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 25 

Capsule Summary: 26 

WUDAPT, an International community generated urban canopy information and 27 

modeling infrastructure (Portal) to facilitate urban focused climate, weather, air quality, 28 

and energy use modeling application studies.  29 

 30 

Abstract 31 

WUDAPT is an international community-based initiative to acquire and disseminate 32 

climate relevant data on the physical geographies of cities for modeling and analyses 33 

purposes. The current lacuna of globally consistent information on cities is a major 34 

impediment to urban climate science towards informing and developing climate 35 

mitigation and adaptation strategies at urban scales.  WUDAPT consists of a database 36 

and a portal system; its database is structured into a hierarchy representing different 37 

levels of detail and the data are acquired using innovative protocols that utilize 38 

crowdsourcing approaches, Geowiki tools, freely accessible data, and building typology 39 

archetypes. The base level of information (L0) consists of Local Climate Zones (LCZ) 40 

maps of cities; each LCZ category is associated with range of values for model relevant 41 

surface descriptors (e.g. roughness, impervious surface cover, roof area, building 42 

heights, etc.). Levels 1 (L1) and 2 (L2) will provide specific intraurban values for other 43 

relevant descriptors at greater precision, such as data morphological forms, material 44 

composition data and energy usage. This article describes the status of the WUDAPT 45 
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project and demonstrates its potential value using observations and models. As a 46 

community-based project, other researchers are encouraged to participate to help 47 

create a global urban database of value to urban climate scientists. 48 

 49 

INTRODUCTION 50 

The Anthropocene Epoch, the human influenced geologic time period (Crutzen and 51 

Stoermer, 2000), is linked inextricably to urbanization. Human activities in this epoch 52 

have had a demonstrable impact on climates at all scales and without proper 53 

management increased urbanization will contribute to associated extreme and 54 

unexpected weather events in cities. Currently, more than half of the planet’s population 55 

resides in urban areas and by 2050, up to 75% are projected to live in cities of varying 56 

sizes (United Nations, 2014). The development of ever more powerful computer models 57 

to simulate weather and climate, air quality, hydrology and other environmental 58 

processes now allow us to evaluate the impacts of urban areas on climate processes 59 

and to assess urban vulnerabilities to natural hazards. These tools are needed to 60 

support urban management, to mitigate deleterious effects and to support resiliency 61 

strategies but require climate relevant information on urban landscapes to be effective 62 

(Masson et al., 2014)  63 

The effect of urbanization on the environment is an outcome of its physical form (i.e. 64 

the land-cover, the materials and the geometry of buildings) and its functions (the 65 

transportation, energy usage, generation of waste products) that sustain human 66 

activities. These vary spatially and temporally and act in concert to adversely affect local 67 

climate, hydrology, biodiversity and air quality. These impact on the quality of life and 68 

http://www.eoearth.org/article/Geologic_time


 

4 

 
[Type text] 

 

  

sometimes enhance risks to public health; for example, the urban heat island is 69 

exacerbated during heat wave events and makes city dwellers especially exposed to 70 

heat stress. It is therefore crucial to characterize as best as possible these urban 71 

properties, so to be able to predict, via modeling (Chen et al., 2010), the hazard, 72 

exposure and vulnerabilities of urban dwellers to present and future environmental 73 

states (NRC, 2012). Sustained research on urban meteorology and climate over the 74 

past 50 years has provided insights into the layering of the urban boundary layer and its 75 

links with the underlying surface (Fig. 1a, courtesy of Tim Oke (2006)) As a result, state-76 

of-the-science numerical models can simulate the surface energy budgets, weather, 77 

climate and air quality.  78 

Examples include the Surface Urban Energy and Water balance Scheme (SUEWS), 79 

Weather Research & Forecasting (WRF) model, the Community Earth Systems Model 80 

(CESM) and the Community Multiscale Air Quality (CMAQ) model; each of these 81 

systems continue to evolve, providing enhanced capabilities, results and guidance at 82 

increasingly finer grid resolutions. However, these models are reliant on appropriate 83 

data that captures the spatially varying and temporally evolving characteristics of urban 84 

surfaces; Fig. 1b (courtesy of Andreas Christen) shows common urban canopy 85 

parameters (UCPs) that are needed by ‘urbanized’ climate models. In North America, 86 

the National Urban Database and Access Portal Tool (NUDAPT) compiled this 87 

information for parts of 40+ cities (Ching et al., 2009) but in most places the data to 88 

derive UCPs are either not available/incomplete and/or available at poor 89 

spatial/temporal resolutions. The absence of internationally consistent urban data for 90 

such purposes is recognized by global-to-urban climate science communities to be a 91 
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significant impediment to scientific progress (Jackson et al., 2010; Revi et al., 2014, 92 

Baklanov et al., 2015). Overcoming this impediment is the aim of the World Urban 93 

Database and Access Portal Tool (WUDAPT) project.  94 

In this paper we review the concepts and operational methodologies that underpin 95 

WUDAPT (Ching, 2013, Ching et al., 2016, 2017b), present some initial results and 96 

present near term plans. Our intent is to introduce the project and demonstrate its value 97 

to the climate community and, while individual experiments are introduced, the research 98 

details are referenced rather than discussed in detail.   99 

 100 

2.  WUDAPT OVERVIEW  101 

The goals of WUDAPT are to (1) acquire and make accessible coherent and consistent 102 

descriptions and information on form and function of urban morphology relevant to 103 

climate, weather and environment studies on a worldwide bases and (2) provide a portal 104 

with tools that extract relevant urban parameters and properties for models and for 105 

model applications at appropriate scales for various climate, weather, environment, 106 

urban planning purposes. Its guiding principle is to generate “fit-for-purpose” urban data 107 

using a globally consistent methodology using available, publicly accessible input data 108 

and tools. Products created from this process are shared across multiple communities 109 

and platforms.  110 

 The data needed to apply models successfully to cities must meet several 111 

criteria.  First, the modeling description of the urban surface must permit the model to 112 

resolve the temporal and spatial characteristics of the mesoscale urban boundary layer, 113 

including properties at local scales (Fig. 1a). Second, the spatial gradients of the inputs 114 
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(and thus the output) fields are typically highly variable across urban landscapes; 115 

consequently any coarse model grid must represented sub-grid variations (Ching, 2013, 116 

Mouzourides et al., (2013, 2014)). Third, data requirements for urbanized models can 117 

be highly specialized; typically, they are distinguished by their need for UCP information 118 

on building height, vegetative cover, building materials, etc. (Masson, 2000, Martilli et 119 

al., 2002, DuPont et al., 2004; Otte et al., 2004; Oleson et al, 2008) (see Table 1 and 120 

Fig 1b). Fourth, for worldwide applicability, UCPs should be collected using a scheme 121 

that is consistent and reliable. Finally, given the time frame, the generation of this 122 

database should be practicable and achievable on a reasonably short time frame for 123 

greatest impact. WUDAPT adopts a pragmatic approach to meet these criteria.  124 

The components of the urban landscape that are relevant to climate can be 125 

organized by scale into facets, elements, streets and blocks and neighborhoods (Oke et 126 

al., 2017). Facets describe flat and uniform features that are distinguished by their slope 127 

and aspect and radiative and thermal properties; elements are the combination of facets 128 

that creates 3D features like building typologies; streets and blocks represent the 129 

organization of elements to form distinct geometries and neighborhoods describe a 130 

common and repeated amalgams of facets, elements, streets and blocks over an area. 131 

To cope with this complexity, WUDAPT information is organized by level of detail (L) 132 

and data at each level is gathered using distinct methodologies and techniques. 133 

The lowest level of detail (L0) maps cities and their surrounding natural landscape 134 

into Local Climate Zone (LCZ) types (Stewart and Oke, 2012). L1 data uses the LCZ 135 

maps to provide a sampling context for acquiring and managing information at finer 136 

scales. L2 data are complete information on all urban elements (e.g. building footprints, 137 
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envelope fabrics and heights) which may exist for some, albeit coverages limited to a 138 

few cities; for example, NUDAPT data for Houston includes detailed information 139 

(dimensions and construction materials) for every building in the city center (Ching et 140 

al., 2009), and MApUCE data comprises a complete inventory of buildings in France 141 

(Masson et al., 2015).  142 

 The protocol for deriving and using L0 data is now well developed (Bechtel and 143 

et al., (2012, 2015, 2017a, 2017b); and there are currently over 80 cities globally for 144 

which data are available. The methods for acquiring, managing and using higher level 145 

data within the WUDAPT framework is being developed (see Section 4) but WUDAPT is 146 

already recognized as a framework for urban climate research to integrate more 147 

complex physical process in urban canopy models (e.g. Wouters et al., 2016).  148 

 149 

Level 0 Data  150 

The Stewart and Oke (2012) LCZ typology was designed primarily to describe the 151 

features that impact on the near-surface local thermal environment, specifically the roles 152 

of land-cover and anthropogenic heat on the magnitude of the observed urban heat 153 

island (e.g. Alexander and Mills, 2014). Its outstanding merit is that it is designed as a 154 

culturally neutral description of urban landscapes and critically, each of the 17 basic 155 

types (10 of which are urban or UCZ) is associated with typical value ranges for a set of 156 

key urban canopy parameters (Table 2). L0 data are derived using Landsat data, image 157 

software and the knowledge of urban experts (see Bechtel and Daneke, 2012 and 158 

Bechtel et al. 2015 & 2017a). The urban expert is critical to the process as they create 159 

the training areas (TAs), which identify the parts of the city under study that exemplify 160 
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each LCZ type. This information is used to classify Landsat scenes into LCZ maps 161 

using a Random Forest (RF) classifier implemented in the SAGA software (Conrad et 162 

al. 2015)   163 

       The quality of the L0 data relies on the skill of the experts that create the TAs and 164 

considerable effort has been placed on training of the expert and independent 165 

assessment of the TA data. The current quality control scheme emphasizes the 166 

statistical reliability of a city database by randomly dividing the TAs into a set for training 167 

and a set for evaluation purposes. With each iteration, a LCZ map is generated for a 168 

given TA set and the resulting LCZs are compared with the evaluation set; overall 169 

accuracy (OA) is measured as the percent of LCZ values that are predicted correctly. 170 

Repeatedly sampling (that is, bootstrapping) from the TAs allows us to measure the 171 

robustness of the LCZ map, that is, the consistency of the LCZ map when using 172 

different sets of training areas. A WUDAPT committee that oversees the quality of the 173 

L0 data examines the final LCZ map to ensure that it provides an accurate depiction of 174 

the urban landscape. There are currently more than 80 cities that are in the WUDAPT 175 

database; the reader should refer to the website (www.wudapt.org) for updates. 176 

       Each LCZ map encodes UCP values that can be used in models, a subset of the 177 

list of parameters is shown in Table 2 from Stewart and Oke (2012) and its 178 

supplemental material); these UCPs are used in models and climate analyses.   Fig. 2 179 

shows as an example, the LCZ map for the Chicago area alongside a map of the 180 

pervious fraction that has been generated from a lookup table (Table 2); note that LCZ 181 

types are associated with ranges of UCP values. Establishing the veracity of the derived 182 

data is not straightforward, as it requires independently derived information that is 183 

http://www.wudapt.org/
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comparable in scope and spatial resolution. Experiments on a few cities have shown 184 

good agreement but these tests are, to this point, limited to plan area fractions in 185 

western cities (Mills et al., 2015, 2017a,b).   186 

 187 

3) The WUDAPT Portal 188 

The portal is designed to support climate research that requires urban information 189 

(Ching et al., 2015). Critically, it should allow users to extract relevant data at an 190 

appropriate spatial scale for modeling purposes. Currently, WUDAPT provides tools that 191 

can utilize the L0 data (Fig 3a) but other tools that require L1/L2 data are being 192 

designed; here we describe two portal tools, W2W (Fig 3b) and SCALER (Fig 3c). 193 

       The W2W tool was developed to convert L0 data into a gridded format suitable for 194 

urban schemes used in the WRF model; these include the Single Layer Urban Canopy 195 

Model (Kusaka et al., 2001, 2004) and the Building Effect Parameterization and Building 196 

Energy Model (BEP-BEM) scheme (Martilli et al., 2002, Salamanca et al., 2010). 197 

Converting the LCZ parameter information into UCPs suitable for these schemes 198 

requires some modification. For example, BEP-BEM requires information on street 199 

width, building footprints and pervious surface cover that can be estimated from the LCZ 200 

data by selecting the mid-point values of the available ranges (Table 2). It also requires 201 

information on the distribution of building heights within a grid cell, for which there is not 202 

a unique solution. The simplest option, which is in use, is to choose three heights, one 203 

close to the mid-point value (considering the constraint that it must be multiple of 5 m) 204 

with a probability of 50%, and two other heights above and below that, but within the 205 

given range and a multiple of 5 m, with a probability of 25%. The important point 206 
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however is that W2W provides a standardized means for incorporating UCPs into 207 

urbanised WRF and permits greater comparability between studies (Brousse et al., 208 

2016); some examples are shown in the next section. Current and subsequent updates 209 

of W2W documentation (Martilli et al., 2017) is provided as a link under “Resources” in 210 

www.wudapt.org  211 

 212 

       SCALER generates appropriately scaled model inputs to various modelling systems 213 

(Fig 3c). This tool uses the principle of the Multiple Resolution Analysis (MRA) to 214 

manage the multi-scale grid requirements of users (Mouzourides, et al., 2013 and 215 

2014). Its unique feature is its ability to retain sub-grid data on the input parameters as 216 

the selected model grid scale is increased. This allows the impact of sub-grid UCP 217 

variability on resulting model outputs to be examined and enables a clearer 218 

understanding of the role and impact of such parameters on the behavior of a complex 219 

urban system. It has already been used to explore the scale dependent links between 220 

energy demand and urban weather (Neophytou et al., 2015, Mouzourides et al., 2017).   221 

 222 

3. INITIAL ANALYSES AND SAMPLE APPLICATIONS  223 

The innovation of the LCZ scheme explained earlier is that it provides a common 224 

platform for comparing cities in terms of urban form and, to a lesser extent, urban 225 

function (Stewart and Oke, 2012, Gal et al., 2015). Fig. 4 shows a sample of LCZ (and 226 

their corresponding urban canopy parameters) maps for a variety of cities revealing 227 

their unique and distinct spatial patterns of distribution. Thus, each urban area will have 228 

its own unique spatial distribution of urban canopy parameters and therefore, 229 

http://www.wudapt.org/
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mesoscale modeling outcomes. The areal coverage for each LCZ type present is shown 230 

in Table 3 for both the region of interest (ROI) and official urban administrative area 231 

(shown in Fig. 4). Generally, relatively small proportions are occupied by compact urban 232 

neighborhoods – the exception is Shanghai but it has the smallest area within the 233 

official city boundary. Chicago and Vancouver are distinguished by the extent of the 234 

open low rise (LCZ 6) and the extent of nearby water. Low plant (LCZ D) characterizes 235 

the natural cover outside most cities but in the case of Sao Paulo it is dense trees (LCZ 236 

A).  237 

These different LCZ geographies should give rise to different urban climate 238 

effects. To illustrate, Fig. 5 shows the LCZ maps for Sao Paulo (Brazil) and Mumbai 239 

(India) alongside MODIS derived mean annual surface temperature (MAST), which was 240 

computed from a 12 year time series of MODIS land surface temperature acquired at 241 

22:30 local time and is a cloud free, robust and representative measure of long-term 242 

land surface temperature (Bechtel, 2015). The spatial pattern and magnitude of 243 

temperature clearly corresponds with the underlying LCZ surface cover.  244 

In the following examples, the potential for a consistent climate-based landscape 245 

classification scheme are illustrated for the ubiquitous urban effect on temperature (i.e. 246 

the urban heat island or UHI). But of course, there are many other applications such as 247 

air quality modeling, the creation of urban climatic maps to aid climate sensitive urban 248 

design (Ren et al., 2017) and improving the representation of cities in global climate 249 

models (Feddema et al., 2015).  The UHI, which includes the urban effect on surface, 250 

sub-surface and air temperatures, is one of the often-studied aspects of the urban 251 

climate. The surface UHI (UHIsurf) as observed from the vantage of a satellite (e.g. Fig. 252 
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5), and the near-surface (canopy level) UHI (UHIUCL) are often used as measures of 253 

urban impact on building energy use and heat stress (Oke et al., 2017). 254 

The cause of UHIsurf is primarily linked to the properties of construction materials 255 

(their radiative and thermal properties) and their dryness state – as consequence, urban 256 

surfaces  (when viewed from above) generally tend to be warmer by day and night (Oke 257 

et al., 2017). Therefore, the magnitude of the UHIsurf depends on both the character of 258 

the urban surface and the nature of the surrounding non-urban landscape (vegetative 259 

cover, moisture status, season, etc.). The UHIsurf can be simulated by solving the 260 

surface energy balance, which accounts for the exchanges of radiation, sensible and 261 

latent heat fluxes between the surface and the overlying atmosphere. The Surface 262 

Urban Energy and Water Balance Scheme (SUEWS) model can derive these energy 263 

balance terms using commonly measured meteorological variables and information 264 

about land-cover. For a given area it requires the fractional areas occupied by paving, 265 

buildings, coniferous trees/shrubs, deciduous trees/shrubs, irrigated grass, non-irrigated 266 

grass and water. SUEWS has been evaluated across a range of urban landscapes and 267 

is ideally suited to simulate surface-air exchanges during weather dominated by clear 268 

and calm conditions that are conducive to UHI formation (Järvi et al., 2011). 269 

 Alexander et al. (2016) used SUEWS to examine the climate impacts of different 270 

urban development paths, using the example of Dublin, Ireland. Fig. 6 shows the results 271 

of a simulation experiment, comparing the average surface temperature for June for 272 

Dublin in 2026, based on projections of population growth and urban growth made in 273 

2006. Land-cover in 2006 and 2026 was converted to LCZ types, which were then used 274 

to derive parameter values for SUEWS and simulations based on current climate. The 275 
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results show a more extensive UHIsurf that reflects the replacement of natural surface 276 

cover by urbanisation. On the other hand, an alternative projection based on increased 277 

building density rather than expanding the urban footprint does not change the UHIsurf 278 

appreciably. This experiment shows the potential value of WUDAPT data in an applied 279 

planning context. 280 

 The urban canopy layer UHI (UHIUCL) describes the impact of cities on the near-281 

surface (~2 m) air temperature; typically, the near-surface air in cities is warmer than 282 

that in the surrounding natural area and is strongest at night under clear skies and calm 283 

conditions in densely built parts of the city. Although it is linked to the UHIsurf it has its 284 

own distinct genesis processes linked mostly to: the geometry and underlying material 285 

composition of the UCL which regulates the nighttime loss on longwave radiation (Oke 286 

et al., 2017); the thermal character of the built fabric, which stores daytime heat and 287 

anthropogenic additions of heat. Atmospheric models that simulate the UHIUCL require 288 

detailed information on the character of the urban canopy. The most sophisticated 289 

models will nest the microscale details of the urban canopy layer within larger scale 290 

mesoscale processes that regulate the background climate.  291 

 Fig. 7 shows the results of a study on the Madrid UHIUCL using WRF with the 292 

BEP-BEM scheme. The modeling setup consisted of 5 nested domains with Madrid 293 

located in the inner domain of 7200 km2 (shown in the inset at the top of the figure) 294 

comprised of 240 x 270 cells at a resolution of 333 m. The W2W tool generated the 295 

UCPs corresponding to the L0 maps were used for the urban cells in the inner domain. 296 

Fig. 7 shows the simulated surface air temperature under ideal weather conditions for 297 

UHIUCL formation, which shows the correspondence between the urban footprint and the 298 
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magnitude of the heat island. The model output using WUDAPT data was compared 299 

with output derived using data in the European Environment Agency’s Urban Atlas, 300 

http://www.eea.europa.eu/data-and-maps/explore-interactive-maps/urban-atlas-for-301 

europe that has limited information on land cover within municipal boundaries. 302 

Observations made at a weather station network in the city provided an independent 303 

assessment of model performance. The results showed that performance of the model 304 

using L0 corresponding UCPs improved model performance by ~10% based on RMSE 305 

and Mean Bias indicators. Given the relative ease with which LCZ maps can be 306 

generated, the results show the potential to greatly improve urban modeling capacity, 307 

particularly where no other land-cover data are available (Brousse et al. 2016). 308 

Heat waves are a leading cause of weather related fatalities globally and there is 309 

evidence that the UHI can act synergistically with expected global climate change to 310 

enhance the risk to public health in cities (Li and Bou-Zeid, 2013). In Fig. 8 the results of 311 

a study into heat stress in New Delhi, India are presented. In this study a baseline event 312 

was simulated based on a heat wave event (May 22-27th, 2015) that advected very hot 313 

and dry air into the city; during this period the maximum and minimum temperatures in 314 

New Delhi reached 46°C and 32°C, respectively. To examine the impact of urban 315 

growth on the intensity and extent of the associated heat stress, L0 data were 316 

generated for the modeling domain at two time periods (1977 and 2015) and the W2W 317 

tool was used to generate appropriate UCPs values for WRF (Niyogi et al., 2017). 318 

Simulations were performed using the synoptic forcing conditions that prevailed during 319 

the 2015 event and the NOAA Heat Index (HI) was calculated. HI represents the heat 320 

stress associated with high temperature and relative humidity as an ‘apparent’ 321 
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temperature; in Fig. 8 the difference between the HI values for 2015 and 1977 is 322 

presented. This difference map shows that urban development has increased both the 323 

spatial extent and the magnitude of the heat stress. This example illustrates the value of 324 

improved urban land cover descriptions for extreme weather modeling predictions.  325 

 326 

4. CURRENT STATUS and NEXT STEPS   327 

As it stands, researchers can use open source tools and Landsat data to generate L0 328 

data quickly, which overcomes a major obstacle to model application where there are 329 

no data currently. In addition to the projects presented above, which focused on the 330 

urban heat island there is evidence that the dynamics and chemistry simulated in urban 331 

models are sensitive to the description of the underlying city surface. Fig. 9 shows 332 

preliminary results from a study of air quality in Guangzhou, China using the single-layer 333 

urban canopy model coupled to Noah in the WRF-Chem model (Grell et al., 2005, 334 

Kusaka et al., 2001), depicted is the time-height cross-section of simulated PM2.5 335 

distribution in the UBL for a fair weather period (15-17 Oct. 2014) that corresponded 336 

with a pollution episode. The cross-sections show two simulations based on a generic 337 

‘urban’ category (Fig. 9a) using UCP values from Zhang et al. (2010a, b) and based on 338 

WUDAPT-L0 data (Fig. 9b). The observable differences are the result of the simulated 339 

wind fields that reflect advanced urban physics parameterizations in WRF that can take 340 

advantage of the quality of urban data provided. Also, preliminary work on modeling air 341 

quality over Sao Paulo (Dirce et al., 2017) confirms that significant spatial and temporal 342 

variability in the complex 3-D flows and mixed layer height variations across the city are 343 

evident when more precise urban data (i.e. L0 data) is provided.  344 
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 345 

While WUDAPT continues to acquire L0 data for additional cities, the long-term strategy 346 

recognizes the need for a multi-dimensional approach to data gathering and processing 347 

with an emphasis on gathering additional socio-economic and surface variables. There 348 

are a number of activities underway to improve WUDAPT and its products and extend 349 

modeling application capabilities. 350 

 351 

a. L0 data quality and UCP precision 352 

Much of the effort in designing the protocol for L0 data has focused on ensuring the 353 

quality of the data. For example, experiments have demonstrated that using a 354 

contextual classifier that takes into account information in neighboring pixels during the 355 

LCZ mapping process can significantly improve the quality of the map (Verdonck et al., 356 

2017). However, the quality of the training areas (TAs) remains the foundation of the 357 

protocol for generating the LCZ maps. At a minimum, L0 data should be reproducible by 358 

independent evaluators to achieve a high level of self-consistency but experience has 359 

shown that there is considerable variation among the urban experts in their creation of 360 

TAs. As part of The HUMan INfluence EXperiment (HUMINEX) initiative, Bechtel et al. 361 

(2017) investigated 94 crowd-sourced training datasets for ten different cities. The 362 

results indicate that while LCZ maps generated by TAs from one individual may be of 363 

poor quality, increasing the number of training data revisions and combining multiple 364 

training sets increases the quality of L0 data considerably.   365 

 In related work, cross-evaluations are being undertaken with comparable urban 366 

land-cover information where it is available, such as the impermeable surface cover 367 



 

17 

 
[Type text] 

 

  

recorded in Europe’s Urban Atlas and the built cover available in the Global Human 368 

Settlement Layer (Pesaresi et al. 2013). This work also has the potential to provide 369 

more precise UCP values for LCZ types, which is currently based on the information 370 

presented in Table 2. The objective of this endeavor is to generate guidance for 371 

assigning most probable values of UCPs by LCZs to each grid in the modeling domain.  372 

 373 

b. Actions to acquire higher level data 374 

Developing richer urban databases, both in terms of spatial detail and adding other 375 

relevant variables (such as building and vegetation characteristics) are a goal for the 376 

next phase of WUDAPT (Ching et al., 2017a). The information on buildings will be 377 

gathered using an approach similar to that for gathering L0 data, that is, to develop and 378 

employ an international building typology with associated physical and functional 379 

properties. Data acquisition will rely on crowdsourcing techniques such as smartphone 380 

and web-based tools and will utilize the WUDAPT community (See et al., 2015). The 381 

paradigm for this initiative is based on the MApUCE project, which employs France’s 382 

building database to extract detailed UCPs related to building dimensions, construction 383 

materials and occupation patterns (Masson et al., 2015 and 2017). Members of the 384 

Passive Low Energy Architecture (PLEA) community are helping to create the WUDAPT 385 

building typology (Ching et al., 2017b). The existing L0 data (that is, LCZ maps) will be 386 

used to provide a context for the data gathered and manage sampling across the urban 387 

landscape. The quality evaluation will require other independently derived data such as 388 

that available in some national censuses. Where possible, advanced satellite data and 389 

processing algorithms can provide high-definition data on building form (Wang and Dai, 390 
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2015); the feasibility of this has already been demonstrated by Xu et al., (2017a, b).  391 

These sources could also provide UCPs, such as building volume density, ground 392 

coverage ratio, frontal area density, open spaces and greenery coverage ratio. 393 

  394 

c. Portal tools   395 

WUDAPT tools are being developed to make maximum use of these data as it 396 

emerges.  Priority capabilities under consideration include tools that: (a) link the 397 

database to the wide variety of urban climate models in stand-alone configurations (e.g. 398 

Grimmond et al., 2010) or as components to larger-scale models such as WRF, (b) 399 

allow weather data gathered at WMO standard stations outside cities to be transferred 400 

to urban locations (e.g. Erell and Williamson, 2006); (c) combine with other available 401 

modeling software (e.g., Vanegas 2012 a and b) and land-cover data to create future 402 

urban growth scenarios and; (d) evaluate urban risks associated with current and future 403 

climate hazards, (e.g., Hanna et al., 2015).  404 

Further enhancements may be possible through links enabled through the Portal 405 

(www.wudapt.org). For example, given the rich datasets afforded by variety and types of 406 

remote sensed data sets beyond the traditional & basic Landsat landuse/land cover 407 

classifications. Inclusion of such information in WUDAPT would be as ancillary and 408 

auxiliary data for enhanced analyses e.g., (Comarazamy et al., 2013 and 2015, Hulley 409 

et al., 2014, Imhoff et al., 2010, and Luval et al., 2015)  410 

 411 

5. OUTLOOK 412 

http://www.wudapt.org/
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Urban issues are rapidly moving to the forefront of the challenges posed by climate 413 

changes across a hierarchy of scales. The WUDAPT project is developing a 414 

comprehensive global archive of urban data and associated tools that will be needed to 415 

address these challenges. The WMO is exploring the use of WUDAPT as a means 416 

towards addressing its new urban services mandates expressed in Resolution 68(CG-417 

17): Establishing WMO Cross-cutting Urban Focus in the 17th World Meteorological 418 

Congress (2015), and in development of Guide for Integrated Urban 419 

Hydrometeorological, Climate and Environmental Services (Baklanov et al., 2017).  In 420 

China, WUDAPT data has already been used for urban impact analyses studies of 421 

dynamic growth in the Pearl River Delta (Ren et al. 2017) and in examining the impact 422 

of urbanization as part of China’s ‘One Belt, One Road’ plan. WUDAPT is participating 423 

with the Group on Earth Observations (GEO) WUDAPT in the Global Human Settlement 424 

Layer Project (Pesaresi, 2013) and the Human Planet Initiative, focusing on activities 425 

associated with Global Urban Climate and Mitigation Planning actions. 426 

     WUDAPT is a successful grass roots effort, and continued community involvement is 427 

key to assuring success. Please consider engaging in and/or following the progress on 428 

www.wudapt.org. 429 

 430 
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Figure 1.  Top:  Structure of the urban boundary layers (source, Oke, 2006) showing the 766 

developing of the mixed layer above the underlying surface layer in terms of a) meso, b 767 

local and c) microscale, where exchanges are modulated by urban form and functions; 768 

Bottom:  Common urban canopy parameters (UCPs) that describe the character of the 769 

urban surface and are employed in models to evaluate the urban effect on wind, 770 

temperature, runoff, etc.  (courtesy Andreas Christen, 2017). 771 
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Figure 2. WUDAPT level 0 data for Chicago and derived urban canopy parameters: a) 773 

the distribution and legend of Local Climate Zones derived from Landsat images using 774 

the WUDAPT protocol; b) the area fraction of pervious surface cover derived from Table 775 
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Figure 3. The schematic of the WUDAPT project and its current portal tools: b) 778 

WUDAPT to WRF (W2W) tool is designed to integrate WUDAPT Table look-up UCP 779 

data for each LCZ to facilitate its use in the Weather Research Forecasting (WRF) 780 

model and c) SCALER, a tool which permits the extraction of WUDAPT type data to 781 

user specified grid resolution. 782 
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Figure 4. A comparison of WUDAPT L0 maps for selected cities: Sao Paulo, Brazil (top 784 

left), Milan, Italy (top right), Shanghai (China) (bottom left) and Vancouver, Canada. In 785 

each case the administrative boundaries of the city or municipality is shown. The LCZ 786 

legend is the same as shown in Fig. 2a. 787 
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Figure 5. WUDAPT L0 maps and mean annual surface temperature (MAST) at 22:30 789 

local time in Kelvin (K) for Sao Paulo, Brazil (a and b) and Mumbai, India (c and d). The 790 

underlying topography shown in a) and c) is based on the Shuttle Radar Topography 791 

Mission. The LCZ legend is the same as shown in Fig. 2a. 792 
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Figure 6. The impact of urban growth on mean surface temperature for Dublin, Ireland 795 

(upper inset map). The Surface Energy and Water Scheme (SUEWS) model was run 796 

using parameters data derived from WUDAPT L0 data. Simulations were carried out for 797 

current (2006) and projected (2026) urban cover (lower inset map) using typical June 798 

weather and the map shows the difference in their surface temperatures (in Kelvin, K).  799 

 800 

 801 

Figure 7. The simulated near surface air temperature (in Kelvin, K) over Madrid (for the 802 

fifth nested domain shown in the upper inset map) using the Weather Research 803 

Forecast (WRF) model. The urban canopy parameter values for WRF are from 804 

WUDAPT L0 data; the urbanized landscape is shown outlined in the lower inset map. 805 

The map shows surface air temperature at 0300h on 13th July 2015, during a heat 806 

wave event. 807 

 808 

Figure 8. The simulated impact of urban development on heat stress over New Delhi, 809 

India (upper inset map).  The WRF model was run using WUDAPT L0 data for 1977 and 810 
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2015, based on weather conditions for 25th May, 2015. The growth of the city over this 811 

period is shown in the lower inset map. The WRF simulation was used to calculate the 812 

NOAA Heat Index (HI), expressed as apparent temperature in Fahrenheit; the figure 813 

depicts the difference: HI2015-HI1977.  814 

 815 

Figure 9. Example of air quality (PM2.5) model sensitivity study using WRF-CHEM for (a) 816 

standard default WRF physics (for urban category as high intensity residential) vs (b) 817 

urban canopy parameterization modeling based on WUDAPT L0 data. The arrows (c) 818 

refer to the difference of vertical velocity simulations.  819 
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 836 

 837 

Table 1. Examples of urban canopy parameters (UCPs) used in urban models. The 838 

Building Energy Parameterization (BEP) scheme (Martilli et al., 2002) that is linked to 839 

the WRF in W2W specifically utilizes the Building UCPs in column 2.  840 

Urban Canopy parameters (UCPs) 

General Buildings Vegetation 

Mean canopy height Mean Height Vegetation plan area density* 

Canopy plan area density* Std Dev of heights Vegetation top area density* 

Canopy top area density* Height histogram Vegetation frontal area density* 

Canopy frontal area density* Wall-to Plan area ratio  

Roughness Length Height to width ratio Mean Orientation of Streets 

Displacement height Plan area density* Plan area fraction surface covers 

Sky View Factor Rooftop area density* Percent connected impervious 
areas 

 Frontal area density* Building material fraction 

 841 

 842 

 843 

 844 

Table 2.  Some of the urban canopy parameter (UCP) values associated with Local 845 

Climate Zone (LCZ) types from Stewart and Oke, 2012.   Columns represent the 846 

percentage of impervious (λI), built (λb) and vegetated (λV) land-cover and mean height 847 

of building elements (z), sky view factor (λS) (see Fig 1a), albedo (α) and anthropogenic 848 

heat flux (QF in W m-2).  849 

LCZ λI λb λV z (m) λS α QF 
1. Compact high-rise 40–60 40–60 <10 >25 

0.2–0.4 0.10–0.20 50–300 
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2. Compact midrise 40–70 30–50 <20 10–25 
0.3–0.6 0.10–0.20 <75 

3. Compact low-rise 40–70 20–50 <30 3–10 
0.2–0.6 0.10–0.20 <75 

4. Open high-rise 20–40 30–40 30–40 >25 
0.5–0.7 0.12–0.25 <50 

5. Open midrise 20–40 30–50 20–40 10–25 
0.5–0.8 0.12–0.25 <25 

6. Open low-rise 20–40 20–50 30–60 3–10 
0.6–0.9 0.12–0.25 <25 

7. Lightweight low-rise 60–90 <20 <30 2–4 
0.2–0.5 0.15–0.35 <35 

8. Large low-rise 30–50 40–50 <20 3–10 
>0.7 0.15–0.25 <50 

9. Sparsely built 10–20 <20 60–80 3–10 
>0.8 0.12–0.25 <10 

10. Heavy industry 20–30 20–40 40–50 5–15 
0.6–0.9 0.12–0.20 >300 

101. Dense trees <10 <10 >90 3–30 
<0.4 0.10–0.20 0 

102. Scattered trees <10 <10 >90 3–15 
0.5–0.8 0.15–0.25 0 

103. Bush, scrub <10 <10 >90 <2 
0.7–0.9 0.15–0.30 0 

104. Low plants <10 <10 >90 <1 
0.2–0.4 0.15–0.25 0 

105. Bare rock or paved <10 >90 <10 <0.25 
>0.9 0.15–0.30 0 

106. Bare soil or sand <10 <10 >90 <0.25 
>0.9 0.20–0.35 0 

107. Water <10 <10 >90 – 
>0.9 0.02–0.10 0 

 850 

 851 

Table 3. The proportion of land area occupied by each LCZ in selected cities. Each city 852 

has two values representing the areal percentage in the Region of Interest (left column) 853 

and the municipal area (as shown by the yellow boundary on Fig 4 in right column) for 854 

each LCZ.  The total area is shown on the bottom row. 855 

LCZ type Chicago Milan Shanghai Sao Paulo Vancouver 

Compact high-
rise 0.20 2.08 0.00 0.00 0.25 4.47 0.51 2.81 0.15 1.36 

Compact midrise 0.10 2.39 2.11 6.32 1.35 21.56 0.10 0.31 0.00 0.06 

Compact low-
rise 0.19 4.00 0.10 0.25 0.77 6.23 6.39 26.04 0.47 3.93 

Open high-rise 3.31 8.39 1.98 5.47 8.66 15.51 1.85 1.16 1.00 4.97 

Open midrise 0.14 2.43 7.84 16.13 6.31 15.91 1.01 1.70 0.04 0.03 

Open low-rise 14.54 53.92 3.57 0.38 2.44 3.20 8.03 15.57 19.97 60.18 
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Lightweight low-
rise 0.00 0.00 0.00 0.00 4.35 2.06 1.45 3.45 0.00 0.00 

Large low-rise 3.58 13.15 4.75 10.70 8.65 5.18 3.63 9.83 3.86 4.82 

Sparsely built 13.01 2.78 29.69 33.47 6.16 0.05 22.12 12.54 11.30 3.44 

Heavy industry 0.53 3.22 0.00 0.00 3.92 17.10 0.66 0.89 0.00 0.00 

Dense trees 3.92 0.93 20.03 0.42 1.19 0.38 39.05 18.11 25.59 1.92 

Scattered trees 6.85 2.28 0.47 0.51 1.63 0.31 3.07 1.62 2.02 1.73 

Bush, scrub 0.00 0.00 0.00 0.00 0.00 0.00 1.51 0.50 0.00 0.00 

Low plants 20.55 1.68 25.34 23.58 26.31 0.23 5.61 1.27 14.36 2.79 

Bare rock or 
paved 0.26 0.80 1.10 2.16 0.76 1.43 0.07 0.05 0.24 0.22 

Bare soil or sand 0.54 0.40 0.00 0.00 0.00 0.00 0.44 0.19 0.00 0.00 

Water 32.26 1.55 3.02 0.60 27.24 6.37 4.49 3.97 21.01 14.56 

Area (km2) 15584 597 6236 1344 8887 197 9278 1410 2277 136 

 856 
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Fig 1.  Top:  Structure of the urban boundary layers (source, Oke, 2006) showing the 
developing of the mixed layer above the underlying surface layer in terms of a) meso, b 
local and c) microscale, where exchanges are modulated by urban form and functions; 
Bottom:  Common urban canopy parameters (UCPs) that describe the character of the 
urban surface and are employed in models to evaluate the urban effect on wind, 
temperature, runoff, etc.  (courtesy Andreas Christen, 2017). 
 

 

 

Fig 2. WUDAPT level 0 data for Chicago and derived urban canopy parameters: a) the 
distribution and legend of Local Climate Zones derived from Landsat images using the 
WUDAPT protocol; b) the area fraction of pervious surface cover derived from Table 2. 
  



 

3 

 
[Type text] 

 

  

 

Fig 3. a) The schematic of the WUDAPT project and its current portal tools: b) WUDAPT 
to WRF (W2W) tool is designed to integrate WUDAPT Table look-up UCP data for each 
LCZ to facilitate its use in the Weather Research Forecasting (WRF) model and c) 
SCALER, a tool which permits the extraction of WUDAPT type data to user specified 
grid resolution. 
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Fig 4. A comparison of WUDAPT L0 maps for selected cities: Sao Paulo, Brazil (top 
left), Milan, Italy (top right), Shanghai (China) (bottom left) and Vancouver, Canada. In 
each case the administrative boundaries of the city or municipality is shown. The LCZ 
legend is the same as shown in Fig. 2a. 
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Fig 5. WUDAPT L0 maps and mean annual surface temperature (MAST) at 22:30 local 
time in Kelvin (K) for Sao Paulo, Brazil (a and b) and Mumbai, India (c and d). The 
underlying topography shown in a) and c) is based on the Shuttle Radar Topography 
Mission. The LCZ legend is the same as shown in Fig. 2a. 
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Fig 6. The impact of urban growth on mean surface temperature for Dublin, Ireland 
(upper inset map). The Surface Energy and Water Scheme (SUEWS) model was run 
using parameters data derived from WUDAPT L0 data (inset). Simulations were carried 
out for current (2006) and projected (2026) urban cover (lower inset map) using typical 
June weather and the map shows the difference in their surface temperatures (in Kelvin, 
K).  
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Fig 7. The simulated near surface air temperature (in Kelvin, K) over Madrid (for the fifth 
nested domain shown in the upper inset map) using the Weather Research Forecast 
(WRF) model. The urban canopy parameter values for WRF are from WUDAPT L0 
data; the urbanized landscape is shown outlined in the lower inset map. The map shows 
surface air temperature at 0300h on 13th July 2015, during a heat wave event.  
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Fig 8. The simulated impact of urban development on heat stress over New Delhi, India 
(upper insert map). The WRF model was run using WUDAPT L0 data for 1977 and 
2015, based on weather conditions for 25th May, 2015. The growth of the city over this 
period is shown in the lower inset map. The WRF simulation was used to calculate the 
NOAA Heat Index (HI), expressed as apparent temperature in Fahrenheit; the figure 
depicts the difference:  HI2015-HI1977.  
 
 

 
 
 
 
 
 



 

9 

 
[Type text] 

 

  

 
 

 
 
Fig 9. Example of air quality (PM2.5) model sensitivity study using WRF-CHEM for (a) 
standard default WRF physics (for urban category as high intensity residential) vs (b) 
urban canopy parameterization modeling based on WUDAPT LCZ associated Table 
Lookup UCP values. The arrows (c) refer to the difference of vertical velocity 
simulations.  
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