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Figure 1. City-Scale Building Proceduralization. Our approach uses a) an unorganized 3D model as input, b) computes a
hierarchical clustering of building components, and c) extracts a context-free grammar of the urban area. We can procedurally
generate (d-e) structurally-similar cities, at a chosen de-instancing level
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Abstract—We present a framework for the conversion of existing 3D
unstructured urban models into a compact procedural representation
that enables model synthesis, querying, and simplification of large
urban areas. During the de-instancing phase, a dissimilarity-based
clustering is performed to obtain a set of building components and
component types. During the proceduralization phase, the components
are arranged into a context-free grammar, which can be directly edited
or interactively manipulated. We applied our approach to convert
several large city models, with up to 19,000 building components
spanning over 180 km squares, into procedural models of a few
thousand terminals, non-terminals, and 50-100 rules.

Keywords-Graphics, Procedural modeling, Proceduralization, Urban
modeling, Reconstruction

I. INTRODUCTION

The demand for city-scale 3D urban models has significantly
increased due to the proliferation of urban planning, city navigation,
and interactive applications. Some existing methods focus on
automating 3D reconstruction from images (e.g., [17]) or from

LiDAR (e.g., [28]). Other methods assume widespread human
assistance (e.g., Trimble Sketchup), or expert modeling (e.g.,
CityEngine). The results of these approaches vary tremendously,
ranging from unorganized triangle soups to highly-structured pa-
rameterized models. Manual and reconstructed models are detailed
and realistic; but lack of structure causes inefficient editing, storage
and rendering.

The key observation of our work is that there is a huge potential
to exploit repetitions and to organize similarities into meaningful
procedural models in existing urban spaces. While procedural
models are known to be a powerful and compact parameterized
representation, it requires significant manual expertise to procedu-
rally code a city. The pioneering work of Parish and Mueller [18],
and subsequent urban modeling papers (e.g., see surveys [23], [17])
have focused on city-scale procedural modeling and on building-
scale inverse modeling. To the best of our knowledge, our method-
ology is the first to automatically proceduralize at city scale. We
present a framework for finding geometric components, repetition,
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Figure 2. Pipeline. From the input model, we perform de-instancing to obtain component types which are then given to proceduralization (hierarchical
clustering and grammar extraction) to output a grammar for the city.

and a high-level structural organization of a large collection of
buildings and for creating a compact procedural representation that
enables their synthesis, querying, and efficient rendering (Figure
1). Our input (Figure 2) is an existing 3D city model represented
as an unorganized but renderable collection of 3D buildings (e.g.,
any combination of polygons, textured geometry, points, procedural
content, or hand-crafted buildings; without a strict concern on
building types). Our automatic pipeline has two phases.

1) De-Instancing: A similarity-based clustering of instances
of building components is performed to obtain a set of
components and component types.

2) Proceduralization: Repetitive spatial patterns are discovered
amongst the components and result in a compact context-
free grammar applicable to synthesis, querying, and other
procedural applications.

Our work closely relates to Kolmogorov complexity and com-
pression where the task is to find a smaller representation for an
input [4]. Although finding the minimal representation is known to
be incomputable, discovering repetitions, similarities, and instanti-
ations are ways to find a smaller and more versatile representation.

We have used our approach to convert parts of several large
cities (e.g., New York, Chicago, and San Francisco) into procedural
models, containing 10,000 to 19,000 building components. The
resulting grammars can be directly edited (e.g., as a text file),
interactively manipulated (e.g., [14] or CityEngine), and several
types of information queries can be performed (e.g., localizing
oneself within a city based on the uniqueness of the nearby
observed buildings, as in [2]). Moreover, proceduralized models
have been demonstrated to be friendly to very efficient GPU-based
rendering (e.g., [8], [11], [20]).

Our framework enables automatically reducing geometry and
texture sizes by 2 to 21 times, producing grammars with 177 to a
few thousand terminals and 5 to approximately 100 non-terminals.
Preprocessing takes 2-4 hours for a city of 3,000 to 6,000 buildings.
Editing and synthesis takes seconds.

Our main contributions include

• a framework to convert an existing collection of 3D building
models into a procedural representation,

• a feature-based de-instancing algorithm to determine building
components and component types,

• a hierarchical clustering algorithm that finds repetition and
spatial patterns of building components and enables extracting
a compact context-free grammar,

II. PREVIOUS WORK

Our paper builds upon urban modeling and procedural modeling.
While urban reconstruction work, such as Lafarge and Mallet [12]
who segment the model into buildings, trees, and ground, while Lin
et al. [13] who perform semantic reconstruction of medium-sized
LiDAR scenes, generate 3D models, none of these reconstruction
approaches focus on producing a detailed city-scale proceduraliza-
tion of the underlying models.

Urban procedural modeling has become a powerful paradigm
since the pioneering work of Parish and Mller [18] and several
follow-on building modeling papers (e.g.,[15], [26]). Also Smelik
et al. [19] provides a survey of procedural methods for virtual
worlds. However, these methods define the procedural model and/or
assume a provided procedural model.

More recently, several inverse procedural modeling methods
have been proposed that attempt to extract a procedural model from
the input. Initial works provided semi-automatic and automatic
building solutions (e.g.,[1], [5], [24], [21]) and facade solutions
(e.g., [3], [9], [16], [27]), most of which rely on pre-segmented
components, user input, known grammar, or layout.

Most related to our work are the city-scale inverse modeling
approaches of Toshev et al. [22] and Vanegas et al. [25]. The
former focuses on detailed extraction of features from point clouds,
while our method works with visual similarity by considering
more complex feature descriptors. The latter describes an inverse
modeling approach at city-scale but assumes a parameterized
procedural model as input. Our method does not assume any a
priori knowledge of the procedural model.

III. OVERVIEW

A. Component Definition

A building has one or more vertically stacked components, each
being a different part of the building.
Components. We define an initial set of nC components, each
labeled Ci and being oriented bounding boxes rotated about the
z-axis with minimum/maximum coordinate corners pi and Pi and
midpoint position mi = (Pi + pi)/2.
Feature Vector. Each component has a c-dimensional feature
vector Fi = f1

i , f
2
i , . . . , f

c
i where each scalar fui represents a

geometric and/or visual property of Ci similar to those of Doersch
et al. [6] (see Section 4).
Component Types. We also define an initial set of nT component
types. Component type Tk is defined by a dissimilarity metric. For
Ci and Cj , their dissimilarity is

dij = dji = ||W (Fi − Fj)|| (1)



Figure 3. Building Components and Styles. Components of different
styles of buildings are shown. Note that slanted roofs/facades are compo-
nentized as expected.

where W ∈ Rc represents a per-feature unit-length weight vector.
Thus, Ci ∈ Tk and Cj ∈ Tk if and only if dij ≤ td for user-
defined de-instancing threshold td (Section 4D will expand upon
the use of this threshold and weight vector W ). The component
instance closest to the cluster mean is selected as the component
type representative C∗k .
Additional Relations. We also define

dist(Ci, Cj) = ||mi −mj || (2)

nbr(Ci, Cj) =

{
1 dist(Ci, Cj) ≤ τ
0 otherwise

(3)

mht(Ci, Cj) = |mi −mj |L1 (4)

Eqn (2) measures the unsigned Euclidean distance between (the
midpoints of) two components; Eqn (3) indicates whether two
components are considered neighbors; and Eqn (4) measures the
Manhattan, or L1, distance between the components’ midpoints,
which is the sum of block distances in the xy plane.

B. Parse Tree Definition

The components are organized into a parse tree of nP nodes.
The tree organizes similar components and their repetition so as to
enable grammar output.
Nodes. Each node Nk corresponds to a set of component types. A
leaf node corresponds one-to-one to the initial component types;
e.g., Nk = {Tk}. Nodes higher in the tree are created by clustering
nodes; e.g., Nk = {Nl1, Nl2, . . . , NnNK

} where Nl∗ are children
of Nk and nNK are the number of types clustered to node Nk. An
instance of the component type of node Nk is labelled Ñk, which
corresponds to a Ck ∈ Tk.
Edges. A parse tree edge stores the relative transformation matrix
Ekl from parent node Nk to child node Nl. Since multiple
instances may exist of Nk and Nl, Ekl is obtained by computing
the affine transformation from each Ñk to its corresponding Ñl
and using the average rotation, translation, and scale change to a
define a single matrix.
Grammar Definition Our approach converts the parse tree into
a grammar defined as G∗ = {α, τ, η, ρ} where α is the starting
axiom, τ is the set of terminals, η is a set of non-terminals, and ρ
is a set of rewriting rules using the terminals and non-terminals.

The parse tree leaves, corresponding to representatives of the

initial component types, form the terminal set:

τ =
⋃

1≤k≤nT

C∗k (5)

All other nodes form the non-terminal set:

η =
⋃

nT≤k≤nP

Nk (6)

where nT and nP are number of terminals and nodes, respectively.
We collect all the children nodes of each node to define a single
rewrite rule per node, namely:

ρ = {ρk k ∈ [nT , nP ]}ρk = (Nk → ⊕Nl is child of NkEklNl)
(7)

and ⊕ means concatenation and Ekl is the transformation matrix
(see Figure 5).

IV. DE-INSTANCING PHASE

We describe how to classify the instances of all buildings into
a set of components Ci and component types Tk. We estimate cut
planes, fit component boxes, create feature vectors, and perform
dissimilarity clustering (Figure 4 and Supplemental Figures S1 and
S2).

A. Cut Plane Estimation

To estimate building components, our approach finds cut planes
parallel to the ground plane. The volume between two cut planes
defines a building component. We progressively move the near
plane closer to the viewer along the +z axis and render the building
to framebuffer image Ii. Meanwhile the far plane starts from the
ground level and progresses as the most recently detected cut
plane. The process repeats until framebuffer image Ii+1 is empty.
A cut plane is created whenever there is a significant change in
the pixel difference between the rendered contours of consecutive
framebuffer images (i.e., a non-zero second derivative). Using the
second derivative enables supporting a variety of facade and slanted
roof geometries as seen in Figure 3.

B. Component Box Fitting

An oriented bounding-box (OBB) is fit to each component vol-
ume. The OBB is computed by rendering the component geometry
(i.e., rendering all geometry and using the two cut planes as near
and far planes), fitting an oriented rectangle to its projection on the
framebuffer, and extruding it. Since the OBB is computed from the
rendered result, it works with any renderable 3D representation.

C. Component Feature Vector Creation

To classify the component instances into component types, we
compute an 11-dimensional feature vector (Supplemental Figure
S1). We render each component from four viewing directions, each
rotated by 90-degrees about the +y axis, and then average them.
While not all buildings necessarily have four sides at 90-degrees to
each other, this assumption works well in practice. For each side,
our technique applies an intensity threshold, image binarization
(using Otsu’s method) and morphological opening/closing (using
a 3x3 kernel) to yield a processed mask. The features are listed
below.
• Component shape: One efficient option is to use the number

of vertices of a simplified polygon (using Douglas-Peucker



Figure 4. Building Clusters. Four building clusters computed automatically based on feature vector similarity. Inset: if the feature weights are adjusted
such that building height is emphasized, the first cluster is divided into two separate categories.

algorithm) enclosing the foreground of the image as an
indication of shape.

• Window size and spacing: Our approach calculates the average
window width and height and average x-spacing and y-
spacing. k-means clustering groups the connected regions in
the processed mask by window area. Each cluster represents a
particular window type. After removing outliers, the method
computes a tight-fitting bounding box for each window in
the dominant cluster, and computes their average width and
height. Next, the method creates horizontally- and vertically-
sorted arrays of window midpoints. The x-spacing (y-spacing)
value is equal to the most frequently occurring distance
between window midpoints, minus the window width (height).

• Emptiness: Our method computes the average ratio of back-
ground pixels to window pixels within each window’s tightly
fit bounding rectangle.

• Background intensity: Our algorithm computes the average
grayscale intensity of the background pixels.

• Component size: Our vector includes the width, height, depth,
and rotation angle of the component’s box in world space.

D. Dissimilarity Clustering

Our algorithm uses k-means clustering to perform a dissimilarity
clustering of the feature vectors and to determine the component
types. Changing the de-instancing threshold td affords different
levels of clustering; e.g., a larger td produces fewer component
types, each of more instances. For example, it can be interpreted
as increasing the simplification level of the city or as a trade
off of expressiveness vs. compression of the grammar. As an
implementation detail, the way we de-instance is to build a k-means
hierarchy with k initially equal to nc/2 and successively halved
until k = 1. Each horizontal cut through the tree corresponds
to a de-instancing result for a different td value. Further, we
observed that increasing the weights of window-related features
in W , benefits street-level rendering while giving relatively more
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Figure 5. Grammar Example. A pictorial 2D example for a rule R→
AABC. The space of a non-terminal is filled with components A, B and
C, using the average transformation matrices shown in Rule R.

weight to component size features behooves larger-scale scene
rendering. Changing the other weights in W is also useful for re-
assembling 3D urban data compactly based on a component-based
approach (see Figure 4 inset). All component types always span
input model. (See Supplementary Figure S2 for an example of de-
instantiation.)

V. PROCEDURALIZATION PHASE

We describe how to define a proceduralization graph, which
together with our distance metric, assists in creating a parse
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Figure 6. Proceduralization. a) The initial terminals in a city. b) The initial component type graph for Girvan-Newman clustering. For edge values
wm = 1 and ws = 0 and for edges of buildings within “d” distance; we also do not show unique edges. Dashed ovals are the first clusters (i.e.,
nonterminals A and B). c) Another level producing nonterminal C. d) Final clustering producing the axiom S. e) The parse tree of the small city.

tree, extracting a grammar, and ultimately exploiting patterns and
repetition of geometry (Figure 6).

A. Distance Metric

We use a custom distance metric for clustering based on three
properties for a pair of nodes Nk1 and Nk2 .
Repetition: To identify frequent co-occurrences, we use the sum
of pairwise occurrences:

rk1 k2 =
∑

Ñk1
∈Nk1

; Ñk2
∈Nk2

nbr(Ñk1 , Ñk2) (8)

Consistency: To find components separated by a nearly constant
distance, we look at the standard deviation,

σk1 k2 = (9)
∑

Ñk1
∈Nk1

;Ñk2
∈Nk2

(
mht(Ñk1 , Ñk2)−mht(Ñk1 , Ñk2)

)2

min(||Nk1 ||, ||Nk2 ||)


0.5

where mht(Ñk1 , Ñk2) is the mean Manhattan distance and ||Nk||
implies the number of instances of the node.
Closeness: We also measure the normalized compactness of spatial
grouping:

µk1 k2 =

∑
Ñk1
∈Nk1

; Ñk2
∈Nk2

dist(Ñk1 , Ñk2)

min(||Nk1 ||, ||Nk2 ||)
(10)

Hence, the complete distance metric for capturing consistently
close patterns with high repetition is

D(Tk, Tl) =
wµµkl + wσσkl

rkl
(11)

The weights wµ and wσ are used for normalization and to explicitly
alter the relative importance of the structural properties and thus
support a variety of clustering styles; e.g., wµ = 1 and wσ = 0
for frequently occurring spatially-near components, and wµ = 0
and wσ = 1 for frequently occurring patterns for consistent but
not necessarily close distances.(See Supplementary Figure S3).

B. Hierarchical Clustering

To compute the hierarchical parse tree, we iteratively cluster the
graph vertices using Girvan and Newman clustering [7]. Initially,
we create a graph of nodes with one node for each of the nT
component types. Graph edges store the value of our distance

Table 1. Model Statistics. First row is the original size (e.g.,
NY 0); subsequent 4 rows use progressively larger de-instancing
thresholds. Ratios are the reductions as compared to original.

metric over all pairs of node types (note: edges for distant node
type pairs are omitted). Since the total number of parse tree nodes
is not known a priori, a k-means clustering or graph-partitioning
algorithm is cumbersome. Instead, our clustering method progres-
sively finds the communities [7] and removes edges causing graph
vertices to be merged. The method converges to a set of clusters
that are mutually close, in terms of our distance function, and with
relatively few (small-valued) links to other communities. Then, we
increase the clustering tolerance and perform another iteration of
Girvan-Newman’s method until one vertex remains (i.e., a single
parse tree).

C. Grammar Generation

To output the current instantiation G of the grammar G∗ (Figure
6) a pre-order traversal of the parse tree is performed. All children
of the root (i.e., the starting axiom) are placed after a transformation
matrix which globally positions the node. Then, each rule ρk is
applied relative to the coordinate frame defined by the applied node.
An additional matrix is inserted in-between a pair of non-terminals



Figure 7. Quality vs. Compression. We show a progression of
processing New York, by changing . a) Original. b) De-instanced
to valley of cost/benefit ratio when choosing representative
component with least number of polygons. c) De-instanced with
mid-range threshold and d) larger threshold. (b) and (c) have almost
same visual quality yet (b) has 1/10 of the polygons of (c). In (d),
the city converges to one average building (e.g., the root of the
parse tree).
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to ensure the second non-terminal is properly positioned (relative
to the parent), as its edge indicates.
Repetitions. Our approach reproduces hierarchical (or sequen-
tial) pairwise repetitive patterns. Any observed pattern can be
reproduced but the type of repetitive pattern (e.g., grid pattern,
circular, etc.) is neither explicitly recognized nor parameterized.
Nevertheless, our clustering approach can group the entire pattern
into a single rule and thus enable applying it one or more times.

VI. RESULTS AND APPLICATIONS

Our framework is implemented in C++ using Qt, OpenGL,
OpenCV, dlib-ml library [10], Intel i7 Desktop PC, and NVIDIA
GTX 680 graphics card. We have applied it to large triangle mesh
models of New York, Chicago, and San Francisco obtained from
a 3D CAD Browser.

Figures 4 and 7 show de-instancing. Figure 4 shows four building
clusters, as a result of our distance metric. The inset in Figure 4
demonstrates how the clustering can be purposefully changed by,
for example, giving more importance to height. Figure 7 contains
a de-instancing progression. The graph in Figure 7a shows two
cost/benefit curves for each model. The cost is the average standard
deviation of all clusters (i.e., feature vector error) and the benefit is
the number of polygons eliminated while de-instancing for various
threshold values td. For the curve labels ending in “-poly”, the
representative component (per cluster) is chosen as the one with the
least number of polygons for the other curves the representative
component is the component closest to the mean of the cluster.
The cost/benefit curves imply that a good trade off occurs near
the bottom of the “u” shape. Moreover, the selection of the least
cost representative components does yield an overall benefit (i.e.,
10x less polygons at about same clustering error). Figures 7b-d
demonstrate the model at various locations along the de-instancing
progression.

Table 1 and Supplementary Table S1 contains statistics and
comparisons of our work. Table 1 contains a numeric summary

of size reductions and grammar statistics of four de-instancing
threshold levels. It shows compression and simplification as a
side effect of our method: lossless for level 0 and feature error
dependent for other levels. Table S1 compares characteristics of
our work to those of others. Supplemental Figure S1 focuses on
the feature vectors of several component facades over the city. Our
approach automatically handles incomplete facades and missing
textures per face, provided that the missing parts are present in the
repetitions of the same facade. Supplementary Figure S2 shows the
components of a neighborhood, with similar and dissimilar building
analysis.

Our approach enables a variety of applications. Figure 8 demon-
strates original and proceduralized examples of Chicago and San
Francisco. Figure 9 contains an example of user-controlled new
model synthesis. Our system fills-in a new starting symbol as
best as possible using the grammar from a proceduralized city.
In this way, we have instanced a New York style city with similar
building structures as per their feature vectors and with similar
spatial arrangements, but with the shape of the letters ”3DV” –
inspired by inverse procedural modeling (e.g.,[21]) (See video).

Finally, Figure 10 demonstrates an interesting potential appli-
cation of our system for localizing oneself within a city (see [2]
for a more detailed explanation of this application).Our procedural-
ization work enables an alternative and simpler method to enable
self-localization from ground-level images. Given a street view of
New York (Figure 10a; from Google Street View), our prototype
application rectifies the images using manually-estimated cam-
era rotation parameters (Figure 10b). Then, our proceduralization
method treats the images just like the input buildings, by extracting
their feature vector and placing them into the parse tree. It finds the
co-occurrence of all images from the grammar and automatically
determines that the observed set of window distributions/styles
only occurs adjacently in 4 locations within the city. Hence, the
observer of Figure 10a is known to be at one of those locations.



Figure 8. City Views. We show a-c) original Chicago and San Francisco,
and b-d) de-instanced and proceduralized versions about 1/2 to 1/4 less
component types

The view from our model is shown in Figure 10d while Figures
10e-g show the other 3 potential views (also using Google Street
View). The demonstrative prototype does not determine camera
orientation only its approximate position. The orientation of the
camera, in all views, is done manually. The illumination effects are
also not considered yet.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a framework to convert an existing large
collection of unstructured 3D urban data of a city into a compact
procedural representation. Our system has been applied to several
large scenes and we have shown a variety of analysis and visual
results in the paper, supplemental material, and in our video. As

Grammar 
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Figure 9. User-Controlled Synthesis. a) Input model is converted into b)
a parse tree and c) a grammar is extracted. The user specifies d) a starting
symbol, and our method best fills it with the grammar and generates e)
new content keeping the style and neighborhoods, showing the expressive
power of the output grammar.

future work, we would like to subdivide a component having two
or more window distributions/styles (without any noticeable differ-
ence in the component’s exterior contour), to apply our method to
incomplete geometry and to include methods to decompose facades
into their core smaller components
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