yet which voxels 
will be on the building surface, normals are computed for all 
voxels of the initial model (i.e., interior and exterior voxels). 
Given a building, we first fit the upper-half of an ellipsoid to the 
building by computing values for the ellipsoid radius and ellip-
soid coefficients ܽ, ܾ and ܿ. Then, given voxel ݒ௜, we compute 
the voxel’s initial normal as 

݊௜ ൌ ቆ
௜௫ݒ2
ܽଶ

,
௜௬ݒ2
ܾଶ

,
௜௭ݒ2
ܿଶ

ቇ ሺ1ሻ 

Given voxel positions and normals, we obtain the color ܿ௜௞ for 
voxel ݅ observed by camera ݇.	To support different voxels sizes 
(both when voxel-to-camera distance varies amongst the aerial 
images and when purposefully working with larger voxels to 
increase reconstruction performance), we project the voxel onto 
camera image ݇, estimate the size ݏ௜௞ of voxel ݅ on camera im-
age ݇ and grab a Gaussian weighted footprint of pixels as 

ܿ௜௞ ൌ ෍ ሺ݆݋ݎ݌௞ሺݒ௜ሻ ൅ ‖ሻ݁ି‖௧ି௣௥௢௝ೖሺ௩೔ሻݐ
మ/ଶఙ೎

௧∈ሾሺି௦೔ೖ,ି௦೔ೖሻ,ሺ௦೔ೖ,௦೔ೖሻሿ

ሺ2ሻ 

  
where ݆݋ݎ݌௞ሺ∙ሻ returns the projection of its argument onto cam-
era image ݇ and ߪ௖ is the standard deviation of the Gaussian. 

Given ݏ௜௞, ߪ௖ is obtained by the known estimate 0.3 ቀ
௦೔ೖ
ଶ
െ 1ቁ ൅

0.8 

4.2 Variance Calculation 
Starting with the initial model of a building, we search for a 
subset of voxels that are photo-consistent amongst the aerial 
images observing the building. We assume strong photo-
consistency for a voxel implies it is on the actual building sur-
face. As the measure of photo-consistency, we use the weighted 
variance of the color of a voxel’s projection on different aerial 
images (Figure 3b). 

In preliminary experiments, we investigated several 
measures for evaluating whether a voxel is on the building sur-
face. We attempted using color-based segmentation of aerial 
images and/or the weighted sum of the measures of photo-

consistency, local surface planarity, and local supportability 
(i.e., probability that a voxel is needed because another higher-
up voxel will be selected). However, we observed that the vari-
ous variants of this combined metric were not robust to 
noise/errors and in practice over-constrained voxel selection. 
This is primarily due to the relatively sparse (and often at graz-
ing angles) sampling of building walls. As mentioned in the 
introduction, we did however observe many visual samples and 
significant photo-consistency amongst voxels on the building 
roof surface which led us to mostly rely on them. 

Our method transforms all aerial images to ܮܵܪ color space 
and uses the ܪ and ܵ channels. We use only the ܪ and ܵ chan-
nels in order to ignore the effect of changing daylight illumina-
tion and, to a lesser degree, the effect of shadows. Further, we 
explicitly weigh variance by the inverted building height of a 
voxel. Hence, given an approximately tied variance, the verti-
cally higher voxel is chosen. Numerically, our voxel variance 
measure is computed as 

݉௜ ൌ
௜೥ݒ ൅ ܾ௭/2

ܾ௭
൮෍ܿ௜௞

ଶ

௦೔

௞ୀଵ

െ ቌ෍ܿ௜௞
ଶ

௦೔

௞ୀଵ

ቍ

ଶ

	௜൲ݏ/ ሺ3ሻ 

      
where it is assumed the building is centered at the origin, the 
first term computes the ratio of the voxel’s vertical height (as-
sumed to be along the z-axis) to the building’s ݖ size, and ݏ௜ is 
the number of camera images that have a line of sight to voxel ݅. 

In order to improve the variance calculation, we use the in-
itial footprints to account for the potential occlusion of neigh-
boring buildings. Specifically we create a mask ݉௞ by render-
ing the building from the point of view of a camera ݇ pointing 
towards the building; the building is rendered in white and the 
background in black. When computing color ܿ௜௞, we check in 
the corresponding mask whether the image pixel is white (unoc-
cluded) and should be used, or black (occluded) and should be 
discarded. 

4.3 Height Clustering 
In aerial images, roofs are expected to be viewed by more cam-
eras than facades (i.e., more photo-consistent). Thus, we find 
the height of each column by searching for the column’s voxel 
with the lowest variance ݉௜. We use this information to assem-
ble the final building proxy (Figure 3c). If we observe the build-
ing from a side, the voxels should collectively exhibit a compact 
distribution around the different heights of the buildings. Hence, 
we can use 1D k-means clustering to find those different build-
ing roof heights (e.g., ݇ ൌ ሼ1,2,3, … ሽ). Since the optimum value 
for ݇ is not known a priori, we estimate it using a heuristic that 
works well in practice. Starting at ݇ ൌ 1, we increase ݇ until we 
find that at ݇ ൅ 1 the clustering error reduces by no more than 
ܿ௘ percent. In preliminary experiments, such a clustering algo-
rithm worked well, yielding buildings with 1 to 5 different roof 
heights. For our results, we set ܿ௘ ൌ 0.3. After clustering, our 
method selects the voxel per column whose height is closest to 
the corresponding cluster’s mean height (Figure 3d). 

After clustering, we place all voxel heights into a height map 
image. Starting with the uppermost cluster, our algorithm per-
forms a per-cluster morphological close operation [28] (i.e., 
dilate and then erode) in order to remove small islands of the 
current cluster type and to fill-in small gaps. We also perform an 
in-filling refinement step to remove any remaining single-voxel 
holes with no height/cluster assignment (i.e., we find the most 
popular cluster assignment of the neighboring voxels and assign 
that value to the missing voxel).  

Voxels physically below the filtered minimum variance 
voxels are marked. Then, all exterior surface voxels are selected 

Figure 4. Variance Calculation. Using the initial voxel normals 
݊௜ for a voxel ݒ௜, we determine the variance of our weighted pho-
to-consistency measure of the subset of cameras, such as ܿ௜௞, 
that best see the voxel. 
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as being part of the building envelope (Figure 3f). Although 
voxels are small, we reduce jaggedness by adding quadrilaterals 
to connect corners of adjacent voxels on an off-axis (i.e., diago-
nal) building surface. It is worth noting that the final proxy’s 
outline will not necessarily match that of the initial conservative 
building estimate. 

Finally, the voxel normal is recomputed for each exterior 
surface voxel by summing up the vectors from the voxel center 
to each existing neighboring voxel, reversing the normal direc-
tion, and normalizing the vector. Afterwards, the normals of all 
voxels are averaged using a Gaussian weighting of the nearby 
voxel normals. Succinctly, this is computed as: 

݊௜ ൌ෍ߛ௜௝݊݉ݎ݋ቌെ෍ߜ௝௞
௞

൫݌௝ െ ௞൯ቍ݌ ݁
ିฮ௣೔ି௣ೕฮ

మ

ଶఙ೙
൘

௝

ሺ4ሻ 

where ߪ௡ is the standard deviation of the desired smoothing 
neighborhood, ߜ௝௞ ൌ 1 if ݒ௝ and ݒ௞ are adjacent, ݊݉ݎ݋ሺ∙ሻ re-
turns the vector normalized version of its argument, and ߛ௜௝ ൌ 1 
if ݒ௜ and ݒ௝ are within 2ߪ௡ voxels of each other (e.g., 95% of 
the neighbors that affect normal averaging are considered). 

5 SURFACE GRAPH CUTS 

In this section, we define surface graph cuts as well as de-
scribe our multiple uses of them. Graph cuts can be used to 
solve problems such as image stitching and image segmenta-
tion. To solve the stitching problem, a 2D graph is created 
where each vertex represents a pixel and edges connect adjacent 
pixels with a calculated weight (e.g., the color difference). The 
best stitching possible will be the one that minimizes the visible 
transitions (i.e., the minimum cut through overlapping areas -- 
Figure 5h). We extend this idea to not just define a flat image 
but instead pixels on the 3D surface formed by the visible faces 
of the building, the interface between building and ground sur-
faces, and the ground surface. Conceptually, this can be viewed 
as covering the building with pieces of cloth. Each image is a 
piece of a cloth that partially covers the building. We try to 
cover the whole building with the least noticeable transitions. 
The challenge is in choosing cloths and in how to cut them. 

5.1 Definition 
A surface graph contains the visible faces of a volumetric 

building proxy (Figure 5a) and/or of the surrounding ground. 
Since, for reconstruction performance reasons, we typically 

chose a voxel size that projects to larger than one pixel, each 
exterior (i.e., visible from the outside) voxel face is subdivided 
into ܵܵݔ subfaces (in Figure 5b, ܵ ൌ 2) to ensure the final mod-
el is textured at near the original image resolution despite using 
lower-resolution voxels. In each visible face of each voxel, we 
place a ܵܵݔ array of vertices (Figure 5c). Each vertex ݒ௔ is then 
connected to its neighbor ݒ௕ by an edge ݁௔௕ (Figure 5d) to form 
the 3D graph where a graph-cut will be applied. Thus, the sur-
face graph ܩ ൌ ሼܸ, ܸ ሽ is composed of verticesܧ ൌ ሼݒ௔ሽ for 
ܽ ∈ ܵଶ ௌܰ (where ௌܰ are the faces of the voxels that are in the 
surface) and edges ൌ ሼ݁௔௕:  . adjacentሽ	are	௕ݒ	and	௔ݒ

Within each graph vertex ݒ௔, our system stores 
 ݍ௔: 3D position of the graph vertex, 
 ݊௔: surface normal in the vicinity of the subface, 
 ݇௔: camera image id to use for this voxel, 
 ܿ௔: current color of the graph vertex, and 
 ݌௔: potential color of the graph vertex. 

A graph cut defines a smooth visual transition between two 
adjacent surface patches. Each of the two patches is a subset of 
the surface graph that has the same camera image id (Figure 5e 
and Figure 5f). These two patches overlap in a region (Figure 
5g). The graph cut process will find the trajectory, in this over-
lapping area, along which the sum of the color differences be-
tween the corresponding pixels of the two source camera imag-
es is minimal (Figure 5h). 

Figure 6. Applications of Surface Graph Cuts. a) We show several patches over a building surface. Each patch is obtained by 
grouping adjacent subfaces best observed by the same camera while taking visibility into account (e.g., patch ݇ is best observed by 
camera ݌௞ because ݌௝ is occluded. In this step, patch 3 and ݇ are joined as in Figure 5h. b) Another surface graph cut is defined and 
computed at the boundary of the building with the ground surface. c) Finally, a ground surface graph cut is also performed so as to 
obtain a seamless and free-of-projected-buildings ground texture. 

Figure 5. Surface Graph Cut.  a) Voxels, b) voxels showing 
graph vertices, c) vertices, d) vertices with edges, e) vertices 
seen by an image 1, f) vertices seen by an image 2, g) verti-
ces that see image 1 and image 2 are in green and are where 
graph cut will be applied, and h) a 2D graph cut . 

a) Voxels b) Vertex Graph c) Vertex Graph d) Vertices + Edges

e) Texture 1 f) Texture 2 g) Textures & Overlap 
Origen Sink

h) 2D Graph Cut

Min Cut
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To avoid re-creating the graph for each texture, we create the 
graph just once and update the weights, origin, and sink before 
calling the min-cut procedure. To efficiently compute our large 
min-cuts (e.g., O(10଺ vertices)), we use the augmenting path 
algorithm of Boykov and Kolmogorov [4] which in practice is 
significantly faster than other methods. To calculate the cost, we 
perform color differences in perceptually linear LAB color 
space in order to improve the perceived transition from one 
texture to another and not just reduce the numerical color dif-
ference (i.e., reducing the Euclidian distance in this color space 
maps to a perceptual improvement). We define the matching 
quality cost ܥ between two adjacent vertices ݏ and ݐ that belong 
to two different patches ଵܲ and ଶܲ as  

Cሺs, t, ଵܲ, ଶܲሻ ൌ ห| ଵܲሺsሻ െ ଶܲሺsሻ|ห ൅ ห| ଵܲሺtሻ െ ଶܲሺtሻ|ห ሺ5ሻ  
where ௜ܲሺ∗ሻ evaluates to a LAB color.  
 

5.2 Building Surface  
We solve the graph cut problem for the building surfaces result-
ing in the best seamlessly stitched texture-map over the building 
surface (Figure 6a). First, we compute which cameras are visi-
ble from each graph vertex and choose the visible camera that 
best samples the vertex’s surface fragment. Since we have a 
very large number of vertices (e.g., over 100,000 per building), 
we use the graphics card to quickly determine which are visible 
from each of a nearby set of camera viewpoints. For efficiency, 
we render each voxel as a color-coded quadrilateral. From all 
the cameras ݇, at position ݃௞, that see a particular voxel and all 
its subfaces/vertices, the camera ݇௔ for which ሺ݃௞ െ ௔ሻݍ ∙ ݊௔ is 
maximal is chosen; e.g., ݇௔ ൌ ݇. 

Second, spatially-adjacent vertices with the same camera 
image id are grouped into patches and sorted by size. To assist 
with reducing the effect of image-to-image illumination changes 
and calibration errors, we wish to have as few textures and 
graph cuts as possible. Thus, we group same-image-id vertices. 
We also sort them by area from largest to smallest because the 
largest group is mostly likely to reference the best aerial image. 
Empirically, buildings are stitched together from 3-10 different 
aerial images. 

Third, our method assembles the surface graph cut starting 
with the largest patch. Given the current processed vertices, the 
system iteratively searches for the largest adjacent patch. An 
overlapping frontier is defined within the two patches. Although 
we could use the entire overlapping area to find the graph cut, 
we limit the overlapping area so as to keep most of the current 
processed vertices intact. Before calling min-cut, we update the 
weight of each edge: the vertices that have been processed are 
connected to the origin of the min-cut and their weights are set 
to infinity (i.e., to not be cut), the edges of the vertices within 
the transition region are updated with the cost ܥ (between the 

current color and the new potential one), and vertices that be-
long to the potential texture but do not overlap, are connected to 
the sink and their weights set to infinity (i.e., also to not be cut) 
-- as in Figure 5h. Our system uses min-cut to search for the cut 
that minimizes the visual image transition from one patch to 
another one. This step is repeated iteratively until all vertices 
have an assigned camera image id. 

We choose this greedy approach over other global optimiza-
tions because i) we do not try to minimize the transition be-
tween vertices but between patches, ii) a global (patch) optimi-
zation would require an exhaustive/stochastic exploration, iii) it 
is guaranteed to converge, and iv) it fits the requirement to keep 
the number of patches as small as possible to minimize the 
change-of-illumination issue. 

5.3 Building-Ground Surface 
Next, we solve the graph cut problem for connecting the build-
ing surfaces to the ground surface (Figure 6b). We extend the 
building surface by generating a ring of voxels around the 
ground-level height of the building such that the top most face 
of each extended voxel coincides with the existing ground sur-
face (i.e., the voxel center is essentially slightly “below 
ground”). Even though the width of the ring can be altered, we 
use a constant value for all our examples. For each of the newly 
created voxels, we assign a camera image id to it. This is done 
by finding the closest voxel on the building surface and copying 
the camera image id to each of the ܵଶ graph vertices of the new 
voxel. To build the local ground surface, we use the same ex-
tended building surface vertices but calculate their color using 
the improved ground surface image (see next section). 

We define a single building-ground graph (per building) 
with a source node inside the footprint and the exterior ring of 
voxels connected to a sink node. The graph cut computes the 
smoothest transition from building wall textures to ground sur-
face images. The cut is constrained to lie on the ground surface 
so as to prevent the building textures from changing. 

5.4 Ground Surface 
To produce an improved top-down view ground surface image, 
we stitch together the most downward facing aerial images 
(Figure 6c). In a manner similar to 2D texture and image syn-
thesis, the aerial images are pieced together sequentially in ran-
dom order -- the order does not matter as long as the ground 
surface is fully sampled. Since the graph of one ground image is 
very large (e.g., over a million graph vertices), only a subset of 
the overlap region between the currently stitched image and a 
new image is used. A graph cut is calculated within the overlap 
region and stored.  

To avoid the appearance of building surfaces projected onto 
the ground outside of the building footprint, we make use of the 

Figure 7. Volumetric Reconstruction Pipeline. We show example images from a volumetric building reconstruction. a) OpenStreetMap 
input image. b) Voxelized-version of the extruded building footprint. c) Per-voxel weighted photo-consistency variance (white = low vari-
ance). d) Selection of per-column voxel with lowest variance. e) Vertical support added beneath each per-column selected voxel. f) Final 
proxy after clustering and filtering. 
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building proxies. We render each building proxy “in black” 
from each image’s center of projection and onto the aerial im-
age. Then, we explicitly prevent the graph cut from using, or 
“going through”, the building by placing very large cost penal-
ties when choosing to transition to a building pixel. Although it 
is not guaranteed that all ground surface points are observed, 
unobstructed, from an aerial viewpoint, in practice it is possible. 
The final result is one single coherent, occlusion-free top-down 
image of the city. 

6 IMPLEMENTATION  

Our system implementation includes several optimizations to 
improve computation time, memory usage, and rendering per-
formance. In our dataset, one aerial image pixel projects to 
roughly 0.5 meters. To reduce the proxy computation time, we 
typically choose a voxel size of ݎ ൌ 2 to 4 meters. To compen-
sate for this subsampling during graph-cut based texturing, we 
subdivide voxel faces with ܵ ൌ 4 to 8, thus returning to approx-
imately one pixel resolution. The graph cut computation time is 
increased but only in the overlap regions. 

Rather than having each building require access to multiple 
textures, we create one custom texture atlas per building. This 
design choice is also motivated by the fact that we cannot load 
all the aerial images needed for a zone of the city into texture 
memory, and even less all aerial images (e.g., all aerial images 

amount to about 280GB of raw image data which even with 
texture compression cannot be loaded into texture memory). A 
typical building’s texture atlas requires 1MB of space and con-
tains the entire pixel data needed for the building surface graph 
cuts and the building-floor surface graph cuts. The ground sur-
face is composed of a grid of texture-mapped quadrilaterals. All 
texture atlases and ground textures are loaded/unloaded on de-
mand by the system. 

The system parameters are tuned once and are used the same 
values for the reconstruction of all buildings. To use a complete-
ly different set of images, it would take 10-30 minutes to manu-
ally find the optimal values. The list of these parameters is: ܿ௘ 
which is the percentage height clustering error (Sec 5.3): a low 
value makes the buildings have too many levels, and a high 
value may cause building details to be missed -- as long as noise 
is not high, our system is not sensitive to this value; ݎ is the 
voxels size (Sec 6.1) -- it is a tradeoff between quality and 
speed (limited by the size of a pixel in the image set); ܵ is the 
voxel size subdivision for the graph cut (Sec 6.1) -- the value 
can be calculated to ensure maximum resolution; graph cut 
overlapping  area (Sec 6.2) and building-ground ring width 
(Sec. 6.3), defines the region where the graph cut will be per-
formed. As long as these values are reasonable our system is 
able to find a seamless transition.  

Figure 8. Building Graph Cuts & Space Carving. a-d) Aerial picture, initial voxels, our textured result, and our calculated model with no 
textures. e) Ground truth and f-h) show Hausdorff distance (color map: green=0m, blue=5m, red=10m or more) between ground truth and 
our proxy, graph-cut space carving, and manual-segmentation space carving (see text). 

 a) 
b
b) 

c) d) 

e) f) 

g) h) 
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7 RESULTS AND ANALYSIS 

We have used our method and system for several large urban 
examples. Figures 7-18, supplementary figure page, and our 
video visually show our results and analysis. Our system is 
implemented in C/C++ and uses Qt/Boost/OpenCV. It runs on a 
Windows PC with Intel Xeon 2.53 GHz and NVIDIA GTX 580 
graphics card. Our example dataset consists of a grid of about 
58 by 19 aerial viewpoints over central Boston, MA (USA). At 
each viewpoint, a camera cluster takes 5616 x 3744 resolution 
images in five directions: one direction straight-down, and 4 
diagonally downward facing directions at about 90-degrees 
from each other when projected on the ground plane (note: our 
method makes no assumption about the spatial and angular 
distribution of the camera views). This totals 4667 images from 
pre-calibrated viewpoints. The area has 1785 buildings assumed 
to lie on a flat ground plane. We set the default initial building 
height to 35 meters (assumed residential zone height). Medium-
height high-rise zones are set to an initial building height of 125 
meters and tall high-rise zones are set to initial overestimated 
building height of 250 meters. 

There are two user parameters, voxel size ݎ and texture size 
per voxel ܵ. As described before ݎ defines the voxels size and 
we found empirically ݎ ൌ 2 or ݎ ൌ 4 is a good balance in time 
and reconstruction accuracy. The parameter ܵ can be calculated 
from ݎ to use the maximum resolution of the images (user can 
decide to decrease it to speed up the process). 

There are two building height clustering parameters: the 
threshold to discard the column variability and ܿ௘ which defines 
when to stop the clustering process. In our examples, the first 
parameter is set to two times the standard deviation and the 
latter to 0.3. 

Finally, there are two more parameters regarding the surface 
graph cuts that depend on how much the images overlap. In our 
case, the amount of overlap between patches and the overlap 
region between building and ground textures are both set to 4m. 

Reconstruction time depends mostly on the voxel size ݎ and 
subdivision factor ܵ. For our dataset, a “half resolution” recon-
struction (e.g., ݎ ൌ 4 and ܵ ൌ 4) takes 22 seconds per building 
on average (10 hours total time). A “full resolution” reconstruc-
tion (e.g., ݎ ൌ 2 and ܵ ൌ 4) consumes 109 seconds per building 
(51 hours total time). The timing includes local file I/O. A typi-
cal building has from 15 to 130 contiguous patches (of the same 

Figure 9. Texture Mapping Comparison. a) Initial model. b) 
Calculated proxy model. Mismatch/discontinuities occur due to 
geometry/calibration errors that are in general unavoidable in a 
dense city. Yet, c) our surface graph cuts compensate for inaccu-
racies and produce a continuous/coherent texturing, better than 
d) standard projective texture mapping 

Figure 10. Building Reconstruction for Various Building Siz-
es/Complexities. For a) small building (20m), b) medium size 
building (90m) and c) large building (180m), (left) aerial images, 
(middle) initial voxels, and (right) reconstruction error using  
Hausdorff distance (green=0m, blue=3.5m, red=7m or more). 

Figure 11. Result Comparison of 
Different Voxel Sizes. From left to 
right, we increase the voxel size. 
When the size is too large, recon-
struction fails. When the size is 
small, the reconstruction presents 
similar results but excessive pro-
cessing might occur. Hausdorff 
distance error: green=0m, blue= 
3.5m, red=7m or more. 

2m 4m 8m 16m
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image id) before graph cut application and 74 patches on aver-
age. A representative building graph has about 150k vertices, 
300k edges, 80k triangles before grouping voxels for rendering 
and 5k triangles after grouping voxels. The ground graph is at 
pixel resolution and the integrated ground graph cut solution is 
stored in a grid of 4x4 12MP images (so that the 16 tiles can fit 
in texture memory and leave space for building texture atlases). 

Memory requirements depend on the stage in the pipeline. 
Building geometric reconstruction requires about 100MB and 
can be reduced to less than 1MB per building after processing. 
Per building graph cut processing requires less than 200MB and 
the atlas creation requires less than 850MB (the requirement is 
higher since the images are loaded at maximum resolution).  

7.1 Building Reconstruction 
We show in Figures 7-10 several examples and comparisons 

for individual building modeling. Figure 7 contains intermediate 
results from the volumetric reconstruction process of an exam-
ple building. Figure 7a has a close-up of the OSM street map 
used as input. Using an image processing algorithm, we find the 
building outline and choose a default medium high-rise height 
in this zone. In Figure 7b, we show the initial volumetric ap-
proximation subdivided into voxels. Figure 7c shows the calcu-
lated per-voxel variance – it is computed for all voxels but only 
the exterior voxels are visible. Nevertheless, the photo-
consistency of the upper roof structure is evident. Figure 7d 

shows the voxels with minimum variance per voxel column, 
which begins to reveal the building structure. In Figure 7e, we 
also draw all the voxels beneath each selected minimum vari-
ance voxel. Finally, Figure 7f shows the proxy model after clus-
tering and filtering. This same process is repeated for all build-
ings. 

In Figures 8a-d and 9a-c, we show the initial volumetric ap-
proximation, the computed proxy model, and the textured result 
after surface graph cut processing. Our approach is able to pro-
duce reasonable proxies for this variety of building shapes. For 
comparison, we show in Figure 8e the ground truth (obtained by 
manual modeling) and in Figures 8f-h the accuracy of several 
reconstructions is compared to ground truth using Hausdorff 
distance: we show the reconstruction error of our proxy (8f) and 
two versions of space carving (8g-h). As one can observe, the 
reconstruction error for our proxy is small. To create the first 
version of space carving, we use Graph Cut Segmentation [31] 
(as explained Figure 12) to automatically segment the fore-
ground (i.e., the building in view) from the background (i.e., 
everything else). For the second version, we manually perform 

Figure 14. Graph-Cut vs. Projective Texture Mapping. Comparison of our graph cut algorithm with projective texture mapping for the 
original building and two altered proxies: building expanded +10% in all directions with a random noise in the height map of ±5m (left) and 
collapsed -10% in all directions with a random noise in the height map of ±5m (right). Our approach creates a seamless texture transition 
from facade to roof. In fact, as compared to projective texture mapping, it reduces the ill visual artifacts in all cases as can be seen by our 
results in the top row. 

Figure 12. Graph-cut Space Carving. To perform space carv-
ing, as in Figure 8g, we use a) an initial image, b) perform auto-
matic labeling (using the initial voxels as masks), and c) calculate 
a graph-cut segmentation. 

Figure 13. Reconstructed Building Height vs. Ground Truth. 
For 15 buildings, red bars represent the difference between the 
initial model height and ground truth. The blue bars indicate the 
difference between our refined model and ground truth.
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the segmentation using a painting tool -- a task that it is imprac-
tical for large-scale urban reconstruction (e.g., it took between 
one hour to two hours to create the 25-50 masks of each build-
ing). Nevertheless, despite perfect segmentation we found that 
in general the obtained building reconstruction was inferior to 
ours. This is due primarily to the relatively sparse image sam-
pling of each building and to the camera viewpoints being 
“above” the city (e.g., a distant camera would theoretically see 
the building more from the side but the view is most likely be 
occluded by another building). 

In Figure 10, we present the reconstruction for buildings of 
different sizes and complexities. Figure 10a is a small building 
of 20m height, 10b is a medium size building of 90m height, 
and 10c is a large building of 180m height. For each building, 
we show its picture, the initial proxy, and the Hausdorff dis-
tance between refined proxy and ground truth. The absolute 
reconstruction error is approximately constant regardless of the 
size of the building although the defects are more visible in the 
small buildings. The error would, of course, be larger if there 
are not enough images that capture the building. 

Figure 11 shows the impact of voxel size ݎ in the reconstruc-
tion process. When the voxel size is too big our method is not 
able to reconstruct the building. When the voxel size is small, 

the vertical sampling is dense enough to find low variance 
points and the reconstruction can be performed. However, if the 
value is too small, excessive processing might occur. 

Figure 13 summarizes the error in reconstructed building 
height as compared to ground truth (gathered from Wikipedia) 
for 15 well-known buildings. The average initial height error is 
72%. Our system reduced the building height error to an aver-
age error of 1%-3% with a 95% confidence interval.  

7.2 Surface Graph Cuts 
The impact of our surface graph cuts is observed in Figures 9c-
d, Figure 14, Figure 15, and Figure 16. Figure 9d contains the 
result of a naïve projective texture mapping. The imprecision in 
the proxy model, camera calibration, and the high-level of oc-
clusion with neighboring buildings makes it challenging to ob-
tain a perfect texture-mapping. Our additional use of (multiple) 
building surface graph cuts is able to compensate for these im-
precisions and produce a visually-plausible approximation to 
the building’s appearance (Figure 9c). 

Figure 14 contains a comparison of our graph cut algorithm 
with projective texture mapping over the proxy. We compare the 
original building (middle) with two altered proxies to see how 
the proxy error affects the texture step. To create the altered 

Figure 15. Building-Ground Surface 
Graph Cuts. a) We show two close-
ups of this building. b-c) With projec-
tive texture mapping, there are discon-
tinuities, missing content, and building 
projections at the boundary between 
the building and the street. d-e) Our 
building-ground surface graph cuts are 
able to find a smooth transition be-
tween the two structures and produce 
a coherent and visually plausible ap-
pearance. 

 
 

Figure 16. Ground Surface Graph 
Cuts. a) A downward looking origi-
nal aerial image in our dataset (note 
occluded roads). b) Visual artifacts 
of using a naïve graph cut due to 
ignored inter-building occlusions. c) 
The result when using our ground 
surface graph cut method -- our 
graph cut strategy found content 
from other images to fill-in road 
pixels with building projections. d) 
An image of the ground surface 
from Google Earth with no building 
proxies. e) Our method using build-
ing proxies and the ground from ‘c’. 
f) Using Google Earth imagery in 
projective texture mapping with 
buildings yields similar bad artifacts 
as in ‘b’. 
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proxies we expanded the original building in all directions of 
the building +10% (left) and we collapsed in all directions of 
the building -10% (right); in both cases we added a random 
noise of ±5m in the height map. As observed in the top row, our 
approach manages to make less visible the error in the transition 
in the top images. Moreover, our approach compensates for the 
incorrect proxy and is able to eliminate the unwanted appear-
ance of content (e.g., sidewalk, bushes, and side walls). In this 
example, it is accomplished by automatically extending the wall 
texture to meet the roof texture, thus producing a transition with 
reduced visual artifacts – however, the solution while smooth 
might not be physically correct. Our technique cannot always 
produce an improvement (i.e., compare bottom right picture of 
14c with the bottom right picture of 14f). However, the smooth-
ness of the image transition is never worse than the original. 

Figure 15 contains a comparison of building-ground surface 
graph cuts. For the building in Figure 15a, Figures 15b and 15c 
show the result using our proxies and standard projective tex-
ture mapping. By enabling the computation of building-ground 
surface graph cuts, we are able to improve the coherence at the 
interface of the building and ground surfaces, as is seen in Fig-
ures 15d and 15e. In particular, notice the discontinuity of the 
roads and cars in Figures 15b and the projection of the extra 
roof surface in Figure 15c – both of which are eliminated in our 
result. 

Figure 16 contains an example of the benefit of our ground 
surface graph cuts. Figure 16a contains the initial top-down 
view of an example area (we choose a camera with a view di-
rection that is closest to the vertical axis). Observe how the 
building in the middle occludes some of the nearby roads and 
buildings. Figure 16b contains the result of a naïve graph cut 
without taking into account the buildings proxies – notice the 
disturbing visual artifacts despite the attempt of minimizing 
neighboring pixel differences with the graph cut. Figure 16c 
shows the result of our ground surface graph cut: buildings are 
not rendered on purpose and the occluded road pixels are auto-
matically filled-in using content from other images. Figure 16d 
contains an image of the ground surface from Google Earth. 
Figure 16e shows the visual quality of our method using proxies 
and the ground surface from ‘c’. In contrast, using Google’s 
ground images (Figure 16f) yields similar disturbing artifacts as 
in ‘b’. 

7.3 Urban-Scale Reconstruction 
We show in Figures 1, 17, 18, and supplemental figure page 
several bird’s eye views of urban-scale examples (i.e., a frag-

ment or portion of a city). Figures 1 and 17 show views of Bos-
ton reconstructed using our method. Figure 18 shows some 
close-ups of several city areas and the views using Google 
Earth, including its crowd-sourced buildings. It is important to 
note that Google Earth is using a different image set than ours 
though qualitatively similar and its models are all manually 
created. Our method is able to automatically produce good ge-
ometric proxies and to use surface graph cuts to stitch together 
the aerial imagery yielding visually effective texture mapping. 

7.4 Limitations 
Our approach is not, however, without limitations. First, our 
2.5D assumption is applicable to most urban structures but not 
all (e.g., bridges or very modern building structures). Our 2.5D 
reconstruction currently only produces flat roofs – thus our 
method can process a building with a slanted roof but it would 
be simplified to a flat roof. Second, our method cannot robustly 
resolve uncertainties introduced by shadows and/or by dark 
building albedos. Our reconstruction method functions well 
only if the chroma channel of the area is sufficiently strong. 
Third, the sparse image sampling may prohibit certain geomet-
ric structures from being accurately reconstructed using a volu-
metric approach. While Google Earth renderings may be supe-
rior in some cases, our results are automatic and thus can be 
viewed as the final product or could be a first step for later re-
finement. Fourth, we have assumed for our results a flat ground 
plane (that mostly holds for Boston downtown). Fifth, our 
method focuses on the reconstruction of “tall building areas” 
(e.g., financial districts) with high density. 

8 Conclusions and Future Work 
We have presented an automatic urban-scale modeling approach 
using volumetric reconstruction from aerial calibrated images 
with surface graph-cut based texture generation. Our method 
generates building proxies using voxel and color consistency, 
exploits surface graph-cuts for recovering occluded facades and 
ground imagery and for assembling a seamless plausible texture 
mapping, and outputs 3D urban models comparable to other 
public systems. 

We list several future work items. First, an improvement is 
to close the loop between graph cut calculation and proxy 
computation; e.g., an iterative process going between 
refinement of the proxy and re-computing graph-cuts. Second, 
to handle slanted roof buildings we plan to refine the clustering 
step to differentiate the case where the k-means clustering 
presents a high error value. In that case we plan to find the 

Figure 17. Full Dataset View. We show a bird’s eye view of the textured 3D model produced by our system. 
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planes that best fit the distribution of points instead of applying 
our current heuristic. Third, we have observed additional 
information is present in the luminance channel of the images; 
in particular, sharp building edges may appear distinctly. We 
plan to exploit those edges to improve the proxy model. Fourth, 
our clustering method finds the macro-structure of a building. 
However, our reconstruction process captures additional 
structural detail (e.g., roof in Figure 7e), as could a secondary 
wide-baseline stereo method using our proxies. Fifth, additional 
street-level imagery could be used to improve the facade 
reconstruction. We intend to incorporate these tools to further 
refine building shapes. 
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Supplementary Figure: Ground Surface: a) Google Earth image, b) our similar input image, c) our ground image after graph cut 
(building shown in black) – notice road is un-occluded, and d) 3D view of our result. Comparisons: e-f) Google Earth views in Bos-
ton and g-h) similar views using our results. i) Another view of the city where the upper left image triangle is from Google Earth and 
the bottom right image triangle is our result – a smooth blended transition is done along the diagonal (going from bottom left to 
upper right). 
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