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A method is proposed for computing an implicit approximant at a point to a parametric curve or
surlace. The method works for both polynomially and rationally parameterized curves and surfaces
and achieves an order of contact that can be prescribed. In the case of nonsingular curve points, the
approximant must be irreducible, but in the surface case additional safeguards are incorporated into
the algorithm to ensure irreducibility. The method also yields meaningful results at most singularities.
In principle, the method is capable of exact implicitization and has a theoretical relationship with
certain resultant-based elimination methods.

Categories and Subject Descriptors: L3.5 [Computer Graphics]: Computational Geometry and
Object Modeling—curve, surface, solid, and object representations; J.6 [Computer Applications]:
Computer-Aided Engineering—Computer-aided design

General Terms: Design, Algorithms

Additional Key Words and Phrases: Curve/surface approximation, implicitization, implicit
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1. INTRODUCTION

A recurring operation in solid modeling is the evaluation of surface intersections
[24]. If both surfaces are given parametrically, the two major approaches given
the greatest prominence in the literature are subdivision and substitution meth-
ods. .

In the subdivision method (e.g., [12, 14-16, 22]), both surfaces are recursively
subdivided in the vicinity of their intersection. The subdivision resuits in an
adaptive piecewise linear approximation of both surfaces and their intersection.
Among the advantages of the method, we mention its robustness and its potential
for locating all intersection branches. A major drawback of the subdivision
method is the large volume of data it creates, which slows it down in areas of
high surface curvature.

In the substitution method, (e.g., [7, 17, 25, 28, 29]), one of the surfaces, S, is
converted to implicit form F, and the parametric form of S, is substituted into ¥
resulting in an implicit algebraic curve f in the parameter space of S.. This curve
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f is in birational correspondence with the intersection of S; and S, in xyz-space,
and thus serves as an accurate representation of the intersection. Major difficul-
ties of the substitution method limit its utility in practice. There are two general
methods for implicitizing a parametric surface. The first method is based on
Elimination Theory [26] and does resultant computations. It is expensive and
generates extraneous factors whose detection is a delicate problem; see also
Section 5. The second method for implicitization is based on Grébner Basis
techniques [5]. It is also fairly expensive and requires, moreover, rational coeffi-
cients in the description of S,. Another difficulty with the substitution method,
less prominently pointed out but well known (N. M. Patrikalakis, personal
communication, 1987}, is that the substitution itself can be numerically unstable
and is a nontrivial algorithmic task when desiring efficiency and accuracy. Some
authors have suggested the use of rational arithmetic for this reason [8], thus
further adding to the computational load of the approach.

In this paper, we provide a middle ground by deriving a local implicit approx-
imation of rational or polynomial parametric curves and surfaces with low-degree
implicit forms. In the context of subdivision techniques, such approximations
have the potential of reducing the number of generated surface approximants
because we are not restricted to planar approximants only. In the context of
substitution methods, the approximations avoid the high cost of implicitizing a
parametric curve or surface, and provide, moreover, irreducible approximants. In
both cases a number of practical issues remain open for exploration, including
the trade-off between the degree of the approximant and the accuracy with which
the curve or surface has been approximated. In particular, a comparative evalu-
ation of our method that contrasts its performance with other surface intersection
methods is desirable, including the higher dimensional approach proposed in [10]
and its specialization to parametric curves and surfaces explained in [9]; see also
[11}. We are currently engaged in research elucidating some of these questions.

Since the distribution of a preliminary version of this paper, a number of
related investigations have been developing and applying similar ideas. Bajaj
and Ihm [2] apply a technique, analogous to ours, to the problem of designing
blending surfaces and prove results on minimum degree blends satisfying certain
constraints.

Previously, local explicit approximations to integral parametric curves and
surfaces have been proposed in [20]. An approximant of the form

z=f{x,y) = X a;xy" or y=f(x)=2 ax’

is constructed for surfaces and curves. Recurrence formulas were also derived for
the coefficients of /. Bajaj [1] extends this method using power series composition
and inversion techniques together with rational Padé approximations. In our
experience, a local explicit approximation is less favorable than a local implicit
approximation. In fact, while a quadratic explicit approximation to a curve
achieves second-order contact at the point at which it is constructed, a quadratic
implicit approximation achieves fourth-order contact. For curves, the order of
contact grows linearly with the degree of the explicit approximation, whereas the
order of contact of the implicit approximation has a quadratic growth in the
degree. Thus, much lower degree approximations suffice.
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In general, local explicit approximation can only approximate curves or surfaces
locally no matter how high a degree of approximant is used. This is due to the
asymmetry introduced by making one variable an explicit function of the other(s).
For instance, a circle cannot be completely approximated with a single explicit
approximant. In contrast, our approximants are capable of approximating curves
or surfaces not only locally but also globally in the sense that the radius of
convergence increases when the degree of approximation increases, and the exact
implicitization can be finally derived when the degree of approximation is equal
to the degree of the given parametric curve or surface.

After reviewing the necessary definitions and facts in Section 2, we describe
the method for polynomially and rationally parameterized curves in Section 3.
Section 4 presents the surface case. In Section 5, we comment briefly on
some theoretical connections between the method we propose here and several
resultant formulations found in the literature.

2. PRELIMINARIES

A polynomial of degree n in the variables x, x, . . ., x; is denoted iz, ..., xe)
whenever we wish to stress the degree. The gradient of f at the point x =
(x1, %2, ..., %) 1s the vector Vf = (fes frp -+ -y fx,), where the partials are

evaluated at x.

A rational plane curve r{¢)} can be given as the pair (x(t), y(¢)), where x(¢) and
y(t} are rational functions of . The curve points are all points (x(t), y{¢)) on the
plane. The curve is properly parameterized if for all but finitely many curve points
p we have p = (x(t), ¥(¢)) with a unique value of t. When a parametric curve is
not properly parameterized, then there exists a rational nonlinear function s(t)
such that x(t) = x*(s(¢)) and y(¢) = y*(s(t)). We assume in this paper that all
parametric curves are properly parameterized and note that a parametric curve
is always irreducible. For methods to detect improper parameterization, see [27].

The degree of a rational parametric curve is the highest degree of the numerator
or the denominator polynomial, assuming both x(¢) and y(¢) have been written
with a common denominator. The implicit equation f(z, y) of the rational curve
r(t) is a lowest degree polynomial in x and y satisfying f{x(¢), y(t)) = 0. It is
unique up to a multiplicative constant. If r(¢) has degree m, then so does f (x, y);
see for example, [18] and [21].

As with parametric curves, a parametric surface

P(s, t) = (x(s, £), ¥(s, £), z(s, £))

can be improperly parameterized if there are nonlinear rational functions ufs, t)
and v(s, t) such that

P(s, £) = (x*(uls, t), v(s, £)), y*(uls, t), v(s, £), z*(uls, £), v(s, £)))

In that case, there is a many-to-one correspondence between the parameter
values and the surface points. P(s, t) is properly parameterized if this correspon-
dence is one-to-one except, possibly, on a one-dimensional set of points. We also
assume that all parametric surfaces are properly parameterized. For a parametric
surface described by rational functions of total degrees m, there always ex-
ists an irreducible implicit equation f(x, ¥, 2) = 0 satisfying f(x(s, ¢t), y(s, t),
ACM Transections on Graphics, Vol. 8, No. 4, October 1989.
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z(s, t)) = 0, and f is unique within a constant factor. Moreover, [ has a degree
at most m?2,

A point p = (x, y) is regular on a plane curve f(x, ¥) = 0 if the gradient of f at
p 1s not null; otherwise the point is singular. Likewise, p = (x, y, 2} is regular on
f(x, ¥, ) = 0 if the gradient of f is not null at p; otherwise p is singular.

3. LOCAL IMPLICIT APPROXIMATION OF PARAMETRIC PLANE CURVES

We seek an implicit curve g(x, y) = 0 that approximates the parametric curve
r{t) = (x(t), y(t)) at the origin to a specified order of contact. The idea is to set
up the polynomial g(x, ¥} of sufficiently high degree with symbolic coefficients
e;;- Then, a system of linear equations with unknowns e;;1s formulated and solved.
The linear system is obtained by substituting r(t) into g(x, ). The result is

g(x(t), y(£)) = X ot

where the «, are linear combinations of the e;;. We require that a certain number .

of the a, vanish. With
;1 =0,09=0,...,0,=90

for some s, an implicit approximation is obtained that has contact of order s with
r(t) at the origin. The approach depends on the following details:

(1) There is a recurrence for deriving the linear system directly from r(¢) without
explicit substitutions. This recurrence is derived in Section 3.1.

(2) Assume that the degree n of the approximation is smaller than m, the degree
of r(t). There is a function ©(n) that determines the order of contact that
g(x, y} can achieve. This function is obtained by analyzing the rank of the
linear system in Section 3.2. °

(3) In Section 3.3 we discuss the error behavior of the implicit approximation,
and in Section 3.4 we present several experiments.

Let

r(t) = (x(t), y(t)) = (% ﬁ%)

be a properly parameterized rational curve of degree m containing the origin,
where

m

pt) =) at', q(t) = 2 bt w(t) =3 cff

i=1

We assume that a,, and b, are not both zero, and that ¢, # 0. There exists an
irreducible polynomial f™(x, ¥) = 0 of degree m such that

frx(e), y(6)) =0

Let g™(x, y) = Zh;-1 e;x'y’ = 0 be a degree n implicit curve containing the
origin. Since g*(x, ¥) = 0 and vg"(x, ¥) = 0, where v # 0, are the same curve,
8"(x,y) =0 has ¢(n) = (n® + 3n — 2)/2 coefficients on which the curve depends.
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Let G"(x, y, z) be the homogeneous form of g"(x, y). Substitution yields

,,(p(r) q(t)) _ GMp@), g(), w(®) _ B aptf
w(t)” wlt) (w(t)" (w(E)"

where the o; are linear combinations of the eij.

We look for an implicit form g*(x, y) = 0 of degree n < m approximating r(t)
at the origin, and the method of deriving should work whether w(t) =1 or not,
that is, irrespective of whether the curve is parameterized polynomially or
rationally. The following simple example demonstrates the approach.

Example 3.1 Consider co(t) = (x(¢), y(t)) = (p(t)/w(t), q(t)/w(t)),
where p(£) = 2t + ¢* — 3t, q(¢) = £3 — t2 — 2¢, and w(t) = £ + 4¢ + 5, co(t) is a
properly parameterized plane curve containing the origin. Let g%(x, y) =
€10x + eny + epx® + enxy + es2y” be a degree 2 curve containing the
origin with symbolic coefficients. Substituting x(¢) and y(¢) into g2 yields
g(x(t), y(t)) = (Xfa1 ait)/(w(t))? where

a; = —1beys — 10¢g,

ar = —Ters — 13eq) + 9ezo + 6y + 4epy
ay = lleyy — ey — 6eyg + €5, + 4degy

ag = 9e0 + 3eq; — 1ley — 8ey; — 3ey,
a5 = 2e10 + €5 + dexy — ey, — 2ey,

g = deg, + 2ey, + eqy

By requiring ejp— 1 =0, 4, = 0, @, = 0, a3 = 0, and o, = 0, we can solve for
the unknown coefficients e; j- The resulting g? approximates ¢, at the origin to
the fourth order of contact. '

3.1 A Recurrence for ay

Since g"(x, ¥) = g" " (x, y) + Yi+i=n €;x'y/, the homogeneous form of g"(x, ¥} can
be written as

G™(x,y,2) = 26" Yx, y, 2) + 3 eyx'y’ (1)

i+j=n

Let o™ and &f denote the coefficient of t* in G™(p(t), q(t), w(t)) and G*(p(t),
q(t), w(t)), respectively. It is clear that ek can be derived from the af™?,
i=1,2,...,kbecause of (1).

We define (a(i); and (b(j), as in [20], setting

(p(t) = (E attf) = 2 (a@@)t
! 1=

=1

ACM Transactions on Graphies, Vol. 8, No. 4, Octaber 1989,




On Local Implicit Approximation and lts Applications . 303

and similarly, : !
(q®)) = (2 b!tl) R
=1 I=j

For a recurrence to compute the (a(i)); and (b(;)), see [20].
From (1)}, we therefore obtain

m{r—1)
ap = coefficient of t* in (w(t) DI Yt Y ) e,,-(p(t))"(q(t))-")

j=1 i+j=n .
k
= af tepy + > > ei(@a(@)pb (i),
j=1 itj=n p+g=k
In particular, &} = €100k + €01 Dp. :
For an integral parametric curve r(¢), a straightforward computation shows |
that the «} specialize to

af~t l=k=sn-1
CE;; = aﬂ_l + 2f+j='n Zp+q=k eu(a(t))p(b(}))q n= k = (n __ l)m

Yitjen Diprq=k €ij(a(i))p(b(J))q n—1m<i=nm

3.2 Derivation of the Method

3.2.1 Rank of the Linear System. Having explained how to obtain the af, we
now show that the coefficient matrix of the linear system defined by setting
ag =0, k=12, ..., nm, has rank at least ¥(rn). We are able to determine a
nontrivial solution to unknown coefficients by setting one of the coefficients to
1 and solving the system af =0, a8 =0, ..., af = 0 for s = ¢(rn)} chosen such :
that the rank is @(n). - | —_— =

Let e, = (elo, €01, €20, €11, €025 - -+ 3 Broy ln—1)1 - - - » E1{n—-1)) eon)T be the vector i_ -
of unknowns and write the system of equations af =0, a5 =0, ..., afn =01n -!
matrix form:

A..e, =0 (2) |

Note that A,..is a nm by Y(n) + 1 matrix. Furthermore, the maximum rank of
A..1s¥P(n) + 1sincem=n aqd nm = @(n) + 1. Example 3.2 shows matrix A,
symbolically.

Example 3.2 Form=3andn =2, Ay is

( a,Co bico 0 0 0 ) L
a1, + ax¢o bicy +baco al a, b, b?
@10y + Aoy +aaco  bice+ bacy + bacy 2a,a, a b, +a.b, 26,8,
aCatascat+ase; bicatbucat+bie, 2aa5+ai a bs+asb,+azh, 2b,by+ b2
aC3t+ Q5Cy bacs+ b 2a,0; o by + asbs 2b,b4
L G3Cs bycy as aaby b3 J
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- When computing the local implicit approximation g"(x, ¥} of r(¢), if the rank
of A, is at least ¥(n), then we can select one coefficient of g™(x, y) to be 1 and
determine the others by selecting the first s rows of (2) and choosing s such that

the system has rank ¢{n).

Let f™(x, ¥) = 0 be the exact irreducible implicit form of r(t) with F™(x, ¥, 2}
as its corresponding homogeneous form, and let 7, n < m, be the degree n initial
segment of f™ with its corresponding homogeneous form F7(x, , ¥ z), that is,

f™x, ¥) = f*(x, y) + terms with degree > n. Also, let 35 bt = F(p(¢),
Q(t)! W(t)) and bmn (bls b21 ey mn)T

LEMMA 3.1 1. f"(z, y) is the zero polynomial if and only if bp, = 0. 2. If
f'(x, ¥) is @ nonzero polynomial, then b, = b= --- =b,=0and b, # 0.

PRO_OF. Part 1: “=” trivial. “<” Suppose f*(x, ¥) is a nonzero polynomial.
Since b,,, = 0,

. i (o) q®
Fr(p(t), q(t), w(t)) = 0 = (w(t)"f" ( @)’ (c))

for all ¢ and then f*{p(¢)/w(t), q(t)/w(t)) = 0, for all ¢ with possibly finitely
many exceptions, where w(t) = 0. Thus f*(x, y) with n < m also represents r(t),
which contradicts the irreducibility of f™(x, y).

Part 2: Since f™(x, y) = 0 is the implicit form of r(t),

of P gl
f (w(t)’w(r))“o

for all ¢ except finitely many ¢ where w(t) = 0. Thus

for all t. From

Fr(p(t), q@), wt) + X e(p@){g)(with™"7 =0

i+j=n+1
for every t, we have
Tbt'=— T ei(p@@eVwE)i= F bt
i=1 i+jan+l i=n+1
for every t. By comparison, we have b, = by = --. = En = 0. The rest of Part 2

follows from Part1. O

Since f"(x, ¥) is an initial segment of f™(x, y), it could be either a zero
polynomial or a nonzero polynomial with zero or nonzero b.., vectors respectively.
If b, is known beforehand, the coefficient vector e, of f™(x, y) is uniquely

determined by A,,.e. = E,,,,,, which is an overdetermined linear system. Note
that, for a fixed n, the elements of the matrix A, depend only on the coefficients
of p(¢), g{¢), and w(t). The following results characterize the rank of A,,,,.
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LEMMA 3.2 If r(t) is a properly parametenzed ratzonal plane curve of degree
m, then for n < m, we have

rank(A,.) =?{n}) + 1

ProOOF. Suppose, knowing b,,m, we want to determine the coefficients of
f™(x, ¥) by solving the overdetermined linear system A,..e, = b,.,, where e, is
the coefficient vector of the general degree n polynomial.

If b,.,, = 0, then A.,,e. = 0 is a homogeneous system. If rank(A,.) <
©(n) + 1, there will be infinitely many nontrivial solutions as well as the trivial
solution for this linear system. This cannot be true by Lemma 3.1. Thus,
rank(Am) =®(n) +1lifb,,=0.

If b, # 0, then A e, = bm,l 1s a consistent nonhomogeneous system since
" there is always a solution, that is, the coefficient of f*(x, y). If rank(A,,,) <
®(n) + 1, this system will have infinitely many solutions. Let e* be one of the
infinitely many solutions and e} # e,, where e, is the coefficient vector of
f*(x, ¥). Let also A"(x, y) be the corresponding polynomial of e} and

h™x, y) = h"(x, y) + terms of f*(x, ¥) with degree > n

Let H™(x, y, z) and H"(x, y, z} be the homogeng_ous polynomials of 2™(x, y) and
h"(x, ), respectively. Since A,,, e, = A.ef = b,

H"(p(t}, q(t), w(t)) = F"(p(t), qt), w(t))
for every t, and thus '
H™(p(¢), q(¢), w(t)) = F”'(p(t) g(t), w(€)) =0
for all £. We then have

f,,,(p(t) q(t)) _ h,,,(p(z) a®) _

w(t) w(t) w(t)’ wit)

for all but finitely many ¢. Hence f™(x, ¥) and h™(x, ¥) represent the same
algebraic curve. Since f"(x, ¥) # h"(x, ¥), f™(x, ¥} and h™(x, y) differ by more
than a constant factor, which contradicts the fact that the equation of an

irreducible curve is unique to within a constant factor. Therefore rank(A,,.) must
be $(n) +1ifb,, 0. O

LeMMA 3.3 If x(t) is a properly parameterized rational plane curve of degree
m, then for n = m, we have

rank(A,..) = @¢(m).

Proor. If n=m, f™(p(t)/w(t), g(t)/w(t)) = O for all ¢ except finitely many
t where w(t) = 0, and then F™(p(t), ¢(¢), w(t)) = 0 for all ¢, we thus have
Anme, = 0, which is an overdetermined linear homogeneous system. Since we
have only a trivial solution if rank(A,,,) = ©(m) + 1, rank(A,,.) must be less
than or equal to ¢{m).

Suppose r = rank(A,.,) < ?(m); then the solution space of the overdetermined
homogeneous system has as its basis p = ¢(m) + 1 — r linearly independent
vectors, and every solution of this system is the linear combination of these p

ACM Transactions on Graphics, Vol. 8, No. 4, October 1989,




306 . J. H. Chuang and C. M. Hoffmann

solutions. Now suppose that r < ©(m); then the system has a solution space
spanned by p > 2 linearly independent vectors, say el,, en, -..,e5 Let f'(x, y)
be the corresponding polynomial with coefficient vector e, and Fi*(x, y, z) be

the homogeneops form of fI"(x,¥),i=1,2,..., p. Since

forall ¢, 1 =i = p, we have (o) /wit), q(t)/w(t)) = 0 for all ¢ with finitely
many exceptions, where w(t) =0, 1 < i < p. Thus the irreducible curve f™(x, y)
= 0 can be represented by f7*(x, y), i = 1,2,..., p, which is not different within
only a constant factor because el e2, . .. » € are linearly independent. By the
above arguments, we can conclude that rank(A,.) =9(m). O

By assigning one variable to be 1, the existence of a nontrivial solution of
Anmen = 0 is guaranteed by Lemma 3.3, and it is the coefficient vector of the
exact implicitization of r(¢).

Observe that Lemmas 3.2 and 3.3 are not valid for improperly parameterized
rational plane curves, as shown in the following example:

Example 3.3 Let ¢,(t) = (x(¢), y(t)) = (£ + 2¢, t* + 44° + 6t + 4¢). Since
x(t) = s(t) and y(t) = (s(¢))? where s(t) =t + 2, ¢ (t) is improperly parameter-
ized. For n = 2, the rank of A, is 4, whereas ©(2) + 1 is 5.

We summarize Lemmas 3.2 and 3.3 in the following:

THEOREM 34 Ifr(t)isa properly parameterized rational plane curve of degree
m then ‘

_Je(n) +1 fn<m
rank(A,.,.) = {So(n) fn=m

3.2.2 The Algorithm. Because of Theorem 3.4, we may compute the degree n
local implicit approximation as follows:

Let

Be, =0 (3)

be the subsystem of (2) consisting of the first s equations of Arne, = 0, such
that B has rank ©(n). If the origin is not a singular curve point, then augment
the system (3) with an equation e;; = lorep =1 according to whether x’(0) #
0 or y'(0) # 0. If the origin is a singular curve point, on the other hand, then (3)
is augmented by the equation e;; = 1 where the indices i and j are selected by
inspecting the system. In this way, a linear system

Ce.=h (4)

is obtained that has a nontrivial solution for e,. Since a, = 0,2, =0, ...,

a; = 0, the curve g™ so defined must have contact of degree at least s to r(t) at
the origin.
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There may be cases in which the system (4) is inconsistent, that is, the
augmented matrix [C, b] is of rank ©(n) + 2, whereas C has rank Pn) + 1. In
this case, the linear system can be modified to ensure consistency. For instance,
when computing g2 of ¢,(t) = (¢, t°), a2 should be removed from, and o%; = 0
should be added to the system (4), resulting in en—1=0a{=0a=0,...,
ai =0, afo =0, a}; = 0. In this way, a 8%(x, y)} = y is obtained that has an eighth
order of contact and is irreducible.

3.2.3 Irreducibility of Implicit Approximations. When the origin 1s a regular
curve point we show that the implicit approximation g"(x, ) of r(t) at the origin
is irreducible whenever the linear system (4) is consistent. Note that the local
implicit approximations of different degrees have the same linear terms if the
equations augmented to (3) are the same. In the following lemma and proposition,
we assume that (4) is a consistent system. Also, let s{n) be the order of contact
made by the degree n implicit approximation g"(x, v).

LEMMA 3.5 If gx, y) and g" \(x, y) of x(t) at a nonsingular point (0, 0) are
computed by augmenting the same a = 0 to the system (3), where « = 0 is either
ew—1=00re, —1=0, then we have s(n — 1) < s(n).

Proor. Let g%(x, v) = %(g"(x, y) + g"7\(x, ¥)). Suppose s(n — 1) = s(n);
the g"(x, y) so defined has the following four properties: (1) g" is of degree n;
(2) 8" # g"; (3) £ has the same linear terms as g” since g" and g"~! have the
identical linear terms; (4) #” has the order of contact larger than or equal to s(n)
since s(n — 1) = s(r) is assumed. From properties 1, 3, and 4, the coefficients of
g" satisfy the linear system that is used to compute the coefficients of g, but
property 2 contradicts the uniqueness of the solution of a nonsingular linear
system. Thus s(n — 1) <s(n). 0O

By induction and Lemma 3.5, we can show that s(n) is strictly monotone.

PROPOSITION 3.6 At the nonsingular point (0, 0), the degree n local implicit
approximation g™(x, ¥) of the degree m > n broperly parameterized parametric
curve vt} = (x{L), y(£)) is irreducible.

PROOF.  Suppose g"(x, y) is reducible, and g™ = gs’, where n = k& + [ and k,
> 0. Since g" contains linear terms, one of the g* and g' must have a constant
term. Let g*(x, y) = ¥%,.1 p,x"y/, where pis and Poi are not both zero, and
8%, ¥) = Tlejmo q;;2y’, where qoo # 0. Let also g"(x(t), y(t) = ¥74 ait’, g*(x(t),
y()) = T2 Bit!, and g'(x(t), y(t)) = 3™, vit', where Yo = Goo. We thus have

E a;t = (g &-t")(% m-t")

i=1 i=1 i=0

The coefficients of g*(x, y) are computed by solving the nonsingular system as
(4) for some s = ¥(n). Moreover, s(n), the order of contact of g", is greater
than or equal to s. Thus the coefficients of g" satisfy the linear system « = 0,
af =0,a2=0,..., aly = 0, where, without loss of generality, we assume that
« = ep —~ 1 = 0. The above linear system can be represented in terms of Bi and v;
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as follows:
GooPro = 1
JooB = 0
Goofz + v =0

GooBs + Bay1 + Bry2=0

qOOﬁS(n] + ﬁs(n}—lTl + .+ ﬁl'}'.s(n)—l = Os

which implies gupic = 1 and §; = 83 = + -+ = Bum = 0. Thus g* has either an
order of contact larger than or equal to s(n) if s(n) < km, or g*(z(t), y(£)) =0
for all ¢ if s(r) = km. The first result contradicts the fact that s(n) is strictly
monotone, and the second contradicts the irreducibility of the exact implicitiza-
tion of r(t). Thus g" 1s irreducible. [J

When the origin is a singular curve point, the implicit approximation is not
always irreducible. For example, the degree n implicit approximation of ¢;(t) =
(¢%, %), with implicit form x®> — y% =0, is y” = 0 when n < 5. Note that y = 0 is
the curve tangent at the origin.

3.3 Error Analysis

3.3.1 Quality of the Approximation. Given ¢, let T'(¢, n) > 0 be such that for
all | t] < T'(e, n) the orthogonal distance d(¢, n) between point (x(¢), ¥(£)) and
the degree n approximation g"*(x, y) = 0 is less than ¢, assuming that (x(¢), y(t))
is a regular curve point. The distance d(¢,, n) from a point P = (x;, 3,) = (x(t,),
¥(£,)) on the curve r(z) to the degree n approximation g"(x, y) = 0 is the solution
of a difficult nonlinear system. A reasonable estimate of d(f,, n) would be the
distance to the g*(x, y) = 0 in a direction orthogonal to the level curve g"(x, y)
= ¢, where ¢ = g"(x,, y,), denoted by d’(t,, n). Note that d’(¢, n) = d(¢, n} since
d(t, n) is the shortest distance from the point to the curve. Let P’ = (x/, v;) be
the point on g"(x, y) = 0 on which g"(x, ¥) = 0 intersects the line orthogonal to
level curve g"(x, y) = c at P; see Figure 1. The Taylor series on P’ = (x;, ¥;)
with respect to P is

g™(xp, ¥p) = &"(%p, ¥) + d'(t,, 1) - Vg"(xp, ¥p) + higher order terms

Taking the linear term, since g*(x,, ¥5) = 0, d'(f,, n) can be approximated hy
d”(t,, n) where

_ £"(xp, ¥p) — g"(x(t,), ¥(t:))
| Var(xo, 3o) | [(£3(x{), y(t:))? + (g5(x(2,), y(&:)))712

Note that d”(¢, n) may be less than, greater than, or equal to d{t, n), although
d’(t, n) is always greater than or equal to d{¢, n).

We have found no method for computing T'(¢, n) analytically. However, in
practice we only need a method of obtaining a reasonably good estimate of
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Figure 1

T(e, n). Thus it is desirable to determine T"(e, n), for given ¢ and n, such that
d”{t,n)<efor [¢] < T'(e n).

Since 2ab =< a® + b® for any a and b, we have ([a]| |b]|)Y2= (Ja| + |B])/2 =
({a? + b2)/2)Y2, s0 that -

V25" (x(t), ¥(¢8))

|g2(x(t), y@)) | + |gy(x(t), y(N |
When tracing r(t), we can detect the first value of £ such that d(¢, n) < ¢ and
d(t + At, n) > ¢, where At is the step distance for £.

d"(t, n) < d(t, n) =

3.3.2 Curve Translation to the Origin. In the derivation of the approximant
we assume that r(0) = (0, 0), that is, we require that r(t) be translated to the
origin and reparameterized. Since- this may incur additional inaccuracies we
comment on it now.

Translation of r(¢) to the origin is a simple operation that incurs a minimum
of error. For, with p = (u, v) as the curve point to be brought to the origin, the
translated curve is simply

x(t) = x(t) —u = (p(t) — uw(t))/w(t)
n(t) =y(t) — v =(q@) = vw())/w(?t).

So, we have to subtract two polynomials in order to bring p to the origin.

Now assume that r(t,) = p, and consider reparameterization such that p not
only is moved to the origin but that also ¢, = 0 for the reparameterized curve.
Here we need to substitute ¢ + t, for ¢, that is,

x2(t) = x,(F + to)

¥2(t) = nilf + £)

is the ﬁpal curve. As observed in the introduction, although substitution is
conceptually simple, it nonetheless may introduce numerical errors that could be
significant. According to experiments by Prakash and Patrikalakis [23], Kahan’s
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method described in [13] exhibits good numerical stability and offers one method
of implementing the needed reparameterization.

A second method would be to avoid reparameterization altogether by refor-
mulating the derivation of the approximant given before. That is, we consider
r{t) containing the origin at which ¢ is not necessarily 0, seeking again an implicit
approximant at the origin. Clearly this is possible and requires only straightfor-
ward modifications of our method. In fact, even translation of the point to the
origin can be avoided by such modifications. The details are routine.

3.4 Experiments

A good local approximation of a curve provides a more accurate local approxi-
- mation and a larger interval T'(¢, n) of approximation, for a given ¢, when
the degree n of the approximation increases. The local implicit approximation
g™(x, ¥) = 0 of r(t) is determined by ¥(n) linear conditions imposed on its
coefficients, where ¥ (n) is the degree of freedom of g”(x, y). Thus, as r increases,
more conditions can be satisfied, and finally the exact implicitization is obtained
when n = m. Hence our local implicit approximation is capable of approximating
a given curve not only locally but also globally in the sense that T'(¢, n), for a
given ¢, is larger when n increases. On the other hand, a local explicit approxi-
mation is limited because of the asymmetry introduced by making one variable
an explicit function of the other. Thus, a local explicit approximation can only
approximate the given curve locally for {x| < R, where R is its radius of
convergence, no matter how high the degree of approximant is.

We give as an example the approximation of several parametric curves that
are not singular at the origin, showing both implicit and explicit approximations.

Example 3.4 We present four curve examples
e (t)=(t5+ 5 =263 + 3%+ 12¢, t5— t° + 14 — 4¢3 — 22 + 24¢)
cs(t) = (368 — 4¢° — 8% + 6t% + 3¢, —3L° + 4¢° + 5¢* — 67 — 82 + 3¢)
c(t) = (3£ + t° — 2¢* + 38¢% — 512 — 14¢, ¥ — 1285 — 2¢* + 28° — T2 + 13¢)
c; () = ((£5 + 3t° — 6¢* + 41> — 36¢% + 36t)/w(t),
(3t%+ £® — 211 + 39t — 69¢% + 33t)/w(t)),
where
w(t) =T+ 10+ ' + 662+ 3t + 7.

The curves of ¢4(t), es(f), ce{t), and c;(t) with ¢ in [—1, 1] and their lo-
cal implicit approximations and local explicit approximations are shown in
Figures 2, 3, 4, and 5. Note the good quality of local implicit approximation.
Tables I, I1, and III, for ¢,(¢), es(£), and cg(£), respectively, list the y-values of a
sequence of x-values to quantify how accurately the low-degree local implicit
forms approximate the original curves. The corresponding values of local explicit
forms are also listed for comparison. For such examples, we observe that

(a) For local implicit approximation, d(t, n + k) < d(t, n) for t in [~1, 1] and
k = 1. In addition, T{¢, n) < T{(e, n + k) for k= 1.
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FU-D Y e{t)

2"

16.0 x

=2

(e}

2w

et} : degree 6 curve with t In (-1, 1].
Label 1 : degree 1 local implicit approximatien.
Label 1¥: degree 1 local expllcit approximation.

-20.0

Fig. 2. c(t)=(%+ 25— 26+ 3¢ + 12¢, % — 5+ ¢* — 42® — 2t + 24¢).

5.0 ¥

c{t) : degree & curve.
Label i : degree i local implicitc approximatioen.

Label i{*: degree i local explicit approximation.

2~

qwr

12~

Fig. 3.

7.0

ce(t) = (3t% — 4% — 822 + 642 + 3¢, —3t% + 4¢° + 56 — 6£° — Bt? + 3t).
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0.0 y
aic) : degree 6 curve with t in [-1.1]. f
Label 1 : degree 1 iscal impllcit approximatian.

Label i*: degree § local expliclt approximatlon.

20.0 %

a*

2"

-20.0

Fig. 4. cg(t) = (325 + 5 — 2t* + 3887 — 512 — 14, 18 — 1265 — 205 + 967 — p2 4 13¢).

cit) : degree 6 curve with t in [-1, 1). 0 ¥
Label 1 : degree 1 igecal implicit approximation. '

—5.0 ) E

2.0

7

c(t}

-10.0

Fig. 5. ¢ (t)
o [ 3% — Bt 4 463 — 3662 4 36F 369+ 5 — 24 + 3965 — 69e% 4+ 33

xX

T8+ 108° + 9 + 62+ 36 +7 ° TeS + 106° + 9¢t* + 662 + 3¢ + 7
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Table IV
degree r=025 r=0.50 r=0.75 r=125 r=1.50 r=175
i3 0.000000 0.000004 0.000035 0.000837 0.004964 0.019612

liz 0.000289 0.002531 0.009630 0.066627 — —

li n: local implicit form of degree n. le n: local explicit form of degree .

(b) T(e, 2) of local implicit approximation is greater than T'(¢, 6) of local explicit
approximation. .
(c) Degree 2 and 3 local implicit approximations give very accurate approxima-
tions on a reasonable range of t.

(d) Degree 5 local implicit approximation approximates the original curve very
precisely at least for —1 < ¢t < 1.

When computing an explicit approximation y = h{(x) directly from the curve r(¢),
we first compute the degree n power series ¢t = 3%, d.x’ from x = x(t), and then
substitute it for £ in y = y{¢). As a result, only the first n coefficients of h(x) are
exact and the remaining coefficients obtained in the computation should be
discarded. Moreover, substituting t = $'2,dix’ for £ in y = y(¢) is not a cheap
computation, especially for high-degree local explicit approximations. Hence, the
computation of local explicit approximations of a parametric curve directly from
r{t) is more costly than the implicit form. In general, the computation of local
implicit approximation involves generating the a7 and solving the linear system,
which is fairly efficient for low-degree approximation.

The local explicit approximation is an analytic function that does not exist at
a curve singularity. In contrast, a local implicit approximation always exists.

Example 3.5 Local implicit approximations can be derived at singu-
larities, including cusps, where local explicit approximation fails. Let cglt) =
(5t° + 2t% ¢* — 3¢% + 2£%) with the implicit form filx, ) = —x* + 55 +
683x% + 1325xy® + 625y" — 336x% + 672xy — 336y The origin is a cusp of
cs(t) with tangent x — y = 0. The degree 2 local implicit approximation is a
double lime (x — ¥)? which is the best degree 2 approximation one can derive at
cusp. The degree 3 local implicit approximation is x2 — 2xy + ¥? — 0.16259766x°
— 2.0356445x —~ 3.940918xy® — 1.8608398y°, which shows VEry nice approxi-
mation to the cg(£) with ¢in [—1, 1]; see Figure 6. As a next example, we consider
Co(t) = ((6t° — 16t + 106 + 46%)/w(t), (¢° + t* + 2¢° — 16¢2)}/w(t)), where
w(t) = 0.1t% + 0.1t* — 2t + 12.5. The cq(t) is a singular curve with a cusp at the
origin and a self-intersection as well, as shown in Figure 7. Figure 8 shows the
degree 3 and degree 4 local implicit approximations of ¢y(¢). The degree 4 local
implicit approximation shows remarkable performance.

4. LOCAL IMPLICIT APPROXIMATION OF PARAMETRIC SURFACES

We derive an implicit surface g(x, ¥, 2) = 0 that approximates the parametric
surface P(s, t) = (x(s, ¢), ¥(s, t), (s, t)) at the origin to a specified order of
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8.0 y
3git)
2
=4.0 Sftl B.0 x
cikt}) : degree 4 curve wlth t in [-1, 1].
10,0) is a cusp-
Label 1 : degree 1 local impliclt approximation-
-4.G
Fig. 6. ca(t) = (56> + 2t 01 — 385 + 2t%).
eft) : degree 5 rational curve.
The origin is a ecusp and a self-intersection polnt.
E.Z b4
clt}
-2.0 2.3 x

cic)

3.0

) 565 — 16t + 1027 + 4£2 £+ ¢+ 287 — 1682
Fig. 7. cft) = 3 2 . 3 2 .
0.1 + 0,142 — 2t + 1257 0.12° + 0.1¢2 = 2t + 125
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c(t} : degree 5 rational curve,
The origin is a cusp and a self-intersection point.
Label {1 : degreec ! local implicit approximation.

1.2 ¥y
clt)
2.0 2.0 x
-—""“3
cit)
3.0

. 5% ~ 16t* + 1022 + 442 £+ 289 — 1682
Flg. 8. Cg(t) = 3 2 f 3 P .
0.1£% + 0.18% — 2t + 125" 0.14° + 0.162 — 22 + 12.5

contact, using the method of Section 3. Let

_ (P& ) g5, t) r(s,¢)
P(S, t) - (x(s) t)l y(s, t)) Z(S, t)) - (UJ(S, t)l w(S, t)! w(s, t))

be a rational parametric surface of total degree m containing the origin, where

Pls,t) = 3 ays't, qls,t)= 3 bse,

i+jal i+j=1

ris, t) = X cys't), wis, t) = ) dys't,
i+j=1 i+j=0

with a;;, by, ¢;, t + j = m, not all of these zero and dgy 7 0. It has been shown by
Macaulay [18] that a parametric surface of the above form has an irreducible
implicit form f(x, y, 2) = 0 of degree d < m2

Let g"(x, y, 2) = 2= vz n < m? with symbolic coefficients e,
be a general implicit form of a degree n surface that contains the origin. Since
& (x, ¥, z) = 0 is unique up to a constant factor, it has degrees of freedom
p(n)=({(n+ D(n+2)(n + 3))/6 — 2.

When substituting x (s, ¢), ¥(s, t}, and 2(s, £} into g~ (x, ¥, 2), we obtain

G*(p(s, t), qls, £), r(s, £), wis, £)) Divg=1ay8't
n sl t ? S’ t ¥ z s! t = n = I
&"(x(s, t), y(s, t), 2(s, t)) (s, 1)) (WG, 1)
where G*(x, v, 2, w) is the homogeneous form of g"(x, y, z), and the oy are linear
combinations of ;. The local implicit approximation g” (x, ¥, 2) of the parametric
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surface P(s, t) is computed as in the case of the curve approxzimation. The
following section shows the recursive derivation of «; that obviates the need to
explicitly substitute.

4.1 A'Recurrence for oy
Let G*(x, y, z, w) and G* (x, y, z, w) denote the homogeneous polynomials of
g"(x, y, z) and g""(x, v, 2), respectively. Since

gn(x, Yy, Z) = gn—l(x, Y, Z) + E efkaiyjzk

i+itk=n
we have

G™"(x, y, 2, w) =wG" Yz, 5, 2w+ X epxyz (5)

i+j+k=n

We define (a(&))y;, (b(k));, and (c(k)); as in [20] by setting

m k km
(p(s, £))* = ( > asjs'ltj) = Y (a(k))yst

i+j=1 i+j=k
and similarly for

km
(g(s, tHF = 3, (b(k))ys't!
i+jmk
and
km

(r(s, )= 3 (c(k))ys't’.
=k
Recursive derivations for (a(k));, (b{k));, and (¢(k)); can be found in {20]. Let
af; and «f~" be the coefficient of st/ in G™(p(s, t), q(s, t), r(s, t), w(s, £)) and
G p(s, t), qs, t), r(s, £), wis, t)), respectively. From (5), af can be derived
from the ™", where 1 < 2 <iand 1 =< ! =<j, as shown in the following formula:

min—1)
afj = coefficient of s’ in (w(s, t) ), af st/
l"l'j=1
T (Dl ), )G, %)
Ey+kytEy=n
£
= 2 2 aliMdeng-n
f1=1 12=r1
+ Z 2 eklkzka (a (kl))p|ql (b (kz))png (c (k3))p3q3
Iy +kpthg=n ptpytpa=i
g taa+gqz=J

Note that oc,!j = e100Q;; + emobfj + epn Cii-
For an integral parametric surface P(s, t), since (a(k)); =0, (b(k)); =0, and
(c(k))iy =0fori+ j<kand al=0fori+ j> (n — 1)m, we have

forl<i+j=n-—1,

n __ n—1
Qy =
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forn<i+j<(n—1)m,

af=af '+ ) > €rutahs (0 (R1))pyg, (B(k2)) pyg, (€ (B3))p g
ftkatha=n p+pa+pi=i
qitaytan=j

andfor(n—)m<i+j = nm,

ag= ¥ @ikt (@ (R1)) g, (B (k) )y, (0 (a g,
k1+k2+k3=n p1+p.2+p:|=g:
htgutgz=;

4.2 Derivation of the Method

4.2.1 Rank of the Linear System. Having derived e, l+ji=1,2 ..., nm,
for the degree n implicit approximation g"(x, y, z), we write the system of

linear equations C\fi‘o = 0, C\'!Sl = 0, O!gg = 0, 01‘111 = 0, Ct'gz = 0, -y Ct?nm)g = 0,
a?um—l]l = 0, ey a?(nm—l) = 0, aa‘(nm, ={0in matrix form
A..e.=0 (6)
here e, = (€100, €010, 0015 €200, 110, C101. Conn. € €o0n) " is th t
W n 100, 0105 €001, €200, €110, €101, €020, €011, €00z, - . ., €gon) 1S the vector

of unknowns. A, so defined is of dimension ((nm + )(nm + 2))/2 — 1 by
p(n) + 1 and has a rank of at most p(n) + 1. As in the curve case, the rank of
A,.. is critical when solving for the unknown coefficients e;x. The following
theorem characterizes the rank of A,

THEOREM 4.1 IfP(s, t) is a properly parameterized rational surface of total
degree m, then

pn)+1 ifn<d

rank(A,,.) = { :
p(n) ifn=d

where d(=< m®} is the degree of the implicit form of P(s, ¢t).
PROOF. Similar to proofs of Lemmas 3.2 and 3.3. ]

As a result of Theorem 4.1, it is clear that the exact implicitization of P(s, £)
is the solution of A,,.e,. = 0, with one variable set to a fixed value.

4.2.2 The Algorithm. We compute the degree n implicit approximation
&"(x, y, z) as follows: Let

Be, =0 (7}

be the subsystem of (6) that consists of the first § equation of (6) such that B
has rank p(n). Augment the system (7) with o = 0, where « is determined as
follows: If the origin is a regular surface point, « is ;59 — 1, ep0 — 1, 0T €gy; — 1
depending on the gradient of the surface at the origin. If the origin is a singular
surface point, then a = €jx ~ 1 where the indices i, j, and % are selected by
inspection. Thus, a linear system

Ce.=b (8)

that has a nontrivial solution for e, is obtained.
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System (8) may be an inconsistent system. If this happens, some equations
must be removed from (8) to ensure the consistency.

One alfternative for handling inconsistencies is that we replace « = 0 in (8)
with e,00 — 1 =0, egno — 1 = 0, oT €gp. — 1 = 0 and then solve it as usual.
Experiments show that g”(x, y, 2) computed by this method can be of the form
{ax + by + cz)" for some g, b, ¢, that is, it degenerates to the tangent plane. To
remove this degeneracy, we do the following:

(1) Solve for g'(x, y, z) and compute
E ﬁijsl-tj = (gl(x(S! t)) }'(3, t)l Z(S, t)))n

i+fag

(2) Consider the linear system that consists of the first s’ equations of (6) and
a=10,where a =0 iS€p00 — 1 =0, €m0 —1=0,0regp, —1=0and s’ is
chosen such that the coefficient matrix of the system has rank p(n).

(3) Find a 8;; that is nonzero and augment the corresponding a;; = 0 to the above
system; then solve 1t.

This computation of the local implicit approximation results in an approximant
that has roughly n*2-th order of contact. Thus, when raising the degree of the
approximant, the order of contact with the surface P (s, £) grows subquadratically.

Example 4.1 Consider P(s, £) = (x(s, £)/w(s, ¢}, ¥(s, t)/w(s, t), z{s, t)/w(s, t))
where

x{s, t} = —200¢% + 12st + 400t — 200s% — 10s
y(s, £) = 15¢% — 14st + 10t — 11s® + 400s
z(s, t) = 2002 + 11st — ¢ + 200s% + 2s
w(s, t) = 100£%2 — 200t + 100s® + 200

We compute degree 2 and degree 3 local implicit approximations

g%(x, v, z) = —108.442942% — 10.264638yz — 13.162097x2z + 381.19047z
—95.092836y% — 5.241114xy — 1.8809524y — 94.85476x” + x

and

gx, ¥, z2) = 1.30121262° + 5.16125y2* — 46.69081x2> — 103.8181642>
— 1.1158845y%z + 15.622598xyz + 4.518084yz
+ 1.267575x%z + 180.40466xz + 381.19047z — 3.6884814y°
— 48.00386xy* — 95.16589y% + 5.5613696x% — 6.1573525xy
— 1.8809524y — 44.977395x% — 94.34699x% + x

Note that the normal of f*(x, y, 2), the exact implicit form of P (s, t), at the
origin 1s almost parallel to z-axis. Thus, to show the performance of the local
implicit approximation, we intersect the cylinder h(x, v, 2) = x* + y* — r2 =0
with the surfaces f%, g2 and g® and plot the intersection curves of f* =
0Nh=0,g2=0Nhk=0,and g2=0Nh =0 in one figure. Figures 9 and 10
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Fig.8. f'=0Nnh=0andg’=0Nh=0.
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Fig. 10. f*=0Nh=0,andg’=0Nk=0.
ACM Transactions on Graphics, Vol. 8, No. 4, October 1989.




On Local Implicit Approximation and Its Applications . 323

show the intersection curves in cylindrical coordinates for r = 0.25, 0.5, 0.75,
1.00, 1.25, 1.50, and 1.75. Table IV lists the maximal deviations between the
intersection curves f*=0Nh=0and g>= 0N h = 0, and the deviations between
f'=0Nh=0andg?=0Nh=0.

5. REMARKS ON RESULTANTS

Different resultants are formulated in the classical literature for the purpose of
eliminating variables from systems of algebraic equations. Early expositions of
several formulations are found in [21]. In essence, resultants constitute a projec-
tion due to which all formulations applied to surface implicitization contain
extraneous factors. For example, given the parametric form of the sphere,

1 — 52—

g ="—"2"—
x(s, £) 1+ s+ ¢2
2t
t —
(s, t) 1+ s2+¢2
2s
2(s, t) 1+ s24+¢2

elimination of s and { with the Sylvester resultant yields
256 (x + 1)4(x2 + y2 + 22 — 1)
and with Dixon’s resultant, we obtain
—64(x+ 1){(x*+y2+22—1)

Technically, a resultant is based on formulating a system of linear equations
with symbolic coefficients. This is especially apparent in the derivation of the
Sylvester resultant. Macaulay recognized that extraneous factors are technically
related to dependent equations, and that they can be eliminated by division by a
surtable minor [19]. Modern work on the multivariate resultant tries to find this
minor algorithmically, that is, to recognize and eliminate extraneous factors; see,
for example, [3] and [6]. In our approach, a linear system is formulated numeri-
cally; hence dependencies among the equations are easy to recognize. If the
approximant is formulated with the exact degree of the implicit form, then our
approach determines the implicit form without extraneous factors. If an approx-
imant of higher degree is determined with our approach, then a reducible implicit
form could be generated.
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