Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1994

On Editability of Feature-Based Design

Xiangping Chen

Christoph M. Hoffmann
Purdue University, cnh@cs.purdue.edu

Report Number:
94-067

Chen, Xiangping and Hoffmann, Christoph M., "On Editability of Feature-Based Design" (1994).
Department of Computer Science Technical Reports. Paper 1166.
https://docs.lib.purdue.edu/cstech/1166

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.


https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ON EDITABILITY OF
FEATURE-BASED DESIGN

Xiangping Chen
Christoph M. Hoffmann

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD-TR-94-067
November 1994
(Revised 2/95)



On Editability of Feature-Based Design*

Xiangping Chen Christoph M. Hoffmann
Department of Computer Science, Purdue University
West Lafayette, IN 47907-1398

Report CSD-TR-94-067
November 1994
Revised, February 1995

Abstract

We present techniques needed for editing generative designs. When a
feature is edited, all features attached later must be reevaluated to sat-
isfy the required constraints and shape references in the initial design. We
describe name matching techniques that support the design reevaluation
procedure. The algorithms account for failed or multiple matches. The
matching uses a naming schema based on historical, topological, and geo-
metric design information that has been described in a companion paper.

1 Introduction

In feature-based design, parts are constructed from a sequence of form fea-
ture attachment operations [2]. This construction paradigm lends itself well to
separating the design into two layers, one comprising an unevaluated, generic
representation, the other comprising an evaluated, instance representation. (see
Figure 1). Design intent is edited and stored in the unevaluated representation
in an editable format (Erep as in [7]) which can be automatically compiled into
an evaluated representation, as explained in [3].

To redesign a part, features are edited; their unevaluated descriptions are
automatically modified and recorded by the design interface and are compiled
serially by a design compiler[3]. To change the design requires changing only

*Supported in part by ONR contract N00014-90-J-1599, by NSF Grant CDA 92-23502, and
by NSF Grant ECD 88-03017.



Design Interface ‘
(editing)

)
Unevaluated Generic Evaluated
Design Naming Design

Design

Compiler
~—

Figure 1: A design model is layered into an unevaluated representation and an
evaluated representation.

the unevaluated representation, because the evaluated representation can be
reconstructed by the design compiler without explicit user action. The purpose
of this paper is to explain the basic mechanisms required for redesign in this
design paradigm.

An important aspect of supporting design edits is a generic naming schema,
for topological entities[1]. This naming schema uniquely identifies a topological
entity in a design and matches it with a topological entity or entities in the
modified design. The major difficulty of the approach is that the evaluated
design cannot be used explicitly and is discarded when the matching takes place.
However, the referenced topological element may not occur explicitly in the
unevaluated representation and therefore has to be deduced by suitable methods.
The payoff of this approach is an enormous flexibility when editing designs,
support of generic design, and substantial lowering of the functional barriers
that exist in current CAD systems [7].

In feature-based design, editing operations can be classified into the following
broad categories:

(E1) inserting or deleting an entire feature;

(E2) changing feature attributes, e.g. from a blind hole to a through hole;
(E3) modifying dimension values defining and/or placing a feature;

(E4) changing the dimensioning schema;

(E5) changing the feature shape definition, e.g. changing the cross section.



Here, we concentrate on editing operations (E1) through (E4), and on the name
matching algorithms that are needed to support them. Operation (E5) requires
certain mapping techniques in addition.

1.1 Editing Semantics

In constraint-based design systems, even changes to dimension values can entail
substantial topological changes of the instance representation, and those changes
must follow a predictable pattern that makes sense to the user. For example,
consider Figure 2. By changing the position of the slot in Part A, the rounded
edge ought to disappear in Part A’: It seems unnatural to us to round the
second, elongated edge, because we conceptualize the slot repositioning as a
continuous motion of the feature from the position in Part A to the position in
Part A’. In this motion, the length of the rounded edge in Part A diminishes
to zero. Yet some commercial systems round the other edge, as shown in the
figure.

On the other hand, when modifying the length of the slot in Figure 3, the
round of Part B would sensibly be inherited by both segments of the divided
edge in Part B’, yet some commercial systems signal an error.

We learn from these two examples that the semantics of editing feature-based
design deserves attention. We have adopted as guiding principle to consider the
intended meaning to be derived from considering the editing operation as a
continuous process in which specific events such as edge subdivision are inter-
preted using rules of positional inheritance. Of course, other interpretations are
possible, and our interpretation does not claim to be universally compelling.

In a number of cases, different interpretations of the intended effect of the
editing operation seem equally sensible. In those situations, we adhere to the
principle that the effect of the modification should not depend on the prior design
modification history. Because prior history is no longer is visually available, we
feel that using it to decide between different interpretations would confuse the
user. For example, consider Figure 4. Part C’ was obtained from Part C' by
contracting the length of the slot, and the blend was spread to the larger edge of
C' that “contains” the previously rounded edge. If we now lengthen the slot to
divide again the rounded edge, by editing Part C’, we would derive the shape of
Part B’ — not the shape of Part C — because reconstructing C depends on older
design history. Note that none of these rules preclude adding an explicit history
mechanism that checkpoints designs and allows backing up the design/editing
process to earlier variants.

It is clear that the topological changes entailed by such simple editing opera-



=

l add a slot

=

- @
—_—

l add a round l regeneration

=

Part A Part A’

Figure 2: Editing example 1: When the slot (second feature of Part A) is
moved to the right and becomes a step, rounding the edge in Part A’ should be
considered an error.

tions must be supported by a robust generic naming schema, along with sensible
matching algorithms that give predictable, meaningful results. In this paper,
we propose such matching algorithms so that the unevaluated design can be
updated accordingly, and so that a design compiler[3] can instantiate the design
consistently.

Matching does not always succeed. Even simple changes of dimension values
can imply design variants in which elements referenced in the construction of
subsequent features no longer exist. In some cases, plausible substitutes can be
constructed, but in other cases matching, and with it reconstruction, can get
stuck. In those situations different philosophies could be adopted. We could
require some substitution to be made without exception, and accept substitu-
tions that are wrong from the designer’s point of view. This strategy makes



=

l add a slot

'
- @
—_—

l add a round l regeneration

=

Part B Part B’

Figure 3: Editing example 2: When the slot (second feature of Part B) is
moved to the right and becomes a step, rounding the edge in Part B’ should be
considered an error.

sense if the editing mechanism has been activated under program control, for
instance in an automated design optimization loop. We could also require user
intervention in such situations. That would be appropriate if a user initiates
design editing. In this paper, we adopt the latter approach.

1.2 Prior Work

Editing operations such as insertion, deletion and modification in general have
been addressed by Pratt[9] and alternative approaches are discussed in that
paper. No naming mechanism has been suggested that would be appropriate
in a constraint-based design environment. In [11], Rossignac has explained the
difficulty of feature editing. He and his colleagues implemented feature editing



=

l add a slot

editing

i

l add a round l regeneration

Part C’

Figure 4: Editing Example 3: When the through slot (second feature of Part
C) is changed to a blind slot, the entire edge of Part C’ should be rounded. For
subsequent editing Parts B and C’ should be equivalent.

=

Part C

operations in a 2D system[12].

Current feature-based design systems support many of the editing opera-
tions (E1-E5). However, because of limitations their generic naming schemata
have with disambiguating feature interactions, many restrictions are placed on
the editing operations, and apparent errors are made. In [5, 6], some of these
errors have been characterized using Pro/ENGINEER as example. However, an
explanation of the precise methods implemented in Pro/ENGINEER cannot be
given because they are guarded as proprietary information. Note that (E4) and
(E5) fundamentally affect the way the design has been conceptualized. These
two editing functions are not usually supported in current systems.

Prior work on generic naming is usually limited to naming faces [10, 14].
Such a schema cannot distinguish other topological entities and therefore is



inadequate in supporting the full range of editing operations we consider. In [1]
we have explained a naming schema that addresses these problems, but have not
discussed the algorithms needed to support editing. Kripac reports a naming
schema in [8]. His work also describes several ways to match generic names,
in support of changing dimension values, but he does not further elaborate in
which situation each matching algorithm should be applied. The feature editing
operations of many feature-based design systems, such as [4, 13, 14], are limited
primarily because of the restricted naming ability. Good techniques for generic
naming and matching are therefore a prerequisite to flexible design variation.

2 Feature Editing

In our feature-based part design implementation, features are attached serially
to prior geometry (also see [2, 3]). The prior geometry is the part obtained
from the evaluated preceding feature definitions. Following [7], we distinguish
generated, modifying and datum features. The construction of generated features
is briefly described as follows. Details are in [2]:

1. A cross section is sketched and then fixed by constraints and dimension
values.

2. The cross section is oriented and positioned in the three dimensional space,
based on constraints, with respect to the prior geometry.

3. A proto feature, defined as the extrusion or revolution of the cross section
to a sufficient extent, is constructed based on a set of feature attributes,
such as from a plane and to offset. The proto feature is then trimmed
by observing its interference with the existing geometry, again based on
feature attributes.

4. The trimmed proto feature is attached to the prior geometry.

Modifying features add chamfers and rounds to edges, or draft angles to a set
of faces. They are constructed from feature attributes and an identification of
geometric elements in the prior geometry. Datum features include datum points,
axes and planes, auxiliary elements that conveniently help construct generated
and modifying features. Datum features do not change the part geometry;
rather, their main purpose is to effect coordinate manipulation in simple terms.



2.1 Structure of Editing Operations

From the editing operations specified in Section 1, we extract common proce-
dural steps from which they can be composed. This elucidates in turn how
the name matching algorithms should be structured and how exact a match is
required.

(E1) Feature Deletion and Insertion

Deletion of a feature F' requires the following steps:

1. The geometry is rolled back to the prior geometry as if we were creating
the feature to be deleted.

2. The feature definition of F is deleted from the unevaluated representation.

3. The subsequent features are reevaluated from the unevaluated represen-
tation. Due to match mediation, the unevaluated description of the sub-
sequent features may change.

Insertion of a feature is similar, except that a new feature definition is inserted
in Step 2. Thus, editing operation (E1) requires only a naming schema and me-
diation when matching names. Furthermore, we must account for the possibility
that a later feature references geometric elements that were created before by
the now deleted feature.

(E2, E3, E{) Changing Attributes, Modifying Dimension Values, Changing the
Dimension Schema

When editing dimension values, the dimension schema, or the attributes of a
generated feature F', the following steps are executed:

1. The part geometry is rolled back to the state of the prior geometry that
existed when F' was defined.

2. The cross section on which F' is based is reconstructed in the required
projection.

3. Attribute changes, dimensional changes, and changes in the constraint
schema are defined by the editing process. The cross section is then re-
generated for a generated feature.



4. The proto feature is constructed, and the attachment of F proceeds as if
F was defined for the first time.

5. The subsequent features are reevaluated from the unevaluated represen-
tation. Due to match mediation, the unevaluated description of the sub-
sequent features may change.

If F is a modifying feature or a datum feature, the work is simplified in that
no cross section has to be modified and reevaluated. However, in that case the
match mediation has to be more rigorous, as we will detail in later sections.

(E5) Changing the Cross Section

Finally, if the cross section is redrawn in part or in whole, a remapping step is
required in addition, in which the new names of geometric elements of the cross
section are mapped, where possible, to names of the old cross section.

2.2 Editing Examples

We demonstrate the editing concepts with a sequence of editing examples done
with our Erep system. In Figure 5, we create a part with four features: a block,
a protrusion, a slot and a round, created in this sequence. The cross sections of
the protrusion and the slot are shown to the right.

The way in which the part has been created implies some feature dependency.
The definition of the slot in the example of Figure 5 makes reference to the
protrusion, for placement purposes. On the other hand, the round does not
make a reference to the protrusion or the slot. So, if we delete the protrusion
feature, the round remains while the slot feature would be deleted.

If the slot feature should be kept, we would have to modify the dimension
schema so that the slot is independent of the protrusion. This may be done by
editing the slot first: The system brings up the cross section of the slot as shown
in Figure 6(left). We may now delete the distance constraint that places the
slot with respect to the protrusion edge, and add a new distance constraint that
references equivalently the top edge of the block; Figure 6(right). Reevaluation
with the new dimensioning schema will not alter the design form, but the slot’s
definition no longer references the protrusion and so the protrusion could be
deleted next — without affecting the slot.

Consider now the part of Figure 5 with the original dimensioning schema
shown in Figure 7(left). To enlarge the radius of the protrusion, we edit by
modifying the dimension values of the cross-section; Figure 7(top middle). After

9



box

l
l
T
protrusion
| D)
i [
=51 |
@ slot
|
5T
@ round

Figure 5: Erep feature construction: A part is created with a block, a protrusion,
a slot and a round. The features were added sequentially. Cross sections are
shown to the right.

10



Figure 6: The slot dimensioning schema is edited. The new schema shown to the
right no longer references the protrusion, so the slot position is now independent
of the protrusion feature and its variations.

reevaluation, the part variant of Figure 7(top right) is produced, maintaining
the constraints that specified the slot and its position relative to the protrusion.
Note that the slot has moved. This would not be the case with the dimensioning
schema of Figure 6(right).

/

N

Figure 7: Top: Using the dimensioning schema left, editing the protrusion radius
will affect the position of the slot feature.

Bottom: The cross section of the slot feature has been edited replacing one of
the round ends with a square end.

In the bottom of Figure 7 we show a cross section change of the slot. The

11



round end of the slot has been replaced with a square end; Figure 7(bottom
middle). The result is shown in Figure 7(bottom right).

The editing semantics that we have illustrated is intuitive for feature-based
design. However, both research and commercial systems are limited in their
support of the feature editability, due to the technical demands constraint-based
design imposes.

3 Feature Reevaluation

Since features are created sequentially, later feature can depend only on earlier
features. When a feature has been edited, all later features may be affected.
Therefore, reevaluation has to account for the possibility that features that
have not been edited directly may have to change nevertheless. The changes
could be deleting a marginalized feature, or modifying the names referenced by
the feature.

A feature becomes marginalized when it no longer contributes to the geomet-
ric shape of the solid at the moment of attachment; for example, when a hole is
dimensioned such that it no longer subtracts volume from prior geometry. Such
features are deleted. A feature becomes orphaned when the names used in defin-
ing the feature and attaching it refer to geometric elements that no longer exist.
For instance, if the position of a hole depends on having a given distance from
a boss and the boss is deleted, the hole can no longer be positioned. Orphaned
feature can be reattached as described later.

A generated feature refers to elements of the existing geometry, using a
generic naming schema as explained in [1]. In some cases, the editing change
implies that the name of the referenced entity changes. In such cases, the
referenced names must be adjusted by feature correction. The possibilities are
summarized as follows:

Let
S = (Fla FZa sy -Fi—h Ev F"i+11 -",Fn)a

be the unevaluated representation, and let F! be the description of
the modified feature for ;. Then

§ = (Fla FZ, ey -Fi—l, -F;,’ i,+17 ey F;n,)

where m < n and F;, ¢t < j < m, are the regenerated features
following F;.

12



The rewriting of the later features F;yq, Fiy2, ..., and deletion of the marginalized
features, limits the dependency of editing on prior design history.

A marginalized feature is easily detected: When reevaluating the feature,
the feature attachment procedure detects that the prior geometry remains un-
changed. In this case, the feature description is deleted. An orphaned feature
arises when, in the course of reevaluation, the cross section is not fully deter-
mined or cannot be placed. Both situations can be due to unresolved names for
dimensioning, but also to loss of the sketching plane for generated features, or
loss of an entity for modifying features. Orphans can be reattached if we initiate
feature editing and let the user supply new targets for the unresolved names.

In all cases, the crucial aspect is a matching algorithm for generic names that
has to mediate newly arising ambiguities and has to recognize failure to match.
These algorithms differ depending on the use of the name. For dimensioning,
ambiguities are acceptable as long as the target entities project to the same
point, line or plane. For sketching planes, multiple coplanar faces are acceptable.
For modifying features, ambiguous references must be of the same type and are
considered collectively. In all other cases, mediation and error recovery is needed.

4 Matching a Vertex

Vertices are matched to define constraints, to construct datum features, to be
used by modifying features, or to be used as a subexpression in another name
(also see [1]). In the dimensioning case, we need the vertex in projection, oth-
erwise we need to identify the vertex in the three-dimensional space. Moreover,
only in the case of modifying features can we accept multiple matched vertices
with the same name.

A vertex can be lost when editing because of changes in a feature collision.
An example is shown in Figure 8. In some cases, lost vertices can be uniquely
reconstructed on basis of their names. However, we limit reconstruction so as to
limit dependency on the design history. Moreover, the vertices used in modifying
features should not be recovered from the design history because a modifying
feature operates on the geometry after attaching its previous feature. Therefore,
if the vertex cannot be found or if reconstruction is not desirable, we need to
interact with the user to find a suitable alternate.

A vertex name certifies whether the vertex is a vertex of a proto feature. If
s0, the vertex can always be recovered from the proto feature, because its name,
constructed by [1], identifies the vertex uniquely and the proto feature can be
constructed explicitly. Thus, V in Figure 8 can be localized even after it has
been obliterated in the design variant, or is lost as result of merging with a prior

13



vertex. In the former case, the name of the vertex is not changed in the feature
correction, but in the latter case the name of the coincident, merged vertex is
substituted.

v (V)

part D partD’

Figure 8: The vertex V of part D is not found in part D’. As a proto feature
vertex, it can be reconstructed from the first feature of part D’.

In the case of an intersection vertex, there will be three or more incident faces
that define the vertex. If no vertex can be found that matches the description,
we construct an approximate match as follows by parsing the name expression
generated in [1].

1. Let E, be the vertex name we seek to match (see [1]). Let F be the feature
used in the feature orientation part of F,. We consider a set V of vertices
that are intersection vertices and part of the feature F.

2. Let J = {f1, f2, ..., fm} be the incident faces listed in the first part of E,,.
We partition V into subsets V;, Vs, ..., V., where V}, consists of the vertices
in V that have k incident faces in J.

3. We examine V;, for £ = 1...m. Each vertex w in Vj is assigned a grade
Gy as follows: Imitially, G,, = 3k. If w is manifold, and E, requires a
manifold vertex, then we add 1 to G,,. We add 2 if the order in which the
incident faces are around the vertex agrees with the order of J for manifold
vertices (note that ¥ > 3 in that case). If w is nonmanifold and we require

14



a nonmanifold vertex, then 1 is added to G,,. For every expression [f, s] in
the feature orientation, we add 1 to G,, if the corresponding computation
for w would also produce [f, s] as feature orientation element.

4. The set of vertices approximately matching F, is the set of vertices w with
the maximum grade G,,. If G, < T, where T is a preset threshold, then
the match is assumed to have failed.

Assume that a set of vertices has the same maximum grade G, and passes the
threshold criterion. For dimensioning use, such a multiple match is acceptable
when all matched vertices project to the same point. If this is not the case, the
name E,, of every matched vertex can be computed. This partitions the match
set into classes of vertices that are equivalent in the new design variant. The
user is then asked to identify which equivalence class of the matched vertices is
meant. The set so identified becomes the accepted match.

5 Matching an Edge

Edges are matched for defining constraints, constructing datum features and
for being used by rounds and chamfers. In the case of constraints and datum
features, ambiguous edges can be tolerated if they are collinear line segments
with consistent orientation. In the case of 2D constraint definitions, ambiguities
are acceptable if the edges project onto the same line, again with consistent
orientation.

Edges of a generated feature have unique names. As in the vertex case, an
obliterated edge can be reconstructed from the design history. However, note
that such an edge may have been subdivided, and only some of the resulting
segments may be meant.

We structure the matching algorithm by parsing the naming expression of
an edge in [1]. First, a preliminary set of candidate edges is identified, based
on matching adjacent faces. Unless two or more adjacent faces can be matched,
the edge cannot be matched and user intervention is required.

Next, the preliminary set of edges is narrowed using the incident vertex
specification and feature orientation. If the vertices can be identified, then we
can also determine which subdivision segments are to be matched. If no vertex
information is given (for closed edges), a subdivision test may still be applicable.
Note that this step is not needed for an edge used in constraint definitions. Edge
names are further analyzed based on feature information, especially when the
vertex match is unsuccessful or ambiguous.

15



Preliminary Edge Set

A preliminary edge set is found using immediate context. Let E. be the edge
name we are to match. If the edge is (a subdivision of) an edge of a proto
feature, then the preliminary set consists of all edges that are adjacent to the
faces of the proto feature. Such edges must lie on a common space curve that
can always be reconstructed. Note that the set may be empty.

If we are matching intersection edges, the preliminary edge set consists of
all edges that have a maximum number of adjacent faces that lie in the cycle
of faces C, identified by the first part of the edge expression E.. At least two
adjacent faces must be matched, otherwise the preliminary set is empty.

If the preliminary edge set is empty the match has failed. However, even
if the preliminary edge set is a singleton, the match is not successful unless
this edge has the equivalent description of adjacent vertices (for a modifying
feature), and feature orientation information to E.. For example, consider the
part in Figure 9 left. Assume that we created the round slot by an extrusion
from the front to the rear, and rounded the right edge of the slot. By changing
dimension values, the slot can be repositioned so that it becomes a step. The
middle variant correctly recognizes that the singleton preliminary edge set does
not constitute a match on basis of the incident vertices or feature orientation
information, whereas the right design variant is an error.

Figure 9: After repositioning the slot, the correct design variant is shown in the
middle.

Incidence Based Narrowing

Preliminary edge identification does not account for the possibilities that an
edge has been subdivided, or that two different edges have the same immedi-
ate context. Examples are shown in Figures 9 and 10. An effective distinction
between the two types in mathematical terms is complicated, because the dis-
tinction should conform with user intuition and then must be based on dividing
space curves into real components, a complicated undertaking. For instance,

16



the two near-circular edges of a cylindrical through hole in a sphere would be
considered two distinct edges with the same immediate context, even when the
axis of the hole does not contain the center of the sphere. However, classical
algebraic geometry would consider both curves part of a single space curve con-
nected in complex projective three-space. Therefore, we do not differentiate
between the two cases.

The edge name FE, has the form [Ce, L., F.] (see [1]). The expression L.
identifies the incident vertices and is now matched. If L. = [], the edge was
closed when the name was constructed. In this case, no vertex matching is
possible and we continue with feature orientation based narrowing.

If L. = [V,W,s], then we match the vertices described by V and by W. If
the vertices can be matched uniquely, or can be uniquely reconstructed, or if
one edge and a direction can be established on the basis of s and the immediate
context specification, then the matching process continues with a subdivision
identification. Otherwise, we continue with feature orientation based narrowing.

If we have uniquely identified or reconstructed two vertices v and w described
in E,, then we retain all edge segments that lie between the two vertices. See
also Figure 10. From this reduced edge set, every candidate edge is deleted that
has an inconsistent feature orientation.

e, €;

N ’r.ll

Figure 10: Left: Edge e; is named in the design. After editing, the edge is
subdivided by colliding features. Segments e11, €12, and e;3 match.

If we can match only one vertex, say V, from the name E., then all edges
not incident to V' are removed from further consideration. This implements the
semantics discussed in conjunction with Figure 2. The remaining edges must
have consistent feature orientation to constitute a match.

Feature Orientation Based Narrowing

In general, an edge E,, is considered an exact match if the edge is in the pre-
liminary edge set and has two vertices that are uniquely matched from the

17



description in E.. However, there are other cases requiring further analysis, for
example edges of which one or no adjacent vertex has been matched and closed
edges that do not have adjacent vertices. We narrow as follows.

Examine every candidate edge ¢’. Let E, = [Ce, L., F¢], and let F be the fea-
ture name occurring in F, = [F, [f1, s1], ..., [f&, Sk]]- We require that at least one
of the faces fi,..., fx be adjacent to €. Moreover, for every subfield [f, s] where
f is adjacent to e’ we require that the orientation s agree with the orientation
of ¢/. Only edges satisfying these two criteria remain in the match set.

Grading Multiple Matches

If the narrowing does not produce a unique match, we give each remaining
candidate edge ¢’ a grade based on how closely the vertices of e’ match the
vertex descriptions V and W in E.. This is done by evaluating the vertices
of ¢’ as described in Section 4. The edges that have the highest grade are the
approximate match of F,.

Match Mediation

When the matching algorithm has failed, then the user is asked to reidentify the
edge. A new edge name is computed, and regeneration continues.

When matching has produced several edges, additional information may be
needed depending on the purpose of the match. In the case of rounds and
chamfers, multiple matches are always accepted. All edges matched are used in
the feature operation. The names of the matched edges are recomputed from
the current design variant and are stored for future reference. In the case of 2D
dimensioning, multiple matches are acceptable only when every matched edge
projects to the same circle or line with identical orientation. Otherwise, the user
is asked to differentiate which edge is to be referred to. In the case of datum
plane definitions, multiple matches are accepted when the edges are collinear
line segments. For datum axis definitions, the collinear line segments must be
consistently oriented.

6 Matching a Face

Faces are matched to determine the limits of feature attachment operations,
defining draft operations, identifying a sketching plane, or constraining a datum
definition. The degree of exactness with which a face is to be matched varies

18



with the operation. For faces used in defining constraints and sketching planes,
the match only requires matching the internal geometry of a named face, not
a particular subdivision. As before, an obliterated face used in those cases can
always be reconstructed from the design history, from the corresponding proto
feature or modifying feature. In the other cases, however, a more specific match
is required.

All faces of a solid must be subdivisions of faces created in proto features and
modifying features, with the possible exception that two faces may be merged
so that one of them loses its identity. Faces on the proto feature of a generated
feature have unique names that are assigned when the feature is created. Faces
of chamfers and rounds are named after the vertices and edges they chamfer or
round.

When a face has been subdivided, the internal geometry of this face does not
change, therefore all subfaces inherit the same name of their parent face. When
faces are merged, every face in the merging list can be the match representative.
However, because of feature editing, different face representatives may lead to
different interpretations. In Figure 11, suppose the merged face of f; and f;
are initially used for the sketching plane of the third feature. After the second
feature is edited, using f; and f, as the representatives of the merged face leads
to protrusions with different heights.

When merging faces, there is no clear preference of how to name the resulting
face; either name could be used. In our implementation, the result has the name
of the face that belongs to the earliest feature among all merging components.

Preliminary Set

As explained in [1], every face name starts with one of the following five expres-
sions:

(startf feature.f2D),(end f feature.f2D),(sidef feature.f2D),
(x(le)) or (c(le))

Here, faces of type c(l.) are from chamfers and faces of type r(l.) are from
rounds. These expressions are used to select the preliminary set of faces. If
only the geometry of a face is required, the faces in this set will typically lie on
the same surface, and so any face in the set can serve as a match. Moreover, a
face can be reconstructed if the match set is empty. If faces in the preliminary
match set have different underlying surfaces, for instance when the set contains
chamfers of several edges, then further narrowing is needed.

19



AN
e

QY
A

Figure 11: Different representatives of a merged face produce different results
after feature editing.

Narrowing Multiple Matches

When a specific subdivision of a face is required, we process the adjacent edges
and compare them to the required edges. Edge matching proceeds for each
individual bounding edge as described before in Section 5. The grade for each
candidate face in the preliminary matching set is the number of matched bound-
ary edges. This number has to exceed a threshold which is set as a fraction of
all adjacent edges. As an example, assume that a face is to have 5 adjacent
edges with prescribed names. We match each edge name against the edges of
a candidate face. With a threshold set at 3/4, the match succeeds if at least
four out of the five edges can be matched, and fails if three or fewer edges are
matched.

20



7 Conclusions

The matching mechanism is an inverse processes of generic naming. Naming and
matching are prerequisites for flexible, constraint-based feature editing. With-
out the ability to do graded matches, however, only exact unambiguous matches
would be allowed, and we would seriously restrict the flexibility of feature edit-
ing. Therefore, we have introduced rankings of partial matches by assigning
numerical grades.

The support of feature editing is only one application of our naming and
matching techniques. The fundamental significance of these techniques is that a
separation is achieved between generic design and modeler-specific design. The
naming and matching systems are key components of the design compiler that
translates the generic design that is modeler-independent to a specific model
instance that is constructed with the infrastructure of a particular geometric
modeler[3].

Our naming and matching algorithms are a contribution to defining a modeler-
independent semantics of feature-based editing, just as our earlier paper [2] gave
a semantics for feature attachment. Where possible, our semantics depends on
the conceptualization that the result of a changed dimension ought to be de-
rived by considering it a “deformation” process governed by gradually varying
the dimension from the initial to the final value.

In our implementation of the editing semantics, we have concentrated on
this semantics aspect, experimenting with the mechanisms described here and
in the companion paper [1]. Thus, no attempt has been made to devise efficient
searching algorithms for locating, in the Brep instance, which boundary element
is referred to by a particular name. Thus, finding the possible referenced enti-
ties takes linear time in the number of boundary elements. Significant heuristic
and asymptotic improvements are easy to make. For instance, when a design is
evaluated, searching structures can be devised that index subsets of boundary
elements by the feature(s) they belong to. This immediately results in sublin-
ear pedrformance, and coupled with efficient searching techniques leads to very
attractive speed-ups. The details are routine.

References

[1] V. Capoyleas, X. Chen, and C. M. Hoffmann. Generic naming in genera-
tive, constraint-based design. Technical Report 94-011, Purdue University,
Computer Science, 1994.

21



[2] X. Chen and C. Hoffmann. Towards feature attachment. Computer Aided
Design, page to appear, 1994.

[3] X. Chen and C. Hoffmann. Design compilation for feature-based and
constraint-based CAD. In Proc 3rd ACM Symp on Solid Modeling, 1995.

[4] J. C. Chuang, D. R. Patel, and M. K. Cook, R. L. Simmons. Feature-based
modeling for mechanical design. Computers & Graphics, 14(2):189-199,
1990.

[5] C. M. Hoffmann. On the semantics of generative geometry representations.
In Proc. 19th ASME Design Automation Conference, pages 411-420, 1993.
Vol. 2.

[6] C. M. Hoffmann. Semantic problems in generative, constraint-based design.
In Parametric and Variational Design, pages 37-46. Teubner Verlag, 1994.

[7] C. M. Hoffmann and R. Juan. Erep, an editable, high-level representation
for geometric design and analysis. In P. Wilson, M. Wozny, and M. Pratt,
editors, Geometric and Product Modeling, pages 129-164. North Holland,
1993.

[8] J. Kripac. Topological ID system — A Mechanism for Persistently Naming
Topological Entities in History-based Parametric Solid Models. PhD thesis,
Czech Technical University, Prague, 1993.

[9] M. J. Pratt. Synthesis of an optimal approach to form feature modeling.
In ASME Computers in Engineering, volume 1, pages 263-274, 1988.

[10] A. A. Requicha and S. C. Chan. Representation of geometric features,
tolerances and attributes in solid modelers based on constructive geometry.
IEEE CG & A, 2(3):156-166, 1986.

[11] J.R. Rossignac. Issues in feature-based editing and interrogation of solid
models. Computers and Graphics, 14:149-172, 1990.

[12] J.R. Rossignac, P. Borrel, and L.R. Nackman. Interactive design with
sequences of parameterized transformations. In V. Akman, P. ten Hagen,
and P. Veerkamp, editors, Intelligent CAD Systems 2: Implemental Issues,
pages 93-125. Springer Verlag, 1989.

(13] J. J. Shah, M. T. Rogers, P. C. Sreevalson, D. W. Hsiao, A. Mattew,
A. Bhatnagar, B. B. Liou, and D. W. Miller. The A.S.U. features testbed:

an overview. In ASME Computers in Engineering, volume 1, pages 233
241, 1990.

22



[14] G. P. Turner and D. C. Anderson. An object-oriented approach to inter-
active, feature-based design for quick turnaround manufacturing. ASMFE
Computers in Engineering, 1:551-555, 1988.

23



	On Editability of Feature-Based Design
	Report Number:
	

	tmp.1307986960.pdf.YhK90

