Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1991

How to Compute Offsets Without Self-Intersection

Ching-Shoei Chiang

Christoph M. Hoffmann
Purdue University, cnh@cs.purdue.edu

Robert E. Lynch
Purdue University, rel@cs.purdue.edu

Report Number:
91-072

Chiang, Ching-Shoei; Hoffmann, Christoph M.; and Lynch, Robert E., "How to Compute Offsets Without
Self-Intersection” (1991). Department of Computer Science Technical Reports. Paper 911.
https://docs.lib.purdue.edu/cstech/911

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

HOW TO COMPUTE OFFSETS WITHOUT
SELF-INTERSECTION

Ching-Shoei Chiang
Christoph M. Hoffmann
Robert E. Lynch

CSD-TR-91-072
October 1991

How To Compute Offsets Without
Self-Intersection*

Ching-Shoei Chiang
Christoph M. Hoffmann
Robert E. Lynch

Department of Computer Science
Purdue University
West Lafayette, Ind. 47907

October 11, 1991

Abstract

Traditional techniques for computing offsets are local in nature and
lack good criteria for eliminating possible self-intersections of the offset.
Methods based on integrating differential equations or on image processing
do not lack such criteria, but seem to require constructing the solution

in the ambient space, i.e., in one dimension larger than the offset. We
investigate such methods.

1. INTRODUCTION

Given a plane curve C, its offset by a distance d is a curve Oft(C,d) such
that the points of Off(C, d) are at distance d from C. Similarly, given a surface
S in 3-space, its offset by a distance d is a surface Off(5,d) such that the points
of the offset surface are at distance d from S. These informal definitions can
be made more precise in one of two ways, depending on whether the distance is
measured locally or globally.

Denote the Euclidean distance of two points p and ¢ with d(p,q). Let C be
a curve in R?, and p any point. Define the global distance of p to C by

disty(p, C) = inf{d(p,q) | ¢ € C}

*Work supported in part by ONR Contract N00014-90-J-1599, by NSF Grant CCR 86-
19817, and by NSF Grant ECD 88-19817.

where d(p, ¢q) is the Euclidean distance of two points. For a smooth curve C, a
local distance can be defined as

diStl(p7 C) = d(p7 q)

where ¢ is on C and the line 77 is perpendicular to the tangent of C at ¢q. For
most reasonable curves C these definitions make sense. The offsets for surfaces
are defined analogously.

In the following, we assume that the curve C is smooth, except at finitely
many points. Counting coinciding line segments as two points, moreover, we
assume that any straight line intersects C in finitely many points. Likewise, we
require surfaces to be smooth except at finitely many points or curves, and that
any straight line intersects the surface in finitely many points, in the same sense.
Note that piecewise algebraic curves and surfaces satisfy these requirements,
assuming they consist of finitely many pieces. We call the curve or surface to
be offset the base curve or base surface, respectively.

The local and global offsets can be defined as follows. In the global offset,
the global distance is used, so that

Off,(C,d) = {p € R? | dist,(p,C) = d}

and
Offy(S,d) = {p € R® | dist,(p, §) = d}

For the local offset, complications arise from the fact that at each point
the “correct” local distance is to be used. Here, it is convenient to think of
geometric optics: The curve C or surface S is considered a continuum of point
light sources emitting light at time ¢ = 0. Then the local offset at distance d is
the wave front of light at time tq = d/c! where c is the speed with which the
front propagates. It is assumed that the front propagates with uniform speed
and locally normal to the front. A physical analogue of the global offset is a
grass fire front.? Briefly. the fire begins along C. and spreads burning uniformly.
At time t, the fire front is the global offset at distance tc, where ¢ is the speed
with which the front propagates. Figure 1 illustrates the difference between the
two offsets. Note that the offset has two real components, but only one of these
is shown in the figure.

Local offsets are simple to define analytically, given a parametric or implicit
representation of the curve or surface.’315:21 Moreover, the local offset of an
algebraic curve or surface again is an algebraic curve or surface. Local offsets
play a role in geometric optics.!! Global offsets, in contrast, are a subset of
the local offset, and are important in engineering applications.?! Since they
involve global distance computations, they are algorithmically more difficult to
determine. Briefly, the accepted strategy for computing global offsets is

T(0)

I(0)

Figure 1: Local and global (one-sided) offset of a curve

Determine the local offset. Then remove all those parts that are
not at global distance d, by trimming certain branches or regions
bounded by self-intersections.?!

We propose as alternative the following approach:

Integrate the global distance function up to distance d,” and extract
the global offset as a level set of this function.

Our approach requires discretizing the curve or surface in the ambient space.

The locus of the self-intersections at which local offset regions border global
ones can be characterized by the medial-azis transform, also called the skeleton.?1°
Briefly, the skeleton is the locus of all those points p to which there exist at least
two points on the bhase curve or surface at equal global distance. Computing
the intersection of the skeleton with a d-offset is thus equivalent to determining
those self-intersections at which the traditional approach will cut away nonglobal
offset segments or regions.

Computing the skeleton is in general not simple. Algorithms have been
given for planar curves composed from line segments and, in some cases, circular
arcs;?>271232 and in 3-space for the surface of objects obtained from construc-
tive solid geometry (CSG).3'® These algorithms are exact, but in 3-space they
require surface representations using the dimensionality paradigm.!”® More
complex geometric objects can be treated approximately,293435 for example,
by constructing a Delaunay triangulation of a set of points that has been suit-
ably chosen on the base curve or surface. The centers of the Delaunay triangles
(tetrahedra) are then approximately on the skeleton and can be brought onto
the skeleton by iterative computation. Self-intersections of the d-offset can also
be characterized by certain systems of nonlinear equations,'® but their solution

is usually no simpler and contains, furthermore, self-intersections that need not
border global regions of the offset.

In view of the absence of an exact, simple, and efficient algorithm for de-
termining the skeleton of complex geometries, we concentrate in this paper on
directly evaluating the global distance function. All algorithms known to us
discretize the ambient space, and then compute the global distance based on
this discretization. Algorithms so evaluating distance are ordinarily insensi-
tive to the problem dimension, and the algorithms we propose here are too.
We have implemented two-dimensional versions, for offsetting curves, and only
small changes would be needed for offsetting surfaces.

In Section 2, we review approaches to computing offsets devised by computer-
aided geometric design (CAGD) and explain their local nature. In Section 3,
we sketch the connection between the eikonal equation and the global distance
function, and review the Euclidean distance transform in Section 4.

In Section 5, we reorganize the Euclidean distance transform, thereby deriv-
ing two algorithms that are better suited to computing the global offset. Both
algorithms are further restructured in Section 6 adding interpolation and itera-
tion, thus increasing the accuracy of the first two algorithms without changing
the mesh size. Section 7 discusses the implementation.

2. CAGD APPROACH TO OFFSETS

Computer-aided geometric design (CAGD) has produced an extensive litera-
ture on offsets of curves and surfaces owing to the importance of the subject.?:10:11:13,16,22,31
The majority of the methods construct approximate representations for local off-
sets of curves and investigate methods to trim them back to global offsets, or
restrict applicability to those cases in which the local and global offsets coincide.

When approximating the offset, special properties of the base curve repre-
sentation are customarily exploited. For example, offsets from (rational) para-
metric curves and surfaces can be constructed approximately by transforming
the control points.!® Exact offset representations that belong to the same class
of curves or surfaces usually do not exist in the parametric case, except in very
special cases.!* Error estimates for the deviation of the approximation from the
true offset can be given.? If the error is unacceptably large, the base curve or
surface can be suitably subdivided and the offset approximated anew.

In Figure 1, the offset distance exceeds the smallest radius of curvature of
the base curve. This always results in self-intersection,”® and there are robust
and efficient mathematical criteria that can be used to detect such situations.?
In contrast, self-intersections such as the one shown in Figure 2 are harder to
detect, and no efficient and comprehensive strategies for detecting them appear
to be known. In consequence, it is not realistic to compute global offsets by
trimming local offsets .

If the base curves and surfaces are algebraic, then the (local) offset is again

Figure 2: A Difficult Self-Intersection

algebraic, and in principle one can derive an implicit representation of the local
offset using elimination techniques.!® In practice, this approach is unattractive
for several reasons:

e The symbolic computation required to derive the implicit form can be
extremely expensive.!8

¢ The algebraic degree of the offset can be very high, even for base curves and
surfaces that have low algebraic degree.!? Thus, subsequent computations
with the implicit form could be numerically difficult.

e The implicit equation represents the local offset and offers no advantage
for finding self-intersections.

Some of these difficulties are circumvented by the dimensionality paradigm!™16
that represents offsets and other surfaces derived from geometric constraints as
a system of nonlinear equations, thus side-stepping the expense of implicitizing.
Again, the local offset is obtained and has to be trimmed if the global offset
is wanted. Trimming could be based on global surface evaluation algorithms.*
This approach is largely unexplored as yet.

3. EIKONAL EQUATION

Let S, denote the partial derivative of a function S by z. The eikonal
equation®

(S2)*+(8y)* = (S:) =const and (Sz)%+(S,)*+(S:)? = (5:)? = const

describes a wave front that propagates with uniform speed. Courant and Hilbert®,
analyze the equation and its solution (18-19 and 84-94), explain the relation to
geodesics (103-109 and 113-124), and the relation to wave propagation (124~
131). For an informative discussion of simple examples see Strang,3® 587-597.
For ¢ = 0, let the level set S(z,y,0) = 0 or S(z,y,2,0) = 0 be a curve or
surface D. Then the level set S(z,y,t) = d or S(z,y,2,t) = d is thus an offset
of D at distance d. Note that for unit speed d = F¢. The solution to the eikonal
equation would become multi-valued at intersecting characteristics, i.e., along

the shocks in the solution. In those situations, the globally nearest solution is
chosen, whence the eikonal equation describes the global offset.

The surface described by the eikonal equation is a ruled surface whose gener-
ators have fixed slope against the plane (or three-space) containing the boundary
curve (or surface). The generators are the characteristics of the equation and
project onto the normals of the boundary. The surface is developable and has
been studied in geometry.!® The intersection of the surface with parallel planes
(parallel 3-spaces) is the global offset of the initial boundary. Qur algorithms
can thus be considered to be solvers for the eikonal equation. They are based
on the geometric interpretation of the surface §.

4. EUCLIDEAN DISTANCE TRANSFORM

A number of algorithms have been described in the image processing litera-
ture that assign to each point in a regular grid its minimum distance to a subset
of grid points72630 In many cases, a distance metric has been used that is
not Euclidean. Danielson” has proposed such a method for computing global
Euclidean distance. We discretize the base curve as a set of grid points and use
this method directly.

In Danielson’s method two major passes are made over a two-dimensional
grid, one from the top to the bottom, the other from the bottom to the top.
In each major pass, two minor passes sweep every row, first from left to right,
and then from right to left. There are two variants, one in which a five-point
star configuration is used to update distances, the other using a nine-point star.
At the end of the second major pass, each grid point has a distance assignment
that is accurate to within 0.29A for the five-point star, and to within 0.076A for
the nine-point star, where h is the grid spacing.

Let p = (a,b) and ¢ = (d’, V') be two points. The quantities ¢ — @’ and b— b
are called distance amplitudes. We store at each grid point two integers Az
and Ay that are the absolute value of the distance amplitudes to the grid point
nearest to the curve. The true distance from that point is thus \/(Az)? + (Ay)Z.
Using the squared distance, however, is better because then the algorithm can
be implemented entirely in integer arithmetic.

In the top-to-bottom pass, the left sweep updates the (squared) distance of
point (¢,7) considering its neighbors in the row above and to the left. In the
backwards sweep, the neighbor to the right is accounted for. The bottom-to-top
pass is symmetric. When considering a neighbor, a distance to (3, 5) is proposed
that is based on the neighbor’s distance, and updates the current distance of
(¢,7) il it is smaller. For example, considering the neighbor (i — 1, §), we proceed
as follows:

If (Avio1; 4+ 1?4 (Ayio,j)? < (Azi ;)% + (Ayi ;)? then update grid

point (7,5) from grid point (7 — 1,7). That is, replace Az;; with
A.’L','_Lj + 1 and Ay,-,j with Ay,'_l,j.

0.00

9.50

-1,00 1.00

Figure 3: Euclidean distance transform on a grid 100x 100

Updates from other neighbors are analogous.

Danielson’s method works well when computing the distance of all points in
a domain. An example of its output is shown in Figure 3, for a grid of 100 x 100.
The method obviously generalizes to three dimensions.3

5. DISCRETE ALGORITHMS FOR GLOBAL OFFSETS

If the offset distance is small, that is, if the area enclosed by the base curve
and its offset is small in comparison to the total domain area, then the fixed
sweeps of Danielson’s method result in more work than necessary. We therefore
reorganize the algorithm so as to eliminate unnecessary computations.

We wish to reorganize the computation so that the grid points are processed
by increasing distance from the boundary. If this can be done efficiently, then
the offset of a closed curve can be computed in time that depends on the offset
distance and the curve length, rather than on the entire enclosed area.

We process a grid point by assigning its distance. Based on this distance,
a candidate distance is proposed for each of its neighbors, and each neighbor
becomes a candidate for processing. There will be a queue for candidate grid
points. Note that a grid point can appear several times in the queue, with
proposed distances determined from different neighbors.

To process grid points by increasing distance, we add them to a priority
queue indexed by the squared distance from the boundary. Initially, the dis-
cretized base curve grid points are added to this queue, with a zero distance
key. Grid points to be added at a later time will have nonzero distance keys.
Along with the distance key and the grid point coordinates, we store the dis-
tance amplitudes. The distance amplitudes Az and Ay are signed, so we know
the direction in which the nearest boundary point lies. By convention, the ori-
entation of the vector (Az,Ay) is from a nearest boundary point (0, Jo) to the

grid point (io + Az, jo + Ay).

When removing the grid point (7, j) from the queue, it is processed as follows:
Let (2,) have distance amplitudes (Az, Ay) according to our sign conventions.
Enter the distance of (4, j) into a matrix as element Mz, j], unless Mz, 5] has
already been assigned. Note that an entry already assigned cannot have a
greater distance to the boundary, because all queue elements are processed by
increasing distance. If (Az)? + (Ay)? < d?, where d is the offset distance, then
add to the priority queue the entries (¢ + r,j + s), with distance amplitudes
(Az +r,Ay + s), where r = —1,0,1 and s = —1,0,1 and r and s are not both
zero, and such that (Az + 7)? + (Ay + 5)? > (Az)? 4 (Ay)?.

This scheme will still require time proportional to the matrix size unless we
can initialize the entire matrix in constant time, independent of its size, access
its entries in constant time, and determine for each accessed entry whether it has
been reassigned since initialization. This can be done with standard techniques
summarized in the appendix.

The work done by the algorithm to assign M amounts to examining each grid
point (4, j) that is at a distance no greater than the offset distance and computing
the distance amplitudes for its immediate neighbors. It is thus proportional to
N = A/h?, where A is the area enclosed by curve and offset, and h is the grid
spacing. The priority queue updates require an additional logarithmic factor, so
that the asymptotic complexity of the algorithm is O(NlogN). We summarize
the final algorithm.

Algorithm 1

1. Initialize M to unassigned and @ to consist of all curve points with distance
amplitudes (0,0).

2. While @ is not empty, delete the next (¢,7) from @ and perform step 3.

3. Let (a,b) be the distance amplitudes of (¢, 7). If M{i, j] is already assigned,
do nothing. Otherwise, assign the distance of (¢,7) to M([¢,;]. Enter into
the queue @) all entries (i 4+ r,j + s), where r = —1,0,1 and s = —1,0, 1,
7 and s are not both zero, and (a + 7)? + (b + s)% > a? + b2,

Note that Step 3 is slightly different for boundary points, unless we compute
the offset on both sides.

The offset curve can be extracted from M by examining all its entries. Al-
ternatively, let a frontier point be any grid point with at least one neighbor
whose distance exceeds the offset distance d. Clearly the offset is near frontier
points, and can be extracted by processing them and their neighbors, without
examining other matrix entries. Frontier grid points can be registered when
they are entered into M.

The offset could be left in discretized form, or an approximation of it can be
constructed by, say, interpolation. Greater accuracy is obtained by iteratively
refining frontier gridpoints to true offset points.!”

Note that Algorithm 1 generalizes to offsetting surfaces in three dimensions.
Here we have to work with a three-dimensional array and three distance ampli-
tudes, (Ax,Ay,Az). The details are routine.

Processing grid points by increasing distance has been accomplished by a
priority queue. Since distance amplitudes, and hence the squared distances are
integer-valued when measured in multiples of the grid spacing, we can reduce the
processing time by a factor of log NV if we can find the next closest unprocessed
grid point in constant time. This can be done.

Note that every distance key of interest is an integer between 1 and D2,
where D = [d] is the offset distance measured in multiples of the grid spacing.
We create an index array I, where position I[k] is reserved for the distance key
k. The entry I{k] heads a list of unprocessed grid points, all at a conjectured
squared distance k.

We add the grid point (¢, j) with distance amplitudes (a, b) to the list headed
by I[a® + b%. Now it is clear that we can process the grid points by first
processing the list at [[1], then the list at I[2], and so on. Since distances are
nondecreasing, we will never add a grid point to any list that is closer to the
boundary than the points in the list we are currently processing. In all other
respects, the algorithm remains the same.

It would seem that the array [is in size proportional to D?. However, note
that the distance of an unprocessed grid point to be added is not too far from
the grid point currently processed. When processing a point at the squared
distance uy, a new point to be added is at a squared distance no greater than
ug = (a+ 1)? + (b+ 1)%, where a® + 6% = 4; and a,b < D. Furthermore, every
point at a squared distance less than u; has already been processed. But

UQ—UIS4D+2

so that at any time there are at most 4D + 2 nonempty lists. Thus, it suffices
to allocate for I an array of size 4D + 3 as long as this space is used as a
circular queue.?* Therefore, the space requirements for the index vector I are
proportional to the offset distance.

Note that we have to initialize entries in I when they are used for the first
time, as well as the intervening, empty items of smaller squared distance. Ini-
tialization requires O(D?) steps, but D? is dominated by N. We summarize
this algorithm as follows, without going into the details of managing the vector
I as a circular queue.

Algorithm 2

1. Initialize M to unassigned, and I to empty. Add the curve points to the
list I70].

2. For k from 0 to D? do Step 3.

3. For each entry in list k£ do the following. If M|z, j] is already assigned, do
nothing. Otherwise, assign the distance of (i, j) to M[i,j]. Add all entries
(t+ 7,7+ s) to list I[(a +)2 + (b + s)?], where (a,b) are the distance
amplitudes of (7,7), and 7 and s have been selected as in Algorithm 1.

The time required by Algorithm 2 is O(N), and so improves Algorithm 1 by a
factor of log V.

6. ITERATION AND INTERPOLATION ALGORITHMS

Since Algorithms 1 and 2 compute distances from grid points only, the dis-
cretization of the base curve or surface into a set of grid points automatically
introduces errors proportional to the grid spacing. We now diminish these errors
using both iteration and interpolation. The main consequence of the changed
approach is that integer arithmetic is no longer appropriate. Also, the work per
grid point processed increases, but this increase can be offset by working with
a coarser grid.

For each grid point, we will determine the following information: As before,
we compute the signed distance amplitudes Az and Ay and the squared distance
(Az)? + (Ay)?. In addition, we identify the boundary segment or patch on
which a nearest point lies. For parametric boundary elements we also record
the parameter value(s). For grid points near the boundary, the additional data is
determined first, say by linear interpolation of the intersection of the boundary
with the grid lines. Then the distance amplitudes and the squared distance
are computed from it. More precisely, with s; and s; the parameter values at
the intersection with the grid lines, the secant is drawn and the perpendicular
to it through the grid point is determined. Suppose the footpoint intersects
the secant in the ratio v : u. Then the parameter is approximated by s =
81+ v(s2 — s1)/(w + v), and the distance amplitudes by Az and Ay. See also
Figure 4. The grid point data could be refined by Newton iteration.

When processing the neighbor grid points, either with Danielson’s algorithm
or with our Algorithms 1 or 2, the computations updating the distance ampli-
tudes are as before. To increase accuracy, we can store the distance amplitude
mh + 6 as the pair (m, §), since distance amplitudes increase by integer multi-
ples of the grid spacing h. The additional data describing the nearest boundary
point are copied. This part of the algorithm is the first phase.

Having so constructed an approximate distance of grid points, the frontier
grid points are now “polished” using Newton iteration. In consequence, their
distance to the boundary will be as accurate as possible. Then, the intersection
of the offset with grid lines is determined by linear interpolation. Again, Newton
iteration can be used to polish the point. The details are routine. These iteration
and interpolation steps comprise the second phase of the algorithm.

When a grid or offset point lies close to a self-intersection, the different dis-
tances proposed by several neighbors will be close. This fact should be recorded,

10

Figure 4: Grid Point Data Near Boundary

for the iteration in Phase 2 changes distances slightly, and so the point may ulti-
mately lie closer to another part of the boundary. Thus, the originally proposed
footpoint on the boundary may not be the true one. In this situation we have
to iterate the distance from each footpoint associated with a neighbor who pro-
posed approximately the same distance.

The algorithm so derived and based on the data structures of Algorithm 1
will be called Algorithm 3. Since the distance amplitudes are no longer integer
multiples of the grid spacing, we cannot allocate unprocessed grid points into
lists indexed by the squared distance in the simple way of Algorithm 2. But
a more sophisticated scheme is possible: Suppose we allow a grid point at the
greater distance u; to be processed before some grid points at the smaller dis-
tance uy, as long as the difference in distance is not too big. More precisely, we
nust ensure that a grid point p is processed after all neighboring grid points
have been processed that lie nearer to the boundary.

Now if ¢ is a grid point at squared distance b from the boundary, and p
is a neighboring grid point at squared distance a where a > b, then a — b >
h*. Therefore, we group all possible squared distances into intervals [kh2, (k +
1/2)h?) and [(k + 1/2)kh?, (k + 1)h?) and create lists of grid points for each
distance group. Then a point in any group cannot generate a new grid point
with a proposed distance in the same group. In consequence, Algorithm 2 can
be modified using the interpolation scheme, at the cost of doubling the size of
the list index I. The resulting algorithm is Algorithm 4.

7. EXPERIMENTAL RESULTS

We implemented Algorithms 1 and 2, and a version of the iteration and

11

Figure 5: Sample domains: (A) left, (B) middle, (C) right.

interpolation method based on Danielson’s algorithm. Input and output can be
provided in several ways. We can interface to //ELLPACK?® which provides
us with graphical tools for defining 2D domains bounded by Bézier curves of
arbitrary degree and with holes allowed. Alternatively, we can draw any shape
with Framemaker, a commercial document preparation system. The shapes
consist of cubic Bézier splines, ellipses, and line segments, and need not form
domains.

We timed the execution of Danielson’s method and of Algorithms 1 and 2
on the three sample shapes shown in Figure 5, using a grid size of 500 x 500.
Danielson’s method processed all 250,000 grid points, whereas Algorithms 1 and
2 processed only grid points up to the offset distance. The performance timed
on a SUN SPARC 2 workstation is summarized in Table 1. All computations
correspond to the 9-point star version. The results show that Algorithm 2
strictly improves Algorithm 1.

We determined for which value of N Algorithm 2 is as fast as Danielson’s
algorithm. On average, the algorithm requires 3.035 - 10~* seconds per grid
point processed, whereas Danielson’s method requires 0.684 - 10~4 seconds per
grid point processed. Thus, Algorithm 2 does 4-5 times as much work per grid
point. In consequence, Algorithm 2 is better than Danielson’s method for those
offset distances at which the enclosed area is less than 22% of the area of the
entire grid.

Adding iteration and interpolation impacted performance significantly. The
algorithm was run on a 30 X 30 grid using Newton iteration to get accurate
distance at grid points and using linear interpolation to extract the offset. This
required 0.65 sec. Visual inspection of the output showed that the offset so de-
termined was roughly equal in quality than the offset determined by Algorithm
2 on a 300 x 300 grid, which required in contrast 8.74 sec.

12

Danielson’s Algorithm

Domain A: 16.85 sec Domain B: 17.61 sec Domain C: 16.86 sec

Algorithms 1 and 2

Domain Offset N Time Alg 1 Time Alg 2
dist (sec) (sec)
10 32,718 14.27 9.13
A 20 62,648 28.80 19.85
30 91,558 42.56 28.42
10 41,587 19.20 12.50
B 20 78,932 36.91 25.78
30 111,797 51.60 33.60
10 47,419 21.20 13.61
C 20 87,918 41.17 27.59
30 114,755 57.20 34.08

Table 1: Performance of Danielson’s algorithm and of Algorithms 1 and 2

13

8. CONCLUSIONS

Detecting self-intersections in offsets is a problem that has both a mathe-
matical and a combinatorial character. Some self-intersections can be detected
based on local criteria applied to boundary elements, but others require eval-
uating the spatial relationship between unknown parts of the base curve, and
this is difficult for the traditional offset algorithms in the literature.

We have addressed the problem by discretizing ambient space, and by “post-
ing” a geometric datum in this common space. Self-intersection is thereby re-
duced to the problem of deciding whether a particular array element has already
been assigned. The approach poses an exacting trade-off between the accuracy
that is achieved and the memory that is required. Greater accuracy demands
denser grids, and so larger arrays are needed, especially in three dimensions.
Algorithms 1 and 2 use this approach.

The memory requirements of Algorithms 1 and 2 are dominated by the
matrix M. The matrix could be implemented differently. For example, by
storing each element in a balanced search tree only O(N) memory is needed.
This is a big improvement for small offset distances, but costs a logarithmic
factor in the access time. The impact on the overall performance can be judged
from the speed differentials of Algorithms 1 and 2.

Hybrid schemes that combine the discrete algorithm with interpolation and
iteration allow using coarser grids without sacrificing accuracy, and save both
time and space. Algorithms 3 and 4 are two examples. Our experience with the
implementation suggests exploring adaptive schemes in which an initial coarse
grid is refined selectively only in critical areas. At this time, we have no expe-
rience with this idea.

8. REFERENCES

1. C. Armstrong, T. Tam, D. Robinson, R. McKeag, and M. Price. Auto-
matic generation of finite element meshes. In SERC ACME Directorate
Research Conference, England, 1990.

2. H. Blum. A transformation for extracting new descriptors of shape. In
W. Whaten-Dunn, editor, Models for the Perception of Speech and Visual
Form, pages 362-380. MIT Press, Cambridge, MA, 1967.

3. G. Borgefors. Distance transformations in arbitrary dimensions. Comp.
Vision, Graphics Image Processing, 27:321-345, 1984.

4. J.-H. Chuang. Surface Approzimations in Geometric Modeling. PhD the-
sis, Purdue University, Computer Science, 1990.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

. J.-H. Chuang and C. Hoffmann. Curvature computations on surfaces in

n-space. Technical Report CER-90-34, Purdue University, Computer Sci-
ence, 1990.

. R. Courant and D. Hilbert. Methods of mathematical physics, II. Inter-

science, 1962.

. P-E. Danielsson. Euclidean distance mapping. Computer Graphics and

Image Processing, 14:227-248, 1980.-

. D. Dutta and C. Hoffmann. A geometric investigation of the skeleton of

CSG objects. In Proc. ASME Conf. Design Automation, Chicago, 1990.

. G. Elber and E. Cohen. Error bounded variable distance offset opera-

torand surfaces. International J. of Computational Geometry and Appli-
cations, 1:67-78, 1991.

R. T. Farouki. The approximation of nondegenerate offset surfaces. Com-
puter Aided Geometric Design, 3:15-43, 1986.

R. T. Farouki and J.-C. A. Chastang. Evolving wavefronts as algebraic
curves. Technical Report RC-16381, IBM Yorktown Heights, 1990.

R. T. Farouki and C. A. Neff. Algebraic properties of plane offset curves.
Computer Aided Geometric Design, 7:101-128, 1990.

R. T. Farouki and C. A. Neff. Analytic properties of plane offset curves.
Computer Aided Geometric Design, 7:83-100, 1990.

R. T. Farouki and T. Sakkalis. Pythagorean hodographs. Technical Re-
port RC-15223, IBM Yorktown Heights, 1990.

C. M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann, San
Mateo, Cal., 1989.

C. M. Hoffmann. Algebraic and numerical techniques for offsets and
blends. In S. Micchelli M. Gasca, W. Dahmen, editor, Computations of
Curves and Surfaces, pages 499-528. Kluwer Academic, 1990.

C. M. Hoffmann. A dimensionality paradigm for surface interrogation.
CAGD, 7:517-532, 1990.

C. M. Hoffmann. How to construct the skeleton of CSG objects. In
A. Bowyer and J. Davenport, editors, The Mathematics of Surfaces IV.
Oxford University Press, 1990.

15

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

C. M. Hoffmann and G. Vanééek. Fundamental techniques for geometric
and solid modeling. In C. T. Leondes, editor, Advances in Control and
Dynamics. Academic Press, 1991.

J. Hoschek. Offset curves in the plane. Computer Aided Design, 17:77-82,
1985.

J. Hoschek. Grundlagen der Geometrischen Datenverarbeitung. Teubner
Verlag, Stuttgart, 1989.

J. Hoschek and N. Wissel. Optimal approximate conversion of splineap-
proximation of offset curves. Computer Aided Design, 20:475-483, 1988.

E. N. Houstis, T. S. Papatheodorou, and J. R. Rice. Parallel ellpack: An
expert system for parallel processingpartial differential equations. Math.
Comp. Simulation Journal, 31:487-508, 1989.

D. E. Knuth. The Art of Computer Programming, Vol. 1. Addison-
Wesley, Reading, Mass., 1968.

D. T. Lee. Medial axis transformation of a planar shape. IEEE Trans.
Pattern Anal. and Mach. Intelligence, PAMI-4:363-369, 1982.

U. Montanari. Continuous skeletons from digitized images. J4CM, 16:534~
549, 1969.

N. Patrikalakis and H. Giirsoy. Shape interrogation by medial axis trans-
form. Technical Report Memo 90-2, MIT, Ocean Engr. Design Lab, 1990.

F. Preparata. The medial axis of a simple polygon. In Proc. 6th Symp.
Mathematical Foundations of Comp. Sci., pages 443-450, 1977.

M. Price, T. Tam, C. Armstrong, and R. McKeag. Computing the branch
points of the voronoi diagram of a object using a point Delaunay triangu-
lation algorithm. Draft manuscript, 1991.

A. Rosenfeld and J. Pfaltz. Sequential operations in digital picture pro-
cessing. Journal of the ACM, 13:471-494, 1966.

J. Rossignac and A. Requicha. Offsetting operations in solid modeling.
CAGD, 3:129-148, 1984.

V. Srinivasan and L. Nackman. Voronoi diagram of multiply connected
polygonal domains. IBM Journal of Research and Development, 31:373-
381, 1987.

G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge
Press, Wellesley, MA, 1986.

16

34. A. Wallis, D. Lavender, A. Bowyer, and J. Davenport. Computing voronoi
diagrams of geometric models. In IMPA Workshop on Geometric Model-
ing, Rio de Janeiro, 1991.

35. X. Yu, J. A. Goldak, and L. Dong. Constructing 3D discrete medial
axis. In Proc. ACM Symp. Solid Modeling Found. and CAD/CAM Applic.,
pages 481492, Austin, 1991.

APPENDIX: CONSTANT-TIME ARRAY INITIALIZATION

We solve the following problem: Given a matrix M of size m X n, whose
entries are random, (1) initialize every element of M to unassigned in constant
time; (2) For any valid index (¢,7), decide whether M[3,j] is unassigned, in
constant time; (3) Retrieve or store data in M in constant time. The solution
to this problem is standard material in the theory of algorithms.

We use the matrix M itself, with each element a pointer into a stack S. An
entry of the stack 5 is a pair consisting of a pointer to M|z, j] and the value of
M[i, 7). There is a variable T that records the top of the stack S. The pointers
are implemented as integers, with M{i, j] referred to by the value (i — 1)n + ;.
The pointer part of S[j] is referred to as S[j].p, and the value part as S[j].v.

1. To initialize M, assign zero to T'.

2. To test M[¢,j], retrieve its value k. If k is not in the range 1...r, where
7 is the value of T', then M]3, j] is unassigned. Otherwise, if S[k].p #
(¢ — 1)n + j, then MT[i,j] is unassigned. Otherwise, M[i,j] has the value
S[k).v.

3. To retrieve the value of M{[i,7], do Step 2 above. To assign u to M]i,j)
we proceed as follows: If M{z, j] is not unassigned, then assign u to S[k].v,
where £k is the value of M[i, j]. Otherwise, let k be the value of T'; assign
k + 1 to Ml[i,j]; assign (i — 1)n + j to S[k + 1].p; assign u to S[k + 1].v;
increment T by 1.

It is easy to see that this correctly implements all operations, and it is clear
that each operation requires constant time, independent of the size of the array
or the values of ¢ and j. Moreover, it generalizes to arrays of any dimension.

17

	How to Compute Offsets Without Self-Intersection
	Report Number:
	

	tmp.1307986960.pdf.bgpm2

