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We introduce the first solution for simulating the formation and evolution of
glaciers, together with their attendant erosive effects, for periods covering
the combination of glacial and inter-glacial cycles. Our efficient solution
includes both a fast yet accurate deep learning-based estimation of high-
order ice flows and a new, multi-scale advection scheme enabling us to
account for the distinct time scales at which glaciers reach equilibrium
compared to eroding the terrain. We combine the resulting glacial erosion
model with finer-scale erosive phenomena to account for the transport of
debris flowing from cliffs. This enables us to model the formation of terrain
shapes not previously adequately modeled in Computer Graphics, ranging
from U-shaped and hanging valleys to fjords and glacial lakes.
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1 INTRODUCTION

Natural terrains exhibit a wide range of forms with varying details,
from flat deserts to high-altitude mountains and from smooth to
fractal-like, dendritic structures. Geomorphological processes deter-
mine their formation, but due to their variety and complexity, their
application to Computer Graphics (CG) is beset with challenges.

Our key observation is that glaciers had and have a characteristic
and significant effect on terrain shape, dissimilar to other phenom-
ena. During previous ice ages, which have dominated the Earth’s
climate over the past three million years, glacial erosion shaped
much of the terrains around us, ranging from prairies and tundra
to mountain ranges, such as the Cordillera and Alps. Mountain
glaciers, in particular, create specific landforms (see Section 7.1), in-
cluding U-shaped (or tunnel) valleys, cirques (circular depressions),
arétes (jagged crests), hanging valleys at the convergence of two
glaciers (e.g., the Bridal Veil Valley in Yosemite), glacial lakes, and
smaller-scale moraines and drumlins formed from debris and sed-
iment deposited near the margins of glaciers and ice sheets (see
Figure 1). Existing terrain generation methods cannot accurately
model these features.
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Fig. 1. A landscape carved by our simulated glacier. Specific landforms are
(1) U-shaped valleys, (2) hanging valleys, (3) a glacial cirque overhung by
arétes and horns, (4) a pass, and (5) high-altitude lakes.

Simulation of glacial erosion needs to capture the nature of
glaciers as bodies of dense ice resulting from a balance of snow
accumulation at high altitudes and melting and sublimation at lower
altitudes. A critical aspect is the time scale. Glaciers abrade surfaces
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and transport debris impacting the bedrock. However, bedrock ero-
sion (1-10 mm per year) is much slower than the glacial flow (up to
10km per year), and the carving of U-shaped valleys typically occurs
over hundreds of thousands of years (i.e., one to several glacial and
inter-glacial cycles). This difference in time scales makes glacial
simulation challenging.

Previous work [Argudo et al. 2020] attempts to solve the problem
using a shallow-ice approximation (SIA) of the Stokes equation from
glaciology. This solution requires small time steps (a few days) for
stability, which makes it ill-suited to the large time spans necessary
to model glacial erosion (time steps of 10-100 years). Moreover, the
SIA does not model the viscous shear stresses of the ice, i.e., moving
ice parcels dragging the neighboring ones. These models are unable
to capture the formation of U-shaped valleys and related landforms,
such as hanging valleys and glacial lakes.

We present a novel, geologically validated, efficient model for
glacial erosion. Our solution captures the expansion and retreat
of glaciers during glacial and interglacial periods, as well as their
erosive impact on the underlying terrain.

Our scientific contributions are as follows: 1) A new, efficient
solver for the high-order Blatter ice flow equations based on un-
supervised learning used to solve an energy-based ice-flow model;
2) A new, adaptive multi-scale law for ice transport at different time
scales, enabling our glacier models to reach equilibrium quickly, and
3) A solution for combining the abrasion and quarrying effects of
glacial erosion with slope erosion on surfaces exposed by retreating
ice, despite the different space and time scales.

Our method generates characteristic landforms that are visually
prominent but impossible to obtain with existing simulations, par-
ticularly U-shaped, hanging valleys, eroded cliffs, cirques, ridges,
passes, horns, fjords, and glacial lakes. Those shown in Figure 1
were computed in less than 5 minutes on a 16 X 16 km? terrain.

2 PREVIOUS WORK

Terrain generation in Computer Graphics is generally tackled using
procedural generation, example-based synthesis, and erosion simu-
lation [Galin et al. 2019]. In terms of glacial erosion specifically, the
focus has been on geological models and learning-based approaches.

Procedural generation. Fractals, subdivisions, and noise-based al-
gorithms are often used to generate terrains that exhibit character-
istic landscape features, such as self-similarity. There are currently
no procedural methods focused specifically on glacial phenomena.
Nevertheless, it might be possible to create a palette of procedural
brushes or pens to paint or sketch glacial features [de Carpentier and
Bidarra 2009; Guérin et al. 2022]. Unfortunately, this would place
the onus of ensuring realism, particularly in the complex interaction
between glacial landforms on the digital artist, which would require
both significant effort and geomorphological expertise.

Example-based synthesis. Zhou et al. [2007] and Guérin et al. [2016]
generate terrains based on a corpus of scanned digital elevation mod-
els. If the input terrains incorporate glacial features, then this will
be reflected in the output. Unfortunately, the source data is almost
invariably a single surface, so the terrain below water (e.g., fjords)
or ice (e.g., glaciers) is unavailable. It is also not possible to add
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glacial erosion to existing landscapes because this would require
source data showing corresponding before and after states.

Simulations. Erosion simulations approximate the geological evo-
lution of terrain through iterations of hydraulic action [Benes et al.
2006; Kristof et al. 2009], thermal erosion [Musgrave et al. 1989],
tectonic uplift combined with stream power erosion [Cordonnier
et al. 2017a; Schott et al. 2023], or a combination of localized erosion
effects [Cordonnier et al. 2017b] applied to an initial base terrain.
While methods based on heightfields cannot represent overhangs,
other methods approximating wind erosion, hydraulic erosion, or
invasion percolation on volumetric structures can result in realistic
cliffs, arches, and caves [Beardall et al. 2007; Franke and Miiller
2022; Paris et al. 2019, 2021; Peytavie et al. 2009]. Glacier erosion, in
contrast, has yet to be tackled.

In terms of glacier simulation, Argudo et al. [2020] use a method
based on the Shallow Ice Approximation (SIA), together with proce-
dural amplification, to simulate the flow and retreat of glaciers over
hundreds of years. Although this shares our focus on glaciers, there
is otherwise significant divergence in terms of goal and method-
ology. Argudo et al. [2020] do not change the topography of the
input terrain but overlay glaciers on top. This is likely because the
SIA is entirely unsuited to glacial erosion since it does not model
the viscous stress within glaciers. In contrast, our goal is also to
generate terrains that evidence landforms arising from glacial ero-
sion. To achieve this, we employ different ice models with different
numerical treatments.

Geological models. Geologists have explored and validated ice
flow and glacial erosion over many decades [Braun et al. 1999;
Egholm et al. 2011, 2012b; Harbor et al. 1988; Headley et al. 2012;
Mahaffy 1976; Sternai et al. 2013], showing that glacial erosion
depends on the speed of the ice in contact with bedrock [Bernard
1979; Herman et al. 2015]. Their motivation is a search for governing
equations that match field observations, ranging from measured ice
flows to identified and classified landforms.

While glacier flow, covering the range from ice sheets to extensive
glaciers, is typically modeled using the Shallow Ice Approximation
of the Stokes equations, this does not account for the constriction
of ice in narrow alpine valleys and thus cannot predict the forma-
tion of characteristic U-shaped valleys [Egholm et al. 2011]. Braun
et al. [1999] tackled this problem by adding a factor proportional to
the width of the valley while computing sliding ice speed, which
in turn dictates erosion of the underlying bedrock. In our work, we
rely on a more accurate model from glaciology that uses the highly
non-linear Glen-Stokes equation for modeling ice flow [Glen 1955].

Learning-based approaches. One promising avenue to accelerate
ice flow computation, as advocated by Jouvet et al. [2022], is to
apply ML trained on a corpus of high-fidelity simulations to predict
vertically averaged horizontal velocities. They use a Convolutional
Neural Network (CNN) that makes predictions based on initial con-
ditions relating to the rock-ice interface and the basal topography
of ice thickness and surface slope. Unfortunately, prediction quality
degrades when the topography is not a good fit for the learning
dataset, as often occurs when erosion is factored in. While we share
the idea of using ML to accelerate the simulation of glaciers, we



use non-supervised learning based on a physical loss, which avoids
their costly supervised training on a precomputed dataset. Another
alternative is Physics Informed Neural Networks (PINN) [Raissi et al.
2019], which offer a meshless approach with the network trained to
map a position in space to a physical variable, e.g., the velocity. These
are easy to implement and their variational counterparts [Li et al.
2021] show that, instead of optimizing a loss made of the sum of the
residual form of the PDE and the boundary conditions, minimizing
an energy improves convergence and simplifies hyper-parameter
search. This technique has been used for glacier modeling [Cui et al.
2022] and motivated our energy formulation, but it requires the net-
work to be fully retrained for any change in the glacier geometry. In
contrast, we input the geometry of the glacier in the network, which
allows an efficient fine-tuning strategy when the computation of
ice velocities is coupled with the motion of the glacier.

3 OVERVIEW

In this section, we first cover the fundamental background of ice
flow models and introduce the necessary notation before presenting
our framework.

3.1 Background on ice flow models

Let us consider a glacier on a
bedrock of height z, of local ice
thickness h, elevation s = z + h, and
ice velocity @, standing for the hori-
zontal velocity averaged over a ver-
tical column at any (x, y) position
in the domain (see Figure 2).

The change in ice thickness over time is governed by a mass
conservation equation, where M is the mass balance denoting the
local difference between snow precipitation and melting at a point:

2—1‘+v.(ah) =M. 1)

Fig. 2. Notations.

More specifically, M is computed as a proportion f of the difference
between the local ice surface elevation and the equilibrium altitude
E at which melting counterbalances precipitation:

M = min(pmax, B (s — E)). ®)

Pmax denotes the maximum accumulation rate. The mass balance
through parameters pmax, f, and E is critical to the size and shape
of the glacier, and ultimately the extent and depth of erosion. Eqn. 1
only holds when h > 0; otherwise, h is set to zero as a boundary
condition. Given vertically averaged velocity 1 it is possible using
this mass balance to solve for the change in ice thickness h over time
(Sec. 5). Thus, the question becomes how to compute the velocity
of ice within a glacier.

Ice flow exhibits non-Newtonian fluid behavior characterized by
incompressibility and non-linear stress response as described by the
Glen-Stokes model [Glen 1955]:

7= 2uD(V). (3)

The parameter 7 is the deviatoric stress tensor, D(v) = %(Vv+ vvT)
is the strain rate tensor response, and y is the viscosity, defined as:

e %B ID(v)[P~2. )
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B and p € (1, 2] are parameters that depend on atmospheric condi-
tions and ice composition.

A closed form of the equation can be derived by exploiting in-
compressibility (V - v = 0) and momentum conservation, in which
acceleration terms are discarded:

V- (r-PD=pg )

P is the pressure, I the identity matrix, p the ice density and g the
gravitational force. Glacial erosion is driven by the sliding of glaciers
over bedrock, with the sliding being modeled by a non-linear friction
law at the ice-bed interface [Weertman 1957]:

(I-nn")7) -n=-C|I-nn") -v|°20-nnT)-v. (6)

The friction parameters C and ¢ are tuned to observations, and n is
the vector normal to the ice-bedrock interface.

Solving the full Glen-Stokes formulation is computationally ex-
pensive and challenging, mostly because of the inherent incom-
pressibility constraints. As a consequence, computational geologists
typically resort to one of three simplifications [Jouvet 2016]: Shallow
Ice Approximation (SIA), Shallow Shelf Approximation (SSA), or
the Blatter Model. SIA is a zero-order 2D model that removes longi-
tudinal and transverse stresses, as well as vertical stress gradients
from D(v). SSA incorporates horizontal stresses but assumes that
the ice velocity does not vary vertically. The least simplifying in
its assumptions, the Blatter model, is a higher-order approach that
solves only for the horizontal components of D(v).

While it provides an efficient closed-form solution for vertically
averaged velocities, the SIA suffers from two key disadvantages.
First, stability depends on the rate of diffusion, which is particularly
high in glacial dynamics, necessitating short time steps. Second, the
simplification strips away the forms of stress necessary to effec-
tively calculate erosion on non-flat topography. It is mostly used
in practice where the ice flow is dominated by vertical shearing,
which is the case in ice caps but not on mountain glaciers. The
SSA suffers from the opposite problem: accurate for thin shelf-like
glaciers; it underpredicts the velocity of ice caps and deep glaciers
occupying primary valleys. This leaves the Blatter model as the
most appropriate approximation scheme for our purposes.

3.2 Computational framework

Simulating glacial erosion requires solving three interleaved chal-
lenges (see Figure 3): 1) computing the ice flow (velocity), 2) trans-
porting the ice with time steps that account for the differing time
scales required for flow and erosion, over geological time spans and
3) computing the combined effect of glacial erosion and of more
classical erosion phenomena.

Our approach is as follows. First, we rely on the highly non-linear
Glen-Stokes equation for modeling the ice flow. To accelerate the
evaluation, we use an energy formulation for the Blatter model and
enhance it with a new unsupervised learning technique that enables
efficient velocity prediction without any need for a training dataset
(Figure 3: ice flow, and Section 4).

Second, we introduce a new, adaptive multi-scale transport mech-
anism to efficiently simulate the ice at different time scales (Figure 3:
ice transport, and Section 5). Central to this is the observation that
glaciers often retain a stable shape for extended periods. While the
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Fig. 3. At each time step, our simulation uses a fast, learning-enhanced
prediction of the ice flow. The resulting vertically averaged ice velocity is
used in an ice transport algorithm that models the advance of glaciers and
the sliding velocity to determine the bedrock abrasion. The updated ice
thickness and bedrock altitude are fed back to the ice flow model for the
next time step.

ice moves continuously within, the geometric hull of the glacier
itself quickly reaches an equilibrium driven by the balance between
snow accumulation, ice transport, and melting. A standard, explicit
Euler simulation would require small time steps, resulting in lengthy
simulations with no visual change in shape. Although less accurate
during transitions between equilibrium states, our novel solution
allows the glacier to reach equilibrium very quickly for long periods
of steady state.

Third, glacial erosion through the abrasion and quarrying effects
of the glacier sliding on the bedrock needs to be coupled with classi-
cal hydraulic and thermal erosion laws. This is essential in capturing
the evolution of glaciated landforms over long periods and the for-
mation of the steep slopes left behind by retreating glaciers. We
also extend our model to account for erosion due to debris flow and
small landslides (see Figure 3: bedrock erosion, and Section 6).

4 ACCELERATED ICE FLOW EVALUATION

Inspired by Jouvet et al. [2022], we use ML to accelerate the evalua-
tion of the Glen-Stokes equation for ice flow. In contrast to previous
work, we, however, propose an on-the-fly, unsupervised method
that achieves simultaneous training and prediction. This has two
critical advantages: first, the model exhibits a surefooted adapta-
tion to eroded topography without the need for the corresponding
data; second, it avoids both the lengthy dataset construction and
the pre-training phase.

4.1 Deep energy minimization

We use a Convolutional Neural Network (CNN) to infer ice veloci-
ties from a map representing the glacier geometry (thickness and
surface gradients). Our goal is to optimize the weights of the CNN
so that it minimizes the following energy, corresponding to Blatter’s
formulation of the Glen-Stokes equation [Blatter 1995; Jouvet 2016]:

B C
8(u)=/v1—)|2(u)|PdV+/rm;|u|§4d5+pg‘/v(Vs~u)dV. 7)

This energy is derived from Eqns. 3 to 6. The focus here is on the
(x,y) horizontal velocity components, denoted by u = v|g2 € R?.
Integration is over the volume of the glacier V in the first and third
terms and over the basal surface area of the sliding section of the
glacier I}, in the second term. The constants B, C, p, o, g, and p
depend on initial conditions (values used in our experiments appear
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in Table 1). The M-norm is defined as: |u|jzw =ul+ uzy +(uy 97 Uy +
uy 9, uy)z. Crucially, the strain D(v) = (Vv+Vv!)/2 is replaced by
a first-order approximation of the height/width ratio of the glacier,
which discards the vertical component of the velocity:

Ox Uy %(8yux +dxuy) %8Zux
D(u) = %(8yux + 0xUy) dyuy %azuy
507Uy 50Uy —OxUx — dyly

Note that while the velocity is reduced to a 2D vector u = (uy, uy),
this is still a 3D equation over the volumetric domain V, defined
above the sliding interface surface Iys. In practice, we set the same
sliding conditions everywhere at the bedrock interface.

A fundamental difference from PINNs [Cui et al. 2022; Raissi
et al. 2019] is that our network does not take sample coordinates
as input, but instead uses the geometry of the glacier: ice thickness
and surface gradients organized in a regular grid. This approach
allows iterative fine-tuning of the network as the transport pro-
gresses. Thanks to relatively small variations in the glacier after
each time step and large spatial self-similarities in the ice geometry,
The network converges sufficiently fast to correct the error in the
training before it has any significant impact on ice transport.

4.2 Discretization and Implementation

Even though the velocity vectors u in our energy formulation are
two-dimensional they are located within the three-dimensional
volume of the glacier. Thus, in order to numerically evaluate the
integrals in Eqn. 7 we discretize the domain of the glacier into a
lattice as follows (see Figure 4):

(1) Regular basal grid. The basal domain is regularly and evenly
subdivided horizontally in x and y. This grid aligns exactly
in terms of resolution and horizontal vertex positioning with
the bedrock elevation and ice thickness maps.

(2) Fixed number of vertical layers. N grid layers are then placed
between the bedrock and the ice surface in such a way that
they are evenly separated vertically. This means adjusting
the z-value of vertices in the resulting lattice depending on
the local variation in bedrock z and ice thickness h values.

Glacier

sliding Eneray €
interface I}, I

Velocity u
/

]

Fig. 4. Discretization of the 3D glacier volume.

This defines a lattice that exhibits square faces in the x — y plane
but trapezoids in the x —z and y — z planes. To guard against numeri-
cal ill-conditioning (diagnosed in our matrix-free case as excessively
large gradients), a minimum thickness dz;;, is enforced between
adjacent layers. The upper layers’ spacings are set to zero in cases
where the ice is overly thin (h < N dzpin). This correction may
collapse some vertical edges of the lattice, in which case we set the
velocities stored at the endpoints of the vertical edge to be equal.

In this lattice, velocity values u are located at the vertices, while
energy computations are undertaken in the center of each distorted



cell, strictly a trapezoidal prism. Interpolation of values and compu-
tation of differentials is based on approximating the cells as linear
finite elements. Likewise, any planar quantities, such as the bedrock
and ice surface gradients required by Eqn. 7, can be derived at grid
centers via interpolation (see Appendix).

For the CNN velocity prediction, we use as input a Gaussian stack
constructed from the ice thickness, bedrock slope in each of the 4
cardinal directions (+x, —x, +y, —y), and local sliding parameters. All
of these values are zeroed if there is no local glacial ice present. The
Gaussian stack is a common strategy [Lefebvre and Hoppe 2005] for
incorporating surrounding information in a multiresolution neigh-
borhood. We implement advection with alias-free upsampling and
downsampling operators using a convolution of up/down-sampling
and a Gaussian kernel at different levels. Every level i is a sequence
of i downsampling operators followed by i upsampling steps. We
use five levels, a standard deviation of one grid cell, and a Gaussian
kernel size of ten grid cell. The output of the CNN is the velocities
at vertices in the lattice.

In summary, ice flow computation proceeds as follows: 1) The
CNN predicts horizontal velocities at vertices in the volumetric lat-
tice. 2) These velocities are refined with a single step of gradient
descent on the energy functional in Eqn. 7 calculated at cell centers.
3) The gradients of the velocities are propagated back to the CNN to
update the internal weights. 4) Velocities are summed vertically and
normalized by ice thickness to obtain the vertically-averaged veloc-
ity @ required by Eqn. 1. We now can calculate the transformation
of the glacier’s shape over time.

5 ADAPTIVE, MULTI-SCALE ICE TRANSPORT

Unfortunately, the process of ice transport, while seemingly straight-
forward, is also bedevilled by numerical issues. Solving Eqn. 1 to
obtain the change in glacier shape, represented by ice thickness h,
given vertically averaged velocities 1, is an advection process. Eval-
uating this process with an implicit time-step scheme is infeasible
because of the complex relationship between the velocities and
glacier geometry. Rather, we use an explicit (forward Euler) scheme,
which means that for stability reasons, the timestep dt is limited
by grid-cell size dx and the velocity magnitude ||@]|, according to
the CFL conditions dt < cdx/||a]| (we found that ¢ = 0.1 sup-
pressed all instability in the ice model). In normal circumstances,
with dx = 100m and a maximum velocity of about 100m/y, this
limits timesteps to about 1/10 of a year. This is orders of magnitude
below our erosion timestep target of 10 to 100 years. Moreover,
we have experienced situations with unrealistically excessive ice
velocity, for instance, when modeling very steep slopes where the
theoretical time step would be proportionally small. In addition, we
target spatial resolutions smaller than 100m.

Fortunately, we can exploit two characteristics of glaciers to in-
crease timestep size and hence computational efficiency: (1) Exces-
sively high velocities tend to only occur in localized and extreme
circumstances, such as thin ice on steep slopes, and (2) in the time-
frame of erosion, Eqn. 1 rapidly settles into a steady state.

Broadly speaking, this is achieved by adjusting the timestep in
both the spatial domain, according to the local velocity, and in the
frequency domain, according to Gaussian residuals. We first cap
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the user-provided target timestep dt, typically 10 — 100 years, ac-
cording to a position-dependant maximum that ensures stability
locally: 5t(x) = min(dt, ¢ dx/||a(x)]||). This adapted time step caters
for outliers and accelerates the convergence to a steady state, not
sufficiently, however as the stability condition still heavily limits
ice transport in fast-moving regions. Therefore, we propose a new
method to converge rapidly to the steady state, possibly by sacrific-
ing accuracy during transient periods.

Inspired by multigrid techniques, we use frequency decompo-
sition to separate ice transport into layers at different scales. The
advection timestep can be set to correspond to the scale of transport
of a given layer. We collect the input terms of Eqn. 1 as:

T=M-V-(ah),

where T represents the change of elevation per unit of time, and
the divergence is computed upwind: the velocities are averaged at
the grid edges in the x and y directions, then multiplied by the
ice thickness h taken from the cell in the opposite direction to the
velocity. To ensure that an excessive negative mass balance does
not swamp the lower frequencies, we clamp the minimum T to zero
outside the glacier. We construct a stack of n Gaussian residuals

Ri,i=0,...,n—1Dby successive iterations of Gaussian smoothing
and up/down sampling (similar to Section 4) starting from T = Ty
to generate T, ..., T,. Each layer of the residual stack represents

the difference between successive levels of Gaussian smoothing
R; = T; — T;+1. We then recombine the residual stack to form a
stabilized transport term:

T = Z min(f? 8t(x), dt) R;.

Recall that dt is the initial target timestep, and 8¢ (x) is the locally
adapted timestep in the base pre-smoothed grid. Note that 5¢(x) =
dt where the velocity is sufficiently small, in particular at the exterior
of the glacier, which is critical for preserving the boundary. The
scaling factor f € [1,2] controls the efficiency of this multi-scale
strategy. We set it experimentally to f = 1.7 by observing that larger
values introduce oscillations that do not stabilize between different
frequencies. The variable T’ now holds an approximation of the
change in ice thickness after a timestep dt, which we can use to
advance the glacier:

h(t +dt) = max(0, h(t) + T').

In practice, this strategy succeeds because the high-frequency
layers move and diffuse ice over large spatial scales, very quickly
converging to zero, leaving room for the lower frequencies to cor-
rect the resulting approximation error progressively. We propose an
evaluation of the behavior of this model in Section. 7. We note that
this seems to work particularly well for glaciers because destabi-
lization from the steady state due to a change in climate or bedrock
generally affects glacial features proportionally to their scale.

6 GLACIAL EROSION AND FLUVIAL PROCESSES

The combination of glacial erosion with other phenomena is es-
sential to generate plausible terrains. Indeed, the typical period of
mountain formation is several orders of magnitude longer than the
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cycles of glaciation, so most landscapes have been exposed to var-
ious climates, including interglacial periods where other types of
erosion phenomena predominate. The latter do not cease during an
ice age, as the glacierless lower foothills of a mountain continue to
be shaped by other prevailing erosion processes.

We incorporate glacial, hill slope, debris flow, and fluvial erosion
due to their impact on landscapes. Ice shields the terrain from non-
glacial erosion processes, so we do not apply them when the ice
thickness is above a threshold (3m in our experiments). In our
simulations, erosion is applied in the following order: glacial erosion,
then, where ice is sufficiently thin, hill slope, followed by combined
fluvial and debris flow erosion. Figure 5 shows a comparison of
the impact of individual erosive processes on the final shape of the
terrain.

6.1 Glacial erosion

Glacial erosion is an open research topic in geomorphology, es-
pecially at the finest spatial resolutions, primarily due to a lack of
efficient models that adequately capture viscous stresses in ice. How-
ever, two primary forms of erosion are widely studied [Beaud et al.
2014]: abrasion caused by the sliding action of glaciers, and quar-
rying (or plucking), where the ice infiltrates the bedrock, cracking
large chunks of rock that are then transported by the glacier.

We model abrasion following a power law of the sliding veloc-
ity ug [Herman et al. 2015]:

0z

= = ke lusl”
We use the approach of Egholm et al. [2012b] for glacial quarrying:
0z
2 = kg 05l Q (us,V2).

Q focuses the quarrying efficiency on slopes aligned with the sliding
velocity acting on the bedrock altitude z:

QO (ug, Vz) = % (erf (_llosTuVZ) + 1) .

Here, ke, kq, and [ represent various erosion constants (see Table 1),
and erf is the Gaussian error function.

We obtain the sliding velocities ug by selecting the velocities
output by the network at the bottom-most layer of the velocity
lattice and compute the gradients of the bedrock Vz downward in
the x and y directions to prevent aliasing artifacts.

More accurate formulations for quarrying exist [Magrani et al.
2022], but they depend heavily on subglacial hydrology, which is
beyond the scope of this paper. Quarrying and abrasion give rise
to visually distinct outcomes: abrasion carves deeply and enlarges
the main glacial valleys, while quarrying flattens high altitudes and
produces small lakes just below the ridges.

6.2 Debris flow

Rock and mudslides on slopes gain a lot of inertia and have a vast
erosive power responsible for gouging cliffs at small to medium
scales. This phenomenon is crucial because retreating glaciers leave
exposed cliff faces susceptible to debris flow. Our method improves
on classical thermal erosion [Musgrave et al. 1989], which reduces
bedrock slopes toward an equilibrium angle, by adding an important
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Fig. 5. Compared to the complete model (top left), disabling each erosive
effect shows their relative influence on the final result. Debris flow (bottom
left) erodes the steepest slopes, fluvial erosion (top right) sharpens the base
of U-shaped valleys, and hill slope (bottom right) smoothes the sharp ridges
at the drainage divide.

term referenced in geology [Stock and Dietrich 2003] to account for
drainage:
0z q q
m = —kdf (1 + kg A )max 0, (||Vz|| =sc)? . 8)
The parameter kgy controls erosive strength, kg, and g weight
the influence of drainage on erosion, ¢’ adds non-linearity in the
influence of the slope, and s, is a critical gradient below which the
erosion has no effect (Table 1 in Appendix shows the typical values).
Drainage area A is computed similarly to water flows: from high-
est to lowest elevation by accumulating cell area dx? consistently in
the direction of steepest descent [Braun and Willett 2013]. Eqn. 8 is
solved explicitly, using the Euclidean norm of the downward slope
(the x and y components of the bedrock gradient are chosen as the
steepest downward directions in x and y directions, respectively).
To avoid sink nodes in the ordering graph, we compute it on a
virtual monotonically decreasing surface obtained after depression
filling [Barnes et al. 2014; Cordonnier et al. 2019].

6.3 Fluvial erosion

Fluvial erosion is the fundamental phenomenon that shapes moun-
tain ranges [Cordonnier et al. 2017b]. The erosion at a cell ¢ is a
power function of the local bedrock slope and the drainage area A,
which is related to the water flux that flows through c:

= =y AV

where k¢, m, and n are real coefficients (see Table 1 in Appendix).
The equation is similar to Eqn. (8), and we apply the same algorithm
to solve it, which makes combining these effects a natural and
efficient choice.
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Fig. 6. Far view of a 64 X 64km? terrain, generated with fluvial erosion only (left). After glaciation reaches its maximum after 100, 000 years (center), the
glacier retreats over a final 20, 000 years and leaves a landscape marked by glacial erosion.

6.4 Hill-slope erosion

While fluvial erosion is valid for large drainage areas, hill-slope ero-
sion is dominant along ridges and accounts for more subtle erosion
due to wind, rain, or gravel and sediment accumulating throughout
long-standing erosion of the terrain [Braun and Sambridge 1997]. It
can be modeled as a simple diffusion equation with constant kp:
% =ky Az.

We employ this equation by using an Alternating Direction Implicit
Scheme [Wachspress and Habetler 1960] with long time steps when
we want to generate terrains without glaciers or explicitly on the
GPU to accompany glacial erosion.

7 RESULTS AND DISCUSSION

All components of our simulation, including automatic differenti-
ation and optimization, are written in PyTorch. Thus, most of the
algorithms execute on the GPU, except drainage computation (see
Sections 6.2 and 6.3). To compensate for this use of CPU, we run 20
steps of ice flow prediction, ice transport, and erosion on the GPU
before updating the drainage and elevation of the lakes on the CPU.

All results and timings were produced on a single workstation
equipped with a 16-core Intel Xeon E5-2650 CPU (2.20GHz, 64 GB
RAM) and an NVidia RTX A500 GPU (24 GB). For the CNN pre-
diction, we use a simple CNN with ReLU activation functions and
six layers with 64 features each. This architecture, together with
the Gaussian stack input (Section 5), performed better than more
advanced architectures such as UNet or DenseNET and result in a
93% accuracy at steady state compared to directly optimizing the
energy in Eqn. 7. We use the ADAM optimizer with a learning rate of
10~* to perform the optimization. Our implementation is available
at: https://gitlab.inria.fr/landscapes/glacial-erosion.

Unless specified otherwise, the parameters used throughout our
evaluation are given in Table 1. The alternation between warm
interglacial periods and glaciation was simulated on a 64 x 64 km?
terrain with 64 m grid cells.

We used multi-fractal noise to simulate variation in uplift and
rock resistance and parameterize a fluvial erosion model that initial-
izes the mountains. To demonstrate the impact of glacial erosion,
warm climatic conditions were first simulated on a fractal terrain
over a 3 million years period, with dt = 25,000 years, using an
implicit implementation of fluvial erosion [Cordonnier et al. 2016]
(see Figure 6, left). We then applied fast cooling conditions that

lowered E from 3,000m (mountain tops) to 1,200m over 100, 000
years (Figure 6, center) and reduced dt to 100 years. Then, we set
the climate to fast warming conditions (E rose to 1,700 m in 20, 000
years) to allow other processes to progressively smooth glacier-
dominated landforms (Figure 6, right). The video shows a second
glaciation of the same climatic magnitude but with reduced erosion
impact, which is consistent with results in geomorphology [Egholm
et al. 2009] since glacial erosion carves most of the relief above the
snowline altitude E.

7.1 Validation of landforms

Our end goal is a unified simulation of glacial erosion that enables
the emergence of the most prominent glacial features in real moun-
tain ranges [Benn and Evans 2014]. Our validation strategy is to run
simulations with default settings and observe if the main patterns
of glacial erosion emerge without any intervention from the user.
In practice, we run the climatic scenario described earlier but on a
smaller scale terrain (16x 16 km? with 32 m grid cells) to enable close
inspection. The following characteristic features appear consistently
in our results (see Figure 8):

Fig. 7. Two types of glacial lakes produced by our method: over-deepenings
at the bottom of valleys (left), and high-altitude perched lakes (right).

U-shaped valleys: Their characteristic flat-bedded, steep-walled
shape differentiates them from V-shaped valleys carved by fluvial
erosion. This shape originates from the viscous stresses of the ice: the
fast velocity at the glacier core and the slower-paced ice constrained
by the walls interplay to produce a parabolic shape [Svensson 1959].

Passes: Passes often originate from a glacier overflowing a valley
into its neighbor, resulting in smooth breaches in the ridge line.

Lakes: Also called over-deepening, lakes are common footprints
of glaciers, ranging from vast lakes, such as the Great Lakes in the
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Fig. 8. The retreating glacier forms a typical glacial landscape (center), marked by U shape valleys, lakes and passes (left), hanging valleys, as well as horns

and ridges above glacial cirques (right).

US, to high-altitude sequences of pocket lakes. In our results, we
observe lakes at the bottom of the main valleys (Figure 7, left) but
also close to ridges at higher elevations (Figure 7, right). Smaller
lakes tend to form more often than vast ones due to a different local
rock resistance to quarrying, which provides a powerful control
tool.

Hanging valleys: The velocity
of the glacier, even at the bedrock
interface, is mainly driven by
gravity and by the slope. Thus,
if a small glacier flows into a
larger one, it will connect in a
way that ensures continuity of
the ice surface, but not necessar-
ily continuity of the ice-bedrock interface.

After erosion, this differential basal carving forms characteris-
tic hanging valleys. See the inset picture of the Bridalveil Fall in
Yosemite National Park for reference. Note that this is different from
fluvial erosion, which acts with comparatively small river streams
that tend to join and connect valleys, but are unable to create fea-
tures on the scale of hanging valleys.

7

Learning enhanced

fi

Fig. 9. We compare our learning-enhanced optimization to a direct opti-
mization (reference) and the SIA, at a 32m cell resolution after reaching
steady-state (1, 000 time steps in our case, 10, 000 for the SIA). Our method
predicts both ice flow and ice volume comparable to the reference (at 93%
and 97%, respectively). In comparison, the SIA loses about 49% of the glacier
volume. Furthermore, the magnitude of the velocities, indicated with a blue-
white ramp, show that, due to the lack of viscous stresses, the SIA velocities
concentrate in the center of the valleys and cannot model glacial erosion
correctly.

Cirques, horns, and ridges: The top of the glacier progressively
attacks the base of its supporting slope and carves steep cliffs, even-
tually reaching an angle where the ice can no longer cling. Other
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erosion processes, such as debris flow, take over, and the cliff retreats
until it joins the other side. This results in large circular openings
in the mountain called cirques. The connection between the two
cirques leads to ridges and horns at the top (see Figure 8).

7.2 Evaluation and Comparisons

A direct numerical comparison of the fidelity of our erosion pro-
cesses against the geomorphological reality of mountain ranges is
infeasible. The geological time scales in play extend beyond current
measurement capabilities and involve a complex mixture of inter-
leaved phenomena, such as tectonics, climate, lithology, erosion,
and ecosystems. Instead, we formulate a range of experiments to
validate the different components of our method independently.
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Fig. 10. A comparison of our approach against reference models from glaciol-
ogy: We simulated a glacier on a sine-shaped terrain (top left), and compared
the longitudinal (top right) and lateral (bottom left) profiles of ice thickness
with the results from a reference Stokes solver [Le Meur et al. 2004], and the
shallow ice approximation [Argudo et al. 2020]. Our results are similar to
the Stokes reference, which validates our use of an efficient approximation
in place of a more accurate solver.

Ice flow prediction. To begin, we assess how faithfully our ap-
proach matches Blatter’s model (Eqn. 7). We disable erosion, fix
constant climate conditions, and simulate the progress of a glacier
toward a steady-state on a 32 m resolution terrain. Figure 9 shows a
comparison of our learning method, a reference solution to Eqn. 7,



and the Shallow Ice Approximation used by Argudo et al. [2020].
Our method has relatively minimal divergence from the reference
(achieving 93% of ice flow, 97% of ice thickness at steady-state), while
the SIA predicts 49% less volume and evidence ice-flow acceleration
along valley centers due to a lack of viscous stress.

Next, we exploit glaciology benchmarks to validate both the cor-
rectness of our implementation and the choice of Blatter’s model
over higher-order solutions to the Glen-Stokes equations. In Fig-
ure 10, we recreate a sine-shaped validation case due to Le Meur
et al. [2004]. We reproduce the topography, simulate a glacier, and
compare the lateral and longitudinal curves of ice thickness arising
from our model, a Gen-Stokes solver [Le Meur et al. 2004], and
the SIA. Results show a strong equivalence between our model
and the Glen-Stokes solver, despite the absence of vertical velocity
components in our model.
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Fig. 11. Evaluation of our time-step scheme: ice volume for a typical cooling
climate dx = 32 m (left), dx = 128 m (center left, with elevations scaled ac-
cordingly), and dx = 32 m with extreme temperature variation (center right).
Time steps of 10 to 20 years are already enormous for glacier simulation at
this resolution, yet they result in a low error (< 1%), while a time step of
100 years induces an error of about 10%. We further show the impact of the
timestep on the accuracy of the velocity prediction (right).

The accuracy of our time-step scheme. Our time-step scheme al-
lows time steps of 10 — 100 years, thereby enabling the interlinking
of ice flow and erosion. We evaluate its accuracy with the following
experiment: On the dx = 32 m resolution terrain from Figure 9 we
reproduce a typical cooling climate scenario, where the ELA drops
from 1600 m to 900 m over 70,000 years, with the glacier subse-
quently stabilizing for another 30,000 years. The total volume of
ice during this period is shown in Figure 11 (left) for time steps of
10, 20, 50, and 100 years. The figure validates our assumption that
glaciers are close to equilibrium at the scale of climate evolution,
with little variation in mass after the cooling period. It also supports
our use of a time step of d¢ = 100 years, which corresponds to a loss
in mass of 10.5% at t = 70,000 years (time steps of 10 or 20 years
show errors below 1%).

We also include the result of an equivalent experiment for a
dx = 128 m (middle left) where we multiplied all elevations and ELA
by 4 to produce similar glaciers. Although this corresponds to an
extreme drop in ELA of 3,800 m the error is still of the same order.
We also pushed our system to its limits with a more aggressive
climate change where the temperature decreases over 50, 000 years,
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followed by a quick increase over 20, 000 years to a final ELA of
1, 100m. This shows the limits of our method: when faced with overly
strong variations in the climate, our time-step scheme favors the
transport of low frequencies and over-predicts the glacier response.

The error in ice prediction depicted in Figure 11 (left) is likely
a consequence of our adaptive time steps, but may also arise from
prediction inaccuracies in the network. With a large time step, the
network sees more variation in the ice geometry, which hinders
convergence. To settle this, we stop the simulation at t = 70, 000
years and plot in Figure 11 (right) the accuracy of the ice velocity
prediction compared to the velocity obtained by minimizing Eqn. 7
directly. As expected, we see a dependency of the precision on the
time step, yet with accuracy above 94% for dt = 100 years.

Fig. 12. Our model vs. the SIA for showing surface ice flow. Although the
main glacier is similar, the SIA under-predicts glacial extent and our model
is more strongly influenced by the valley floor.

SIA and erosion. In the absence of erosion, a simple visual inspec-
tion of the glacial ice envelope for our method and the SIA [Argudo
et al. 2020] is not likely to favour either approach. In Figure 12
both methods are used to overlay glaciers on real topography from
Vignemal in the Pyrenees and the only notable differences are the
smaller ice extent of the SIA and a stronger correspondence with
bedrock undulations for our model.
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Fig. 13. We erode the terrain from Figure 9: while our method produces
characteristic U-shaped valleys, the SIA carves deep narrow defiles that
ultimately lead to numerical instability.

It is difficult to couple the SIA to glacial erosion. As observed by
geologists [Egholm et al. 2012a], the lack of viscous stress in the
SIA results in a narrowing of the principle ice velocities (Figure 9,
right) and, therefore, of the eroded valleys, resulting in disconti-
nuities in the eroded bedrock, which leads to numerical instability.
We demonstrate this by eroding the toy terrain from Le Meur et
al. [2004] (Figure 10) until the point of numerical divergence. While
our method produces a typical U-shape, the erosion by SIA mainly
erodes the valley base in an unrealistically narrow V-shaped pattern.
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Glacial and fluvial erosion ‘

Glacial erosion only ‘

Fig. 14. While fluvial erosion on its own (left) lacks most of the main features from glacial erosion (right), it is still necessary to model the interplay between
the two processes (center). Glacial erosion alone results in excessively steep cliffs, and hydraulically disconnected lakes and valleys.
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Fig. 15. The hypsometry (distribution of elevation) of a fluvial landscape
(Sivalik Hills in Nepal, left), a glacial terrain (Vignemal, Pyrenees, right), and
our synthetic terrain before and after glacial erosion. Note the hypsometric
maximum just above the snowline (ELA) at the glacial maximum.

Hypsometric analysis. Geomorphological studies demonstrate
that glacially eroded terrains have a characteristic hypsometric
signature (distribution of elevations) that is distinct from fluvial
landscapes [Egholm et al. 2009]. In particular, the hypsometric max-
imum (the most common elevation) is found just above the equilib-
rium line (ELA, or snowline) in the glacial case. Figure 15 compares
the hypsometry of a real fluvial landscape (Sivalik Hills in Nepal,
Figure 20), a terrain with clear indications of glacial erosion (Vigne-
mal, Pyrenees, Figure 12), and our synthetic terrain before and after
glacial erosion. We uniformly scaled the histograms to match the
highest elevations for comparison. We note similarities in the hyp-
sometric signature between real and synthetic fluvial landscapes, as
well as the shift of the hypsometric maximum toward the ELA, as
predicted by Egholm et al. [2009], in the synthetics glacial case.

7.3 Performance

Profiling on a 1024 X 1024 terrain shows that the ice flow takes 87%
of the total 300 ms required to run one step, the ice transport 3% and
mass balance and erosion, the remaining 10%. The computation of
the drainage takes 1.7 s on the CPU (once every twenty GPU steps).

We compared the ice flow estimation with the direct optimiza-
tion of Eqn. 7 (reference) and the Shallow Ice Approximation (SIA).
The reference requires about 100 steps of 130ms to achieve similar
accuracy: our method is 50X faster. The SIA needs only 4.7ms for
one step, but the unfavorable stability conditions require smaller
time steps (divided by 100 for a cell size of 32 m), even with our
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time-stepping algorithm, which leads to a similar runtime to reach
a steady state. Overall, ~ 2, 000 steps are required to produce the re-
sults presented in this article. Computations take 3.7 min at 512x512
resolution, 9.8 min at 1,024 X 1,024 and 37.5 min at 2,048 X 2, 048
respectively. CPU drainage computation and GPU-CPU transfers
represent almost 50% of the total computational time.

Fig. 16. Effect of the climate on erosion. While the difference in temperature
controls the extent of the eroded valleys, the variations in precipitation affect
the strength of the erosion patterns.

7.4 Control Parameters

We investigated the role of the different parameters of our model
and their influence on the shape of the resulting terrain.

The first, most important parameter is the climate, encoded in the
mass balance equation (Eqn. 2), as it dictates the overall shape and
intensity of the glacier. In particular, the Equilibrium Line Altitude
E depends on the average temperature at sea level, which can vary
by up to 10°C between glacial and interglacial periods in some
locations. The choice of E dictates the positioning of glaciers (the
area above is fully covered in ice) and their volume, as decreasing
E increases the accumulation area. The precipitation, 5, expresses
the maximum amount of ice accumulating in the glacier each year
and increases the glacier velocity. Figure 16 shows the difference in
erosion patterns between warmer, colder, dryer, and more humid
climates. In particular, colder glaciers carve to a greater extent than
in temperate settings, and a high precipitation rate is associated
with more pronounced erosion.



Fig. 17. Slow glaciers with high friction (left) produce larger, smoother
valleys than their fast-flowing counterparts (right).

The sliding law of glaciers is poorly constrained and depends
on several external factors, such as the subglacial hydrology, the
temperature of the ice at the interface, and the concentration of
sediments and loose rocks beneath the glacier. It is therefore natural
to use sliding parameters as a proxy to express the large variety of
glacier shapes. In Figure 17, we fix the sliding exponent to o = 3/2
and vary the sliding coefficient between C = 1,500 Pa.m~?.y° (large
friction, low sliding) and 500 Pa.m™°.y° (fast-flowing glaciers). The
basal velocity being smaller with higher friction, we multiplied by a
factor of 4 the effects of glacier erosion on the case with C = 1,500
to produce comparable landscapes. We observe that the sliding
coeflicient impacts the width of the glacier and carved valleys: a
higher C results in wider, smoother and shallower valleys.

Another important factor is the balance between the two main
modes of glacial erosion: abrasion and quarrying (Egs. 6.1 and 6.1),
through the parameters k. and kq. By activating each of these effects
independently, Figure 18 shows that the main effect of abrasion is
to carve deep valleys where large glaciers reach their maximum
extent. In contrast, quarrying is extremely efficient near the top of
the glacier and results in flat, small valleys just below the ridges.
By extension, the impact of these erosion factors is also seen in the
distribution of lakes: abrasion carves lakes in the bottom of valleys,
while quarrying produces small high-altitude perched lakes (see
Figure 7).
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Fig. 18. Terrains eroded with either glacial abrasion or quarrying in isolation.
Quarrying erodes near the ridges and produces flatter, high-altitude valleys,
while abrasion carves deep and large valleys at the glacier core.

7.5 Interaction with Fluvial Erosion

Mountain ranges are shaped by the interplay of fluvial and glacial
erosion, with the dominant factor alternating between glacial and
interglacial periods. In Section 6 we propose coupling glacial and
fluvial processes, to 1) enable an end-to-end, automatic production
of mountain ranges from initial fluvial morphology to current shapes
with glacial features and 2) consistently model weathering of rocks
exhumed from the ice after a glacier’s retreat.
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Figure 14 demonstrates that glacial erosion produces a landscape
very different from fluvial erosion alone (left and center), but also
that modeling glacial erosion only, with all other processes disabled,
would result in an unnatural terrain: excessively steep cliffs should
be quickly reduced by landslides and debris flow erosion, lakes
should be connected by a river network and streams should carve
openings on the edge of hanging valleys.

Figure 5 demonstrates the effect of the three phenomena that
constitute fluvial erosion, by disabling each in turn. Without fluvial
erosion (top right), we notice an absence of irregularity in the base of
U-shaped valleys that would otherwise lead to connecting rivers and
channels. Disabling debris flow (bottom left) shows its importance
in carving the steepest slopes into dendritic gullies bordered by
sharp ridges. Disabling hill-slope erosion (bottom right), essentially
a diffusion process, produces noise and unrealistically sharp shifts
between erosive streams at locations where the drainage is small.

7.6 Method Applicability

We have shown how our method can be applied to medium-scale
terrains (16 — 60 km) initialized with fluvial erosion to provide syn-
thetic conditions that closely match the real formation processes of
glacial landforms. We demonstrate now that we can use our method
for other applications.

Synthetic terrains are often modeled using a multi-scale noise
sequence followed by enhancement based on erosion. We show
that our method can introduce glacial features into such procedural
terrains. Figure 19 shows the results of short-term glacial erosion
on a noise-based terrain. Thus, in contrast to fluvial erosion [Galin
et al. 2019], our method does not need a hydrologically consistent
input terrain to operate.

Fig. 19. Glacial erosion (right) applied to a procedural noise-based terrain.

We also show that our method produces believable erosion pat-
terns on real terrains, which opens perspectives for scientific com-
munication or education. We use a 30 m resolution NASA Digital
Elevation Model [JPL 2020] of the Sivalik Hills in Nepal. We chose
this area from a young mountain range in warm climatic conditions
to ensure that the initial terrain was not affected by glacial erosion
(Figure 20, left). We show the maximal extent of glaciation (Figure 20,
center) and the resulting eroded terrain (Figure 20, right).

Finally, our method can be applied on a much larger scale, for
example, to generate fjords. Fjords emerge in conditions very dif-
ferent from mountain glaciers: they are initially buried under very
large ice caps, about 1,000 m thick, and do not need an initial steep
topography to appear, as shown by Egholm et al. [2017]. We repro-
duce this behavior on a 130 x 130 km? terrain with a grid spacing of
256m. We initialize the terrain’s fluvially eroded topography with
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Real (fluvial) mountain Glacial maximum

Glacier retreat

Fig. 20. Real terrain from the Sivalik Hills in Nepal, mostly carved by fluvial erosion (left). After a cooling event (middle), the glaciers retreat and leave deep

eroded valleys (right).

a gentle north slope of about 1% (Figure 21, left), and we cover it
with 1,000 m of ice. We show the retreat of the ice cap (Figure 21,
center) and the carved fjords, a result consistent with the patterns
observed in [Egholm et al. 2017].

Initial terrain |

Eroded fjords |

Fig. 21. From a mostly flat topography (left), covered by 1,000m of ice, ice
streams progressively emerge and carve deep fjords (right). We show an
intermediate state during the retreat of the ice cap in the middle.

7.7 Limitations

In terms of limitations, our method relies on a physically-based
simulation and generally does not provide the direct and intuitive
control that would be needed for authoring applications, particu-
larly in the entertainment industry. Furthermore, although we use
laws from glaciology and geomorphology, our evaluation is mostly
feature-based. A more thorough study would be needed to confirm
that the quantitative properties of the eroded features match real
ones. Maybe more importantly, such a study would allow us to spec-
ify which parameter settings are needed to achieve a specific target,
for example, to mimic specific real mountain ranges.

Simulation of natural phenomena is difficult to validate in general.
However, more components would be required if our method was
to be used in geomorphology: glaciology simulations often couple
the glacier with a thermal model [Gilbert et al. 2014], and we do
not consider the complexities of sub-glacial hydrology [Egholm
et al. 2012b; Herman et al. 2011], which has a significant impact on
erosion.

Finally, our simulation does not model the transport of eroded
rocks and sediments. However, the latter may accelerate or dampen
the erosion [Ugelvig and Egholm 2018] and give rise to specific
visual features such as moraines.

8 CONCLUSION

We have introduced a novel algorithm for the efficient simulation
of glacial erosion combined with secondary erosive phenomena:
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fluvial, hillslope, and cliff-based debris flow erosion. Our glacial
erosion allows for the simulation of characteristic glacial landforms,
such as hanging and U-shaped valleys, cliffs, and glacial lakes. It
handles periods covering several glacial and interglacial cycles. The
key idea is to accelerate ice flow evaluation and couple this with
an adaptive ice transport solver to deal with the time and space
variability inherent in glacial erosion. Our method generates large
to medium-scale features in landscapes formed by glaciers.

Our large-scale model captures many significant glacial land-
forms, but it does not model smaller-scale features, such as moraines
and drumlins. Future work could address this by combining our
algorithms with small-scale, physically-based, or procedural models.
Rock abrasion in our model could be used to parameterize the de-
position of transported rocks into moraines. The sedimentation of
debris flowing from cliffs into glacial lakes could also be integrated.
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APPENDIX A: VELOCITY GRADIENTS

The evaluation of Eqn.7 in Section 4 requires the computation of
the areas of the lattice cell areas and the gradients of the velocity.
We assume that the velocities follow piecewise trilinear functions
inside the cell, and we evaluate their values and gradients at the
center of the cells. For a cell at indices i, j, k in the lattice, We note
u(i— % Jj- % k- %) the (horizontal) velocity stored at the corre-
sponding corner of the cell. Similarly, { denotes the vertical position
of the cell corner.

The values at the center of the cells are obtained by either differ-
entiation or averaging of the values in the corner, in all x, y, and
z directions. We note ay and dy the corresponding averaging and
difference operators here in the x direction:

(deow(is ) = uli+ 5, —uli— 200
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Recall that dx denotes the regular grid spacing. We obtain the aver-
age cell thickness c; and the inter-cell face area f;:

ct=axoayod;o{

fa= \/dx2 +((ax0odyo {))2\/dx2 +((ayodyo D)%

The cell volume ¢, is:

ey = (ag Of;z) Ct.
The velocity in the cell is given by:
Ucell = dx ©dy ©azou.
The vertical gradient of the velocity is:
axoayod;ou
o u= >y
Ct
The horizontal gradients, however, need to account for the defor-
mation of the lattice:
dxoayoazou
dx
+ (ax o ay ° up)(dy o ay ° {t) = (ax o ay o u;)(dy o ay ©° &)
dx ct

oy u =

(dx o ay ° dz o g)ucell
dx ct

)

where u;, and u; are the velocity at the grid corner at the top and
bottom of the cell: u; (-, - k) = u(-,~ k+ 1), up (-, k) =u(-, k- 3),
and similarly for {3 and {;.

The gradient in the y direction is symmetric:

axodyoazou
dx
+ (ax o ay ° up) (ax o dy o)~ (ax o ay o uz)(ay o dy o p)
dx cy
(ax o dy odz o)
dx c; ’

APPENDIX B: NOTATION AND DEFAULT VALUES

Table 1 details the default value and units of all parameters used in
the paper. For erosion parameters, we show the range of values that
allow us to simulate the various erosion resistance of various rock
types.

The sliding coefficient C is allowed to take values up to co. In
practice, oo represents a frozen boundary condition (no sliding), and
we parameterize the network with the inverse of C to keep values
in a reasonable range.

dyu=

(10)
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Table 1. Parameters

Name Value Unit
gl B 1.01072 y~!
E Pmax 2 my_l
L C | E 5.010% - 2.0103 m
b B 2.910° Pay'/3
-(‘3“ z C 5.010% — oo Pam™7 y°
= p 4/3
3 I 3/2
g 9.8 ms~?
p 917 kgm™3
3 I 2.02
S| ke [131077-1.11076 | ml~lyl-1
© kg |32107°-26107* 1
2| kp | 5107°-15107¢ | mPmTly~!
g1 2| m 0.4
‘g . n 1.0
BHla ] K 11072 -51072 m?y~1
S kg | 107-2510F | w2y
g1 kya 10 m=24
2| gq 0.8
| ¢ 2.0
Se 37 Degrees
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