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Figure 1: Pipeline. An input point cloud (a) is semi-automatically segmented (b), the segments are used for completion with

consensus models (c), and placed in a tree. Then, the tree is parsed and rules are discovered to enable procedural editing (d).

Abstract

Thanks to the recent advances in computational photog-

raphy and remote sensing, point clouds of buildings are be-

coming increasingly available, yet their processing poses

various challenges. In our work, we tackle the problem

of point cloud completion and editing and we approach it

via inverse procedural modeling. Contrary to the previ-

ous work, our approach operates directly on the point cloud

without an intermediate triangulation. Our approach con-

sists of 1) semi-automatic segmentation of the input point

cloud with segment comparison and template matching to

detect repeating structures, 2) a consensus-based voting

schema and a pattern extraction algorithm to discover com-

pleted terminal geometry and their patterns of usage, all

encoded into a context-free grammar, and 3) an interactive

editing tool where the user can create new point clouds by

using procedural copy and paste operations, and smart re-

sizing. We demonstrate our approach on editing of building

models with up to 1.8M points. In our implementation, pre-

processing takes up to several minutes and a single editing

operation needs from one second to one minute depending

on the model size and the operation type.

1. Introduction

Recently, there has been a significant increase in the

availability of 3D point cloud datasets of buildings and other

urban structures. This data can be obtained from different

sources such as Li-DAR scans, laser scans, time-of-flight

cameras or reconstruction from photographs. The prolifer-

ation has supported widespread GIS services, such as those

offered by Google Earth and Microsoft Bing Maps, as well

as tools for urban planning and design. Although becom-

ing very common, this data representation often lacks high-

level grouping or segmentation information. This lack hin-

ders (i) directly and intuitively editing such point cloud

building models, (ii) creating novel polygonal/point-based

models preserving style of the original model, and (iii) ob-

taining complete building models (e.g., filling-in surfaces

that were not fully sampled).

Previous work has focused on some of the aforemen-

tioned problems. Some methods have centered on segment-

ing the point cloud into components (e.g., [12, 16, 30]).

Others provided 3D polygonal urban reconstructions from

point data (e.g., [18, 35]), explored point editing tools (e.g.,

[3, 22]), or addressed model completion (e.g., [7, 24]).

In contrast, our key motivation is to directly inspect

the point cloud in order to segment and organize repeat-

ing structures into a hierarchical representation and then to

enable directly performing a set of “what if” urban design

and planning operations. Our method discovers (and orga-

nizes) repetition improving both completeness and quality

of sampled structures. Further, the improvements are car-

ried forward during editing, hence improving subsequent

surface triangulations of novel structures as well as preserv-

ing the original structure. Our method discovers structure

(Figure 1b), completes the structure (Figure 1c), enables

intuitive editing (Figure 1d) and subsequent triangulation

(e.g., Figure 3) yielding results superior to direct triangu-

12147



lations of the original point cloud. Further, the two tower

roofs in Figure 1d are a result of style transfer from Fig-

ure 5. While one alternative approach is to convert the point

cloud into a set of polygons before structure discovery (e.g.,

Figure 9a), such an approach tends to lose the un-coalesced

details of local structures (e.g., details are re-added manu-

ally in Figure 9b). The new information added to the model

is amplified through editing, resulting in the loss of the in-

tegrity of the original geometric details. In contrast, our ap-

proach supports a consensus-based reconstruction that can

preserve and recover local details for subsequent editing and

triangulation. Moreover, we believe our work to be the first

procedural editor of structured point clouds.

During preprocessing our approach has two main stages

(Figure 1a-c). In the segmentation stage, our method semi-

automatically partitions the point cloud using RANSAC-

based plane fitting, Euclidean distance-based clustering,

and template matching to create an initial set of segmented

structures. At this stage, the granularity of segmentation can

be modified interactively by specifying regions to segment

more (or less) than a default amount. In the proceduraliza-

tion stage, our algorithm uses iterative closest point (ICP)

and a consensus-based voting scheme to find the completed

structure of all repeating segments. All discovered compo-

nents are placed into a tree data structure (similar to [30]).

Then, a pattern discovery algorithm finds the repetitions of

the core structures and converts the tree into a parameter-

ized context-free grammar (similar to [26] and [31]).

The preprocessed data are then used for interactive edit-

ing which enables altering the parsed model using a variety

of operations such as smart resizing and copy/paste (Fig-

ure 1d). The relative positions and sizes of the discovered

components, as well as the sampling density of the original

point cloud, are maintained by a linear least squares opti-

mization [23] and edge-aware resampling[13]. The output

of editing is a procedural representation of the point cloud,

as well as the segmented original and edited point clouds,

with optional per-point normal vectors and a triangulation.

Note that if the initial model does not include normals, we

estimate them using a kd-tree based extrapolation of surface

normals as in [28].

We show edited building models with up to 1.8M points

(see also the accompanying video), comparisons and ro-

bustness experiments. Semi-automatic segmentation takes

up to a few minutes and generation of the tree data structure

needs less than one minute. The time for individual edit op-

erations varies from one second to one minute depending

on model size and operation type.

Our main contributions include:

• a semi-automatic segmentation of point clouds that is

robust to outliers and noise and, with simple user as-

sistance, adapts to a desired segmentation granularity,

• a proceduralization method to convert the discovered

segments and their patterns into a grammar-based rep-

resentation, and to perform a consensus-based comple-

tion of the repeating segments, and

• a synthesis method that uses the discovered grammar

to edit point clouds by means of a custom set of local

and global editing operations, least squares optimiza-

tion, and edge-aware resampling.

Figure 2: Segmentation. User selects a ROI (a) and the au-

tomatic segmentation finds planar and non-planar segments

(b). The whole building is segmented after six strokes (c).

Template matching finds repeating structures (d).

2. Related Work

Our method builds upon previous work in urban re-

construction using grammars, segmentation, and model-

ing. Some previous works have attempted to extract a

grammar-based representation from point cloud data [21].

These methods vary on the targeted content (e.g., facades

[1, 4, 26, 27]) or the assumption of predetermined building

grammars (e.g., [19, 31]). Instead, we provide a (context-

free) grammar representation for buildings and we do not

assume an a priori set of rules or parameters. Also, see the

previous work comparison in Supplemental Figure 6.

A variety of works has focused on segmenting point

clouds and on converting them into a polygonal representa-

tion. Gelfand and Guibas [11] define a well-known segmen-

tation strategy that searches for shapes that can “slip” in 1

or 2 dimensions. Toshev et al. [30] segment a building into

planar parts and join them using a grammar-like represen-

tation that separates roof, rest of building, and non-building

structures with less granularity, no editing support and no

grammar output. Golovinskiy et al. [12] recognizes key ob-

jects in 3D point clouds of urban environments, but does not

perform model completion, nor editing. Wu et al. [32] fo-

cus on surface reconstruction but do not exploit repetitions,

provide a grammar, or enable modeling/changing the input

model. Zhou and Neumann [35] create compelling 2.5D

urban structures from Li-DAR data. Dimitrov et al. [10],
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segments architectural point clouds using region growing

and user-assisted surface fitting. Lin et al. [18] use se-

mantic labeling and supervised learning to coarsely segment

and reconstruct a specific vocabulary of low-rise residential

buildings. In contrast our method is not restricted to partic-

ular building structures. Lafarge and Mallet [17] focus on

massive reconstruction and not on modeling, synthesis or

completion.

Pattern and symmetry detection has been used to im-

prove digital geometry processing (see survey by Mitra et

al. [20]). For example, Zheng et al. [34] detect large-scale

repetitions to complete the models, Demir et al. [9] seg-

ments and labels architectural meshes, and Pauly et al. [25]

extract various kinds of patterns from a point cloud. How-

ever, these approaches do not organize the repetitions into

patterns, use the patterns for modeling, or provide pattern

granularity selection to the user. Our paper extends these

works by detecting the repetitive and hierarchical nature in

the underlying buildings, and uses that to provide segmen-

tation, to improve the quality (i.e., completeness) of the re-

constructed model, and to enable intuitive model synthesis.

The methods for retargeting and editing of existing 3D

models focus on meshes [1, 5, 6, 35], CAD models [2], and

point clouds [3, 22, 33]. In particular, Andrews et al. [2]

work on CAD meshes by allowing users to define editable

surfaces and to create new models, with limited support on

similarity (i.e., symmetries). Nan et al. [22] edit point cloud

data using “smart boxes” that can partially complete inte-

rior points and replicate point data, with significant user in-

tervention. Arikan et al. [3] provide a compelling tool to

edit polygonised point clouds. Their method also performs

segmentation but does not include pattern discovery, com-

pletion of non-planar parts, repetition identification, or an

explicit hierarchical structure. In contrast to all these point

cloud edition and completion solutions, we propose a pro-

cedural point cloud editing method that operates without

a need for an intermediate geometry, but still maintaining

meaningful structures and their relations by a hierarchical

representation.

3. Segmentation

The first stage of our approach is to segment the model

by discovering dominant planes, extracting distance-based

clusters, and finding additional repetition within each plane

or cluster. We use thresholds defined relative to the model

diagonal to detect planarity and clustering. Moreover, the

user may interactively select a region of interest and gen-

erate additional segmentation. Although the method could

be fully automatic, this interaction intuitively supports seg-

menting different regions of the object at varying levels of

detail (i.e., a spatially-varying segmentation granularity),

suitable for interactive editing and detecting under-sampled

instances (See Section 4.3).

Figure 2 shows an example segmentation. The initial re-

gion of the model is chosen by the user (Figure 2a) with a

single mouse stroke. The region is then automatically seg-

mented (Figure 2b). This is repeated for five more regions

to produce Figure 2c and ultimately Figure 2d. The segmen-

tation granularity is implicitly controlled by the user inter-

action. Supplemental Figure 1 shows how several levels of

segmentation granularity can be achieved.

3.1. Segment Decomposition

Given a region of interest, we use a multi-pass partition

algorithm to automatically segment the model into a set

of planes and (non-planar) clusters. On one hand, planes

are quite dominant and easily identified within urban struc-

tures. On the other hand common architectural features

(e.g., prominent window parts and facade details) are bet-

ter represented as a cluster of points. Thus, we decompose

the model into both types of segments.

During each planar segmentation pass, the most domi-

nant planes are found using a RANSAC-based plane-fitting

method based on [28]. This method selects a subset of the

3D points {[p11], . . . , [pn1]} and places them as rows into

a matrix A. Then, it solves Aq = 0 using SVD where q is

a multi-dimensional feature vector with plane features. We

repeat this for all remaining points and choose the fitting

plane that maximizes the number of inliers within a distance

threshold of 2.5% (i.e., similar to [28]). All points near the

chosen plane are coalesced into one planar segment Pi and

removed from processing queue. The process is executed

until no sample set remains, altogether resulting in planar

segments {P1, . . . , PNp
}.

When the planes are thrown out, the remaining non-

planar structures are mostly disjoint groups which can

be clustered by using Euclidean distance-based clustering.

Thus, Euclidean distance-based clustering is used to seg-

ment the remaining points into {C1, . . . , CNc
} [28]. The

points are placed into a kd-tree for quick distance queries.

The most crowded 10% of the subtree is used to initialize a

set of clusters. Then, our method assigns points to clusters

so that the distance between all point pairs in one cluster

is less than a threshold; e.g., given cluster Ci, then for all

points pa ∈ Ci and pb ∈ Ci, ||pa − pb|| ≤ TC .

3.2. Repetition Decomposition

We further decompose a planar or an Euclidian segment

into a connected set of repeating point clouds. For example,

a labeled (planar) facade might actually have repeated in-

stances of nearly flat windows. For this decomposition, the

user is asked to identify (with a mouse-based stroke) a tem-

plate segment – the approximate subset of a source segment

that repeats. Our system then automatically scans the se-

lected volume in each of the three axial directions relative to

the segment coordinate frame, by sliding the template in one
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direction at a time, with a step size of 10% of the template-

to-segment size ratio in that direction. If the translated tem-

plate segment and a corresponding destination segment are

similar, then the destination segment is given the same la-

bel as the template. At the user’s discretion, this process is

repeated for all planar and/or Euclidian segments. The re-

peating segments need not be regularly distributed in their

contained super-segment, but they need to have the same

orientation. Two point clouds are considered similar if the

number of points below the maximum Euclidean distance

tolerance is less than TC of each cloud.

Given both planar and Euclidian segments and user la-

bels from template matching, similar segments are checked

to have similar bounding box dimensions (e.g., within 5%)

and a similar point count (e.g., within 10%) to obtain the

same label. Although the measure identifies the core units

of the procedural model (i.e., terminal symbols), it does not

(yet) organize them into a hierarchy.

Algorithm 1 Consensus Computation

1: procedure FINDBASE(A) ⊲ best in similarity group A

2: for all i ∈ A do

3: for all j ∈ A do

4: align si and sj by dominant planes

5: for all r ← sample rotation angles do

6: rotate sj about its normal and midpoint

7: compute ICP and store error eijr

8: return sk → ek =min(eijr) ∧ ek ≤ Tc

9: procedure CREATECM(sk, A) ⊲ CM of sim. group A

10: d←point density of sk
11: r ← sk
12: for all i ∈ A do

13: (tmp, err)← ICP (si, sk)
14: if err < Tc then

15: r ← r + tmp

16: return EAR(r, d) ⊲ edge-aware downsampling

4. Proceduralization

The second preprocessing stage of our algorithm con-

verts the segments into a procedural representation. We

perform a top-down approach to build a tree-structure that

contains all the segments. Then, we execute comparisons

within the tree to identify patterns of repetition. At the end

we output a procedural model.

4.1. Consensus Estimation

All segments with the same labels (as per Sections 3.1

and 3.2) create a single representative consensus model

(CM). The CM has the advantage of producing a result that

is complete in the sense of joining multiple partial samples

Figure 3: Consensus

Model. Same segments

are ICPed for CM. Poisson

reconstruction is improved

from original (a,b) to (c,d).

(e) is Hausdorff distance.

of the same underlying geometry. Further, in most cases the

resulting model is more complete as compared to the orig-

inal segments or to an “averaged” segment. Figure 3 (and

Supplementary Figure 3) shows an example of a building

before and after using consensus models. In Figure 3e, we

also implicitly show the completeness amount of chimneys

relative to the initial model. Overall, for 93% of the compo-

nents of the model, the number of points increases to from

1.2× to 4× of the original component point count, which

serves as an indication of the amount of model completion.

Also, as an advantage of our semi-automatic segmentation,

allowing the user to label even the overly under-sampled in-

stances of a pattern; those instances are included in the CM

and recovered by our approach unlike automatic methods.

The CM is found by an O(k2) comparison between k
segments using Iterative Closest Point (ICP) (see Algo-

rithm 1). The segment most similar to others, by using a

least squares error comparison, is used as the base segment

to which all other segments are transformed. Then, the CM

is initialized by that base segment, and all transformed seg-

ments are added to the model. Lastly, we perform edge-

aware point resampling (EAR), using the method of Huang

et al. [13], to return the point density to that of the original

base segment. We also estimate the normals of the CM as

in [28].

4.2. Tree Construction

After a CM is found, the segments are used in a top-

down construction process of a tree containing all segments

and their repetitions (Figure 4). A tree node corresponds

to a subset of the model represented by its bounding box.

A tree edge represents an axis-aligned split operation that

uses a pivot point to divide a node, and a resulting octant.
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Figure 4: Tree and patterns. The building

segments (left) are put into the tree (right).

Nodes can be invisible (N1, N2, N3) or

visible (colored). Note that some invisible

nodes are not shown for convenience. If a

regular spacing between the applications of

a pattern is found (e.g., the pink windows),

then it is given the subdivide directive (P2).

Otherwise it is expressed as different appli-

cations of the same pattern (e.g., roof win-

dows, P1).

For example, defining a box within another box requires at

most two sequential split operations using the two ends of a

diagonal of the smaller box as pivot points. The aforemen-

tioned intermediate splits cause the creation of intermedi-

ates nodes called invisible nodes while the nodes represent-

ing actual building subsets are called visible nodes. Note

that visible and invisible nodes are not the same as leaves

and inner nodes of the tree (See Figure 4).

For each segment, we first compute its bounding box and

place it in an unlinked visible node. The root node contains

the bounding box of the model. Then, the visible node with

the next largest bounding box is added to the tree. It will be

derived from its smallest encapsulating node and may po-

tentially need an intermediate invisible node. The instances

of patterns, as labeled in Sections 3.1, 3.2, and 4.1, will also

be placed as children of the same parent.

4.3. Pattern Extraction

A search method finds repeating patterns of same-

labeled segments (Figure 4). The method starts by placing

all visible nodes of the same label into same group. Each

group is inspected to verify if the subtrees of all group mem-

bers are similar. If not, the group members are split out to

a new group. These steps are repeated until no more group

changes. Afterwards, to compensate for the invisible nodes,

the groups may be altered. Each group is checked whether

all subtrees have similar parent nodes. If so, the group is

redefined to be based on subtrees starting one level higher

in the tree. This is repeated until no more group changes.

Two subtrees are considered similar in a level order

traversal if corresponding nodes have similar bounding box

dimensions, similar point counts and similar labels from the

CM. Further, the aforementioned process is not affected by

the ordering of the children nodes (i.e., changing the pro-

cessing order of children leads to the same result), patterns

inside other patterns are allowed, and recursive pattern ap-

plications are supported. The regular application of a pat-

tern (i.e., multiple instantiations of the same subtree) is as-

sumed to be a regularly-spaced 1, or 2, or 3D grid-pattern,

though it does not need to be axis-aligned. While this does

Algorithm 2 Repetition Parameters

1: for all Ci do

2: Ri = ∅ ⊲ Ri has patterns (dist, freq) for Ci

3: for all Cij and Cik ∈ Ci do

4: d← dist of midpts of Cij and Cik

5: if d is a multiple of Rim .d then ⊲ Rim ∈ Ri

6: Rim .f ← d/Rim .d
7: else if Rim .d is a multiple of d then

8: Rim .f = Rim .f ∗ (Rim .d/d) + 1
9: Rim .d = d

10: else

11: create new R with R.d = d and R.f = 1
12: add R to Ri

13: delete non repeating Rim

14: set def label for non-repeating Cij

not afford all building structures it captures many typical

repetitions in buildings. During procedural model genera-

tion (see next Section), regular applications are compactly

represented. Each repeating instance within a regular appli-

cation may vary only by translation (e.g., P2 in Figure 4).

However, different applications that consist of the same seg-

ments may vary by a 1, 2, or a 3D translation or rotation

(e.g., P1 in Figure 4).

The spacing between each instance of a segment within a

repeated application is found by an analysis of the minimum

repeating distance and the frequency of application. It is

summarized in Algorithm 2 and is inspired by the method

of Št́ava et al. [29], and the algorithm is applied in all three

dimensions.

5. Editing

At runtime, our interactive tool allows directly altering

the generated split grammar and supports interactive edit-

ing, based on the parse tree constructed in the previous sec-

tion. In both cases, the original model is altered produc-

ing a similar quality novel model. Particularly for text-

based editing of the grammar, when terminal or rule pa-
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Figure 5: Completion and

Editing. The original model

(a) is processed to obtain (b).

The segments (c) and (e) are

taken from the original point

cloud, whereas (d) shows au-

tomatic completion, and (f)

shows procedural synthesis.

Figure 6: Reconstruction. Each row represents, original points (a,e) reconstructed with Poisson (c,g), and edited points (b,f)

reconstructed with Poisson (d,h). Note the roofs in (b) and (d) are a product of style transfer from the building in (f) and (h).

rameters are changed or new rules are created, the tree is

re-generated based on the grammar and new geometry is

obtained. In addition, for the interactive system we provide

intuitive copy/paste and structure-aware resize tools (see the

Supplemental Section and the video). Both include features

specific to point cloud editing such as preserving the origi-

nal point density and creating seamless joins between added

or removed parts of the building (Supplemental Figure 2).

5.1. Smart Resize Tool

Editing begins by selecting a region of interest; initial at-

tachments are automatically computed and represented as a

large sparse linear system of equations. The dimensions of

the resized node(s) are put into the linear system and it is

optimized for new point locations. All affected nodes are

appropriately resized so as to maintain the initial relative

adjacencies. If a node is overly stretched (or shrunk) for ex-

ample by more than 1.5x of its initial size, then we duplicate

(or merge) the node along the direction of greatest change,

preserving the pattern inside the node. Upon resizing any

node, the original point density inside a node is restored

by using edge-aware resampling, such as Huang et al. [13].

This resampling maintains the details of the original node.

Further, we explicitly address resampling at the bound-

ary between two nodes just placed next to each other.

We define a thin neighborhood region enclosing the seam.

Then, points within the seam are re-sampled so as to match

the density of the surrounding region. Another choice

would be applying EAR [13] to the combination of both

nodes. However that choice decreases the performance and

such potentially large and unnecessary point resampling

might degrade point cloud sampling accuracy.

There are six types of attachment constraints computed

based on the adjacency graph of the nodes for a resize op-

eration: floor, corner, plane, volume, size, and position.

The last two are used whenever a node is under-constrained

(e.g., a node unattached from one end uses its size infor-

mation instead of having a floating end). They amount to
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at least six linear equations per node and are solved – simi-

lar to the method of Bokeloh et al. [5] – but we use sparse

linear least squares [23] instead of dense SVD.

5.2. Seamless Procedural Copy/Paste Tool

This tool enables copying and then inserting or replacing

an existing rule or terminal of the model. After insertion or

replacement, the new content is potentially resized, its sub-

tree is regenerated, and seams between the copied content

and its new surroundings are reduced via point re-sampling.

The user selects a region to copy. The selected nodes are

joined to form a single subtree. The copied subtree either i)

fills the paste node’s 3D space, ii) is derived from the paste

node, or iii) is inserted between the paste node and its chil-

dren.

During a copy-paste operation, we address several ad-

ditional issues. We again use resampling at the bound-

ary between the copied nodes and its new adjacent nodes

in order to create a seamless transition. The copied node

might also require a resize (thus using the mechanism of

Section 5.1). Moreover, the orientation of the copy node’s

main axis (e.g., the longest of the three axes of the oriented

bounding box around the node) is changed to match that of

the paste node’s main axis. If the copy node is a leaf, it

can replace itself with more than one copy in the fill mode,

creating a new pattern.

6. Results and Discussion

We present results and comparisons of our method ap-

plied to point cloud models. Our software is written in

C/C++ using Qt, OpenCV, Point Cloud Library (PCL)[28],

and EAR [13]. We have used Meshlab and CloudCom-

pare [8] for some reconstruction results. Our datasets in-

clude the Hannover model [14], the Lans le Villard model

(1.2M points) used by Lafarge and Mallet [16] and the

Townhall model (63k points) used by Arikan et al. [3].

Completion. Once a building is processed, Figure 5 shows

terminal symbols more completed and interactively edited

point clouds. Figures 5a-b show the overall improvement

and Figures 5c-d focus on a facade. Figures 5e-f show

an example interactive editing result, where the modeler

applied procedural copy/paste to replace the doors with

an arch structure, resized the balcony, and added semi-

columns. Supplemental Figure 3 shows other close-up re-

sults focusing on the window structures.

Editing. Figure 6 shows the original points (6a,e) and tri-

angulations of them (6c,g), and the points (6b,f) and the tri-

angulations (6d,h) of the same models after editing with our

system. Despite both using the same surface triangulation

method [15], our approach significantly improves the ap-

parent quality of the reconstruction. Figure 7 shows a style-

preserving transfer from one building to another. A variety

of building models can be generated from the original point

Figure 7: Style Transfer. Two original point clouds (a-b).

Tower of (a) is transferred to chimney of (b), obtaining (c).

cloud, maintaining the original quality. Hence any improve-

ments to reconstruction and/or triangulation equally benefit

the original or edited models. Figure 8 shows an array of

edits from an original point cloud as well as some Pois-

son surface reconstruction [15]. We also experimented with

several other triangulation methods, ultimately finding the

aforementioned surface reconstruction method to work the

best in practice (see Supplemental Figure 7 for RIMLS).

Also, our tool supports different scales of editing opera-

tions and it is used for completion and modeling of both

large structures and small details on the window.

User Experience. Table 1 shows the number of strokes

(i.e., one “circling” click) and time needed to segment the

models that we have shown throughout the paper. The seg-

mentation and modeling times are short relative to the com-

plexity of the new models thanks to our procedural editing.

Comparison. Figure 9 shows the result of an alternative

approach to convert the points to a polygon-based method

(i.e., [3]) on the dataset of Lafarge and Mallet [16]. Fig-

ure 9a shows the automatic reconstruction of [3] and Fig-

ure 9b contains a manually-assisted result that incorporates

some lost details. In contrast, Figure 9c shows our result

of a more complete and detailed model, prior to procedural

editing. Note the additional building details our method is

able to capture and make available, even after editing (Fig-

ure 9d). Also, Supplemental Table 1 summarizes the limita-

Table 1: Statistics. The user-based segmentation and mod-

eling statistics per figure are documented.
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Figure 8: Editing. The original model (a) is auto-

matically processed to a more complete model (b).

Then various styles (c-f) are interactively created.

Our completed model and one of the edits are re-

constructed (g, h).

Figure 9: Comparison. O-Snap [3] best cases after automatic extraction (a) and manual modeling (b). Our automatic

consensus model without editing (c). The result of 4.2 minute procedural editing session (d). The insets show color-coded

segments. (images a,b courtesy of [3]).

tions of other previous work and exemplifies our improve-

ments, and Supplemental Figure 5 shows the comparison of

another building.

Robustness. Supplemental Figure 4 shows visually how

our approach is robust to various noise and sampling den-

sities. Using a synthetic model, we inject 0, 0.5%, or 1%

of random noise (horizontal axis). Further, we resample the

model for the total point count to be 500k, 250k, or 100k

points (vertical axis). The figure shows that segmentations

similar to that at zero noise are obtained for various point

densities. Despite high noise levels, only up to 5% of the

component labeling was completely lost for 20% downsam-

pling and 1% of noise. (i.e., front windows are not labeled).

7. Conclusions and Future Work

We have presented an approach for procedural model-

ing of building point clouds. Our method first detects the

repeating structures by using semi-automatic segmentation

and template matching. In the second step we create a

tree representation of the input and generate the grammar

by using a consensus-based voting scheme and a pattern

extraction algorithm. During an interactive step, the user

can interact with the system by creating new point clouds

by using procedural copy and paste operations and by our

optimization-based resizing. We have used our approach

to edit building models with up to 1.8M points requiring a

few minutes preprocessing time and supporting interactive

editing.

Our work has some limitations. First, if the model has

a few repetitions, it will still be converted into a tree, but

the generated grammar will have fewer rules. Second, our

consensus-model completion needs multiple instances of a

segment to improve the model. Third, our pattern detec-

tion scheme does not explicitly recognize more intricate ar-

rangements such as spiral patterns.

As future work, we would like to incorporate addi-

tional segmentation algorithms, beyond planar and Eu-

clidean cluster assumptions but still exploiting repetition

and proceduralization, and potentially use machine learning

methods. In addition, we would like to apply the same ap-

proach to city-scale Li-DAR data or other urban structures.
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