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In the I9th century, the French geometer
Charles Pierre Dupin discovered a non-
spherical surface with circular lines of
curvature. He-called it a cyclide in his
book, Applications de Geometrie published
in 1822. Recently, cyclides have been re-
vived for usc as surface patches in com-
puter aided geometric design (CAGD).
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geometric descriptions of the cyclide found
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classification scheme.

Key words: Geometry — Dupin cyclides -
Surface patches — Computer-aided geo-
metric design

* Chandru was supported in part by grants (rom
the ONR under University Rescarch Initiative grant
number N00Q14-86-K-0689 and from NSF grant
number DMC 88.07550

** Duuta reccived support [rom the Nalional Scicnce
Foundation grant number DMC §8-07550

*** Hollmann was supperled in part by NST grants
CCR-8619817 and DMC 88-07550 und ONR con-
tract NOO014-86-K-0465, and a gramt from the
AT & T Foundalion

The Visval Compuler {|989) $:277-350
% Springer-Yerlp 1982

1 Introduction

Early last century the French geometer C. Dupin
discovered a non-spherical surface with the proper-
ty that all its lines of curvature were circular. In
his book, Applications de Geometrie published in
Paris in 1822, he called this surface a cyclide, Math-
emalicians, including Casey (1871) and Darboux
(1887), have analyzed and generalized Dupin’s cyc-
lide in various ways. Until the early part of this
century, most books on analytical geometry con-
lzined material on Dupin’s cyclides and their gen-
eralizations (Salmon 1915; Woods 1922). However,
the generalized cyclides have properties quile dif-
ferent from thosc discovered by Dupin. In this
paper, Dupin cyclide and cyclide will be used inter-
changeably, and will always refer to the cyclides
of Dupin, .
Alfter a lapse of more than fifty years from their
discovery, a paper of James Clerk Maxwell (1868),
revived the interest in Dupin cyclides. Maxwell was
interested in finding two curves such that the con-
gruence of lines meeting the curves can be cut orth-
ogonally by a family of surfaces. He found that
Dupin cyclides were such surfaces if the two curves
were conics in perpendicular planes, with vertices
ol one passing through the foci of the other. A
few years later, Cayley wrote about his investiga-
tions of the cyclide (Cayley 1873). He was interested
in the mathematics of cyclides and in his paper,
Cayley simplified the earlier definitions by Dupin.
Since then, to our knowledge, the inlerest in cyc-
lides waned, gradually [cading to its omission from
most geometry books of this century.

Intercst in cyclides revived again in the 1980%. This
time it was motivated by rescarch in Compulter
Aided Geometric Design (CAGD). In 1982 at
Cambridge University, UK., Martin introduced
principal patches — surface patches bounded by
their lines of curvature — in surface modeling and
proposed using cyclides to generate such surface
patches (Martin 1983). Since then there has been
continued interest in cyclides at Cambridge (Mar-
tin etal. 1986). About the same time at Chrysler
Corporation, U.S,, McLean proposed a different
technique for composing cyclide patches to model
automobile surfaces (McLean 1984). Knapman has
described uscs of cyclide patches for retrieving
and reasoning aboul surface shapes (objects) in
data bases (Knapman 1986). Finally, our own in-
terest in cyclides arose from its applicability as a
variable radius blending surface (Hoffmann 1988).
Pratt has also described similar uses of cyclides
for blending (Pratt 1988). A brief history of cyclides
and their uses in surfacc modeling has been dis-
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cussed in a recent book (Nutbourne and Martin
1988).

The recent Cambridge/Chrysler interest in cyclides
as surface patches [ocuses on properties “in the
small” rather than properties “in the large”. This
approach refllects the intended use of a cyclide by
designers who are not required to know about its
global properties. It is our thesis that the realiza-
lion of the true potential of cyclides in CAGD ap-
plications can be facilitated if we understand and
utilize its global propertics. In that case, one is
faced with the formidable task of visualizing the
cyclide and its various forms in the classical [rame-
work, 1.e. in terms of envelopes, cones, spheres and
conics. Whilc the papers of Maxwell (1867) and
Cayley (1871) are a starting point for such a pro-
Ject, their style and lack of appropriate figures can
be dissuading (Nutbourne and Martin 1988).

We attempt to fill this gap by translating the classi-
cal results into the modern context. We begin by
summarizing cyclide applications (Sect. 2). Next,
we unify the classical definitions (Sect. 3), give com-
plete proofs of some of the key properties (Sect. 4),
formulate algorithms (constructions) for computer
aided synthesis (Sect. 5), and present a new classifi-
cation of the morphology of cyclides (Sect. 6). We
conclude with a short catalogue of cyclide proper-
ties (Sect. 7} we deem useful for geometric model-
ing. In the appendix, we briefly describe our imple-
mentation of algorithms for generating various
forms of the cyclide.

2 Applications

Thus far, the uses of cyclides fall under two categor-
ies namely, cyclide patches and cyclide pieces. The
former refers to a surface patch in the conventional
sense, i.e. a4 two dimensional construct bounded
by circular arcs. A cyclide piece, in contrast, can
be considered as a one dimensional construct, de-
fined by segements of the enclosed spine curve.

Martin proposed surface modeling by patches that
are bounded by their lincs of curvature (Martin
1983). Since all principal lines of curvature on a
cyclide are circles, Martin’s method was easily
adapted to model surfaces using patches of cyclides
(Martin et al. 1986). While this method of approxi-
mation allows the designer a conlrol over the curv-
alure of the surface from initial stages, an accompa-
nying restriction is that the set of vertices of every
patch has to be cocircular. Based on the theory
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of pentaspherical space, McLean developed a
method that transforms the Gaussian images of

cyclides (i.e., palches on the unit sphere} to appro-

priate cyclide palches. However, in his method tan-
gent continuity between adjacent patches gradually
became difficult 1o insure, as the number of paiches
increased (McLean 1984).

Knapman has proposcd the use of cyclide patches
in machine vision (Knapman 1986). His method,
based on dilferential geometry, puts forth the cyc-
lide patch as a candidale for surface representation
primarily with a view towards ease of recovery
from the data base. The simplicity of principal lincs
ol curvature on the cyclide arc exploited to recog-
nize the object shapes. A geometrical interpretation
of the patch parameters and mcthods lor their de-
termination are discussed.

Viewing the cyclide as a piece is helpful when con-
sidering it as an approximant for blending surfaces.
In particular, when the radius is required to vary
on a blending surlace (e.g., in design of moelds and
dies), its exact form is of a high algebraic degree
and is mathematically complex. The cxplicit deri-
vation of such a blending surlace involves the large
scale elimination of variables and requircs cxces-
sive symbolic computation (Chandru et al. 1989).
Consequently, variable radius blending surfaces
are, in general, difficult to derive analytically. Thus,
they are suitable candidates for approximation.

A procedure for using cyclides Lo approximate
variable radius blends has been detailed in Chan-
dru et al. (1989). It consists of a Lhree step proce-
dure: (i) defining a spine curve for the blending
surface (conceplualized as a rolling-ball blend); (ii)
approximating the spine curve of the blend by pie-
cewise cyclide spines and; (iii) construcling over
each approximated spine segment a suitable cyclide
piece. The geometrical insights developed in this
paper provide a basis for the crucial piecewise ap-
proximation using cyclide spines and for simple
algorithms te construct cyclide pieces upon the ap-
proximaled spines. The former reduces to imposing
additional cyclide constraints on a conic approxi-
maltion scheme for space curves that uses biarc ele-
ments and Liming's method.

3 Definitions

The following definitions of the cyclide can be
found in the classical literature {Dupin 1822; Max-
well 1368; Cayley 1873). We give a briefl explana-
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tion for each and provide rclevant figures. All refer-
ences to Maxwell and Cayley in this paper, refers
to Maxwell (1868) and Cayley (1873). As will be
evident laler, cyclides are symmetric aboul a pair
of orthogonal planes - the planes of their conics.
Thus, illustrations become much simpler on the
planes of symmetry as all spheres can be replaced
by the corresponding circles ol intersection. All fig-
ures in this paper are on the planes of symmetry.
Let Iy, F, and F; denote three fixed spheres and
& denote a null sphere.

Definition I (Dupin). A cyclide is the envelope of
a variable sphere that touches three lixed spheres
in a conlinuous manner.

Given the {ixed spheres F,, F,, F5, a variable sphere
V tangent to all three of them is in one of eight
possible topological positions. With the variable
sphere represented by a parenthesis pair, ic. (),
we denote the eight positions symbolically as [ol-
lows:

F F, F5(&): The fixed spheres touch V from the
outside of V.

@(F F, F3): The fixed spheres touch V (rom the
inside of ¥,

Fy F,(F,): V contains F, but neither £, nor F;.
F(F, ). Vcontains F, and F, but not I
F| F5(F,): V contains F, but neither F, nor F.
F(Fy F3): V contains F, and F; but not F,.
F, Fy(F)): V contains F, but neither F, nor F,.
F\(F; F}): V contains F, and F; but not F,.

We consider these positions in more detail. Let
P be the plane of symmetry defined by the centers
of the {ixed spheres. Let V be a sphere in position
F, F, F;(@) with its center on P. The intersection
of this conliguration is shown in Fig. 1a. We imag-
ine that the radius of V increases while its center
rises above P as needed to maintain tangency with
the fixed spheres. As V cnlarges, the points of con-
tact with the fixed spheres F;, move above P towards
the north poles of the F. If the radius of V is in-
creased indefnitely, its center moves Lo infinity and
V becomes a plane tangent to the F, at points above
P. At that moment, V' can also be considered as
a sphere of infinite radius with its center below P,
ie. we may exchange the inside and outside of V
at that position. We do so, and now diminish the
radius of V. Then, the center of ¥ approaches P
{rom below and the contact points witl: the F, move
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across the respective north poles reapproaching the
equators of the F. When the center of V reaches
P, we have the configuration shown in Fig. 1b, and
V is now in position @(F, F, F;). We continue in-
creasing the radius of V' while raising its center
above P. This time the contact points move below
P towards the south poles of the F. In the limit,
V becomes a second plane touching the F at points
below P. Once again we switch the inside and out-
side, reduce the radius of V, and approach P with
the center of ¥ {rom below until we reach the start-
ing confliguration of Fig. 1a.

These considerations show that all spheres in posi-
tions F, F, F;(@) and @(F, F, F5) belong to the
same series. The envelope of this series ol spheres
is a cyclide. The cyclide corresponding to this series
(i.e., Fig. Ia, b) is called a ring cyclide, as explained
in Section 6.

Similar considerations show that the spheres in po-
sitions F, f5(F;) and K(F, F) form a series; the
spheres in positions F, F/;(F,) and F (I, F3) form
another scries; and the spheres in positions
F, Fy(F|) and Fi(F, ;) form yet another series.
These are the serics being referred to by Cayley,
in the next definition of a cyclide.

Definition 2 (Cayley). A cyclide is the envelope of
a variable sphere belonging to one of the {our series
of spheres which touch three given spheres.

Consider any cone of the lour series of variable
spheres. Their circles of intersection V; and V, on
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the plane of centers of F; I, F; is shown in Fig. 2a.
Il the role of fixed and variable spheres are now
reversed 1.c., the two variable spheres of Fig. 2a
are the fixed spheres F, and F; in Fig. 2b and the
three fixed spheres of Fig.2a are the variable
spheres V| ¥, and V; in Fig. 2b, once again we ob-
tain a cyclide. This cyclide can now be defined in
terms of twe {ixed spheres but with an additional
constraint that all variable spheres have their
centers on a plane namely, the onc defined by
V. V, V5 in Fig, 2b,

Definition 3 (Cayley). A cyclide is the envelope of
a variable sphere having its center on a given plane
and Louching two given spheres.

The envclope of a series of spheres whose cenlers
lic on a fixed curve has been called a canal surface
and is attributed Lo the 19th century French mathe-
matician Gaspard Monge (Hilbert and Cohn-Vos-
sen 1932). Such an envelope can be thought of as
a collection of all circles of intersection between
adjacent spheres of the series. These have been re-
ferred to as the characteristic circles of a canal sur-
face. All surface normals of a canal surface pass
through its characteristic circles and hence through
the fixed curve. Lines of curvature on a surface are
defined to be curves such thal normals to the sur-
face at two consecutive points on the curve inter-
secl. Thus, all characteristic circles on a canal sur-

280

face are its lines of curvature. Each sphere that
forms the canal surface is tangent to it along a
linc of curvalure.

The envelope of variable spheres in each of the
Definitions [-3 is a canal surface. Now consider
the envelope as obtained by any one definition (c.g.,
Definition 1). If three spheres of this envelope are
[ixed and the Definition ! reapplied, a second enve-
lope is obtained. All spheres of the second envelope
are tangent to the fixed spheres of the first enve-
lope. Since the choice of lixed spheres from the
first envelope is arbitrary, all spheres of the second
envelope are tangent to all spheres of the first. Both
envelopes are canal surfaces and, furthermore, they
are complements of each other in the sense that
Lhe space swept by the spheres of the first envelope
is the outside of the space swept by the spheres
of the second envelope, and vice versa. Thus, they
share a common surface which is by Definition I,
a cyclide. The curvature lines of each canal surface
form the curvature lines of the cyclide. Hence, every
cyclide can be thought of having a pair of canal
surfaces associated with it. The surface normals of
these canal surfaces by definition pass through two
lixed curves. Thus, we arrive al a new definilion
for the cyclide.

Definition 4 (Maxwell). The cyclide is a surlace, all
normals of which pass through two [lixed curves.
In general, the normal sections at any point on
a surface yield curves through the point. The
centers of the osculating circles of these curves lie
on the normal through the point. The two centers
[arthest apart on the normal are referred to as the
centers of curvature corresponding to the principal
directions of the surface, at that point. In general,
the centers of curvature of the points on a surface,
form a pair ol surfaces. This pair of surfaces is
referred Lo as the surface of centers of the original
surface. By Definition 4, the surface of centers of
a cyclide are two fixed curves. The nature of these
curves is revealed by the following theorem.

Theorem 1. The fixed curves of a cyclide are conics.

Proof. Let €, and %, denote the pair of canal sur-
faces common to a cyclide. Consider any sphere
§ of the first canal surface %,. By Delinition I, S
is tangent to all spheres of the second canal surface
%,. Let (py,p1.P3,ps) denote the points of tan-
gency belween S and any four spheres of %, .

I((p,, ..., py) are non-coplanar %, consists of a sin-
gle sphere, namely S, since four non-coplanar




points uniquely define a sphere. Thus the cyclide
is a sphere and ils spine is a degenerate conic. If
(P1. .--, pa} are coplanar but not cocircular, ¥, is
the plane since (p,, -.., p4) cannot lie on a sphere
of finite radius. Once again the spine is a degenerate
conic. Finally, il (p,, ..., p4) are cocircular, % is
no longer a singleton since there are an infinite
number of spheres that pass through a given circle.
Thus, for the peneral cyclide, all spheres of €, must
be tangent to S along a circle M of S,

The circle M along with the center of S deline a
right circular cone. The centers of all spheres of
@, lie on this cone. Il S is the smallest sphere of
%, then M has to be a great circle of S. This implies
the right circular cone is now a plane through the
center of S. Thus, the centers of all spheres of €,
also lie on a plane. Hence the spine curve of 4,
is a conic. Similarly it can be shown that the spine
curve of €, is alfso a conic. (J

Corollary 1. Viewed from any point on one conic,
aleng the tangent, the other conic appeurs as a cir-
cle.

Progf. From Theorem 1 it follows that each conic
spine of a cyclide is the locus of vertices of all right
circular cones that pass through the other. This
implies that each conic is the envelope of the axes
of all right circular cones that pass through the
other. The tangenl at any point on one conic is
the axis of the corresponding right circular cone.
Clearly, a conic when viewed along the axis of any
cone that passes through it will appear as a cir-

cle. O

An ellipse and a hyperbola on mutually perpendic-
ular planes, oriented such that the vertices of one
are Lhe foci of the other, are called anticonics (see
Fig. 3). Anticonics are also referred to as the focal
conics of an ellipsoid since they scrve the same
purpose in its thread construction as do the foct
in Lhe thread construction of an ellipse {(Hilbert
and Cohn-Vossen 1932). The terms “anticonics”
and “a pair of anticonics” will be used interchan-
geably in this paper, to refer to a pair of conics
positioned as defined above. It [ollows [rom Corol-
lary 1 that the spine curves of a cyclide are anticon-
ics. It is a property of the anticonics that, if two
points be fixed on the hyperbola then the sum of
distances between a variable point on the ellipse
to the two fixed points i1s a constant il the fixed
points lic on two branches of the hyperbola, and
the difference between the distances is a constant
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if the fixed points are on the same branch of the
hyperbola. Similarly, il the two lixed points be on
the ellipse and the variable point on the hyperbola,
then the absolute value of the difference between
the distances of variable to fixed points is a con-
stant. Thus, in Definition 3, one of the two fixed
spheres is redundant in view of the fact that their
centers lie on anticonics. So, Delinilion 3 can be
further simplified as follows,

Definition 5 (Cayley). Considering any iwo anticon-
ics, the cyclide is the envelope ol a variable sphere
on the first anticonic and touching a given sphere
whose center is on the second anticonic.

Visualizing a cyclide by Definition 5 is easy (e.g.,
one form of the cyclide resembles a squashed Lorus
— the ring cyclide corresponding to Figs. la, b)
It follows [rom the definition that planes of symme-
try of a cyclide are the planes of ifs anticonics.
In general, sections by these planes will yicld a
pair of circles that “bound™ the cyclide. We shall
refer to these as the extreme circles on the plane
of symmetry. In Deflinition 5, consider the variable
circles generaled by intersections of the variable
spheres. The centers of these circles lie on a plane
ol symmetry, whereas the circles themselves lie on
planes that are perpendicular to it. Therefore, each
variable circle intersects the plane of symmeltry at
two points. These are the end points of the diame-
ter of the variable circle since they are collinear
with its center. Thus, a section of the cyclide by
an anticonic plane yields {see Fig. 4a): the conic
which is the locus of centers of all variable spheres
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(e.g., the ellipse E); the curve K which is the locus
of centers of all variable circles generated by these
variable spheres; the extreme circles C ; and C,,
which are the locus of the two diamelral end points
of these variable circles. Hence, the cyclide can also
be defined in terms of the variable circles.

As shown in Fig. 4b, the centers of symmertry (or
centers of similitude) of two circles on a plane are
the two points T and §, that cut the line through
their centers in the ratio of their radii {Hilbert and
Cohn-Vossen 1932). The diameter of the variable
circle of a cyclide, on the plane of its anticonic,
is given by the segment between the extreme circles,
of a line joining the center of the variable circle
to either center of symmetry of the two extreme
circles. The end points of the diameter on the ex-
treme circles are so chosen that the tangents to
the extreme circles at those points are not parallel.
In the following definition of a cyclide by variable
circles, Cayley refers to the diametral endpoints
as anti-paralle! points.

Definition 6 (Cayley). Consider in a plane any two
circles, and through either of the centres of symme-
try draw a secant cutting the two circles, in the
perpendicular plane through the secant, having for
their diameter the chords formed by two pairs of
anti-parallel points on the secant (viz. each pair
consists of two points, one on each circle, such
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that the tangents at the two points are not parallel
to cach other): the locus of the variable circles is
the cyclide.

Delinition 5 might be easier [or the purpose of
visualizing cyclides. However, Definition 6 is uselul
for computer implementation and gives belter ac-
cess to analyzing the geometric propertics of cyc-
lides.

4 Geometrical insights

It is known that each of the conics namely, ellipse,
parabola and hyperbola, is the locus of all points
whose distance [rom a fixed point is in a constant
ratto to the distance from a fixed line. This ratio
is called the eccentricity of the conic. The f{ixed
point and fixed line are referred to as the focus
and directrix, respectively. The eccentricity of the
ellipse is <1; of the hyperbola >1; and for the
parabola it is |. All conics can also be generated
by plane sections of a right circular cone. (Hence-
forth by cones we shall always mean a right circular
cone}. The eccentricity of a conic by this mode of.
generation can be expressed as the ratio of the an-
gle of inclination of the plane of the conic and

] cos(y) . ]
the apex angle of the cone i.c., cosif) in Fig. 5.

All planes perpendicular to the axis of a cone inter-
sect it in circles. I the cone passes through a conic,
these planes intersect the plane of the conic, in lincs
parallel to its directrix. These are special lines and
we shall refer to them as characteristic lines of the




conic (e.g., D, is a characteristic line in Fig, 5). Each
characteristic line of a conic can be thought of as
generating a unique circle on every cone that passes
through the conic. If a characteristic line intersects
the conic, so does its generated circle at the same
points on the conic. It is evident that a pair of
characteristic lines for anticonics are mutually per-
pendicular,

Let ellipse E on the XY plane and hyperbola H
on the YZ plane be a pair of anticonics. From
Theorem 1, we know that each conic spine of a
cyclide is the locus of vertices of all right circular
cones that pass through the other conic. Let Cg
denote the family of cones with vertices on H and
passing through E. Similarly, let Cy denote the
family of cones with vertices on E and passing
through H. The XY plane is a degenerate cone
of Cg, just as the XZ plane is onc of Cp;. We shall
now describe the cyclide with respect to these two
familics of cones.

On the plane of the cllipse, choose a characteristic
line D,. If D, remains fixed for all cones of Cp,
a (amily of circles is obtained (see Fig. 6). These
are circles of interscction on the planes that pass
through D, and are perpendicular to the axes of
all cones of C.. Thus corresponding to E and D,
a family of circles is obtained that lie on planes
orthogonal to the plane of H. These circles form
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the lamily of latitudinal curvature lines on the cyc-
lide. Il D, intersects the ellipse so do all circles,
at the same points on the ellipse. Otherwise, de-
pending on the position of D, with respect to E,
the radii of the circles might either be positive al-
ways, or diminish 10 zero and increase again. If
it is the latter, in general, there are two circles of
zero radii, located on opposite points on any one
branch of the hyperbola.

By a similar process a second family of circles, cor-
responding to the cones of Cp, is obtained once
characteristic line D, is fixed. These circles are on
planes orthogonal to the plane of the ellipse and
form the family of longitudinal curvature lines on
the cyclide. As before, if D, intersects a branch of
the hyperbola, so do all circles of this family, at
the same points on the hyperbola. Otherwise, de-
pending on the position of D, with respect to H,
the radii of the circles might either be positive al-
ways, or diminish to zero and increase again. If
it is the latter, there are two circles of zero radit
at opposile points on either side of the major axis
of E. Therefore, associated with each cyclide is a
pair of characteristic lines D, and D, that are paral-
lel to the Y and Z axes respectively.

Theorem 2. The family of circles obtained from all
right cones passing through one conic, by fixing the
position of its characteristic line, forms a family of
curvature lines on the cyclide?.

Proof. Let €, and ¥, with spine curves ¢, and ¢,
respectively, be the pair of canal surfaces defining
the cyclide. Suppose characteristic line D, corre-
sponding to conic ¢, is fixed. All cones passing
through ¢, belong to spheres of ¢,. It suflices to
show that every circle generated with respect to
D, is a line of curvature on %,.

From Theorem 1, the circle m; defined by D, on
any sphere S;e%, is the locus of poinls of tangency
between S; and all spheres of ¢,. We know that
the lines of curvature on a canal surface are the
circles of intersection of adjacent spheres. Thus
spheres S; and S;, ,, of %, intersect in a circle which
is a line of curvature on €,. But S, , is also tangent
to all spheres of €. Thus il must intersect S, at
circle m;, which implies m; is a line of curvature
on¥,. O

? This theorem can be viewed as a direct conscquence of a
more generdl thcorem due to Monge, which states that the
necessary and sufficient condition for 2 curve on a surface 1o
be a line of curvature is that the surface normals along this
curve form a developable surface (Struik 1961)
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From differential geometry it is known that lines
of curvature on any surface form an orthogonal
net. Thus, given one family of curvature lines the
other family is determined. Consequently for the
cyclide, fixing one characteristic line automatically
fixes the other. These lines intersect only at the
origin, yielding circles of curvature which we refer
to as the reference circles ol each cone. Otherwisc,
when one characteristic line is at a distance 2 from
the origin, all latitudinal and longitudinal circles
of curvature are at a distance r {rom their respective
reference circles. This distance r, measured along
a generating line of the cone, is a function of 2
and the focal lengths of the anticonics. Onc can
cither choose r or 2 as the third parameter to define
a cyclide, the first two being the focal lengths of
the anticonics.

In his formulation of the implicit equation for a
cyclide, Maxwell chose the parameter r and the
focal lengths of the anticonics. The reason we ad-
here to Maxwell’s choice is because in the context
of CAGD, the parameter r can be used directly
to generate offsets of the cyclide. Recall that the
cones are the collection of surface normals at any
circle of curvature on the cyclide. Thus parallel
circles on each such cone represent offsets of the
corresponding curvature lines and hence can be
used to form the oflset of an entire cyclide. As such,
any circle of curvature on a cyclide can be viewed
as a positive or negative magnification of its refer-
ence circle parameterised by r.

5 Cyclide constructions

Maxwell’s method. This method of construction is
due to Maxwell and is the procedure described in
Sect. 3 for generating all lines of curvature on the
cyclide. The three paramclers used in this construc-
tion provide a basis for an analysis of the various
forms of the cyclide.

Let ellipse E and hyperbola H form a pair of anti-
conics, with E on the XY plane and H on the XZ
plane, both centered at the origin. Let the eccentric-

ity of E be e =£. Thus the eccentricily of H is
ET Y

ey =-;. Thus the general equation for E is
x2 yz
P
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If o is the eccentric angle of point P on E (see
Fig. 7a), the parametric equations for P are
x(P)=a cos(e),

y(Py=)a*—f? sin(w),
2(P)=0

Similarly for the hyperbola H we get

and the parametric equations for point ¢ on H
are

x(@)=fsin(f), y(@)=0,

2(Q)=)/a*— 2 tan(p)

where f§ is (he auxiliary angle of H (see Fig. 7b).

Cg and Cp denole the families of cones passing
through E and H respectively. For each family the
reference circles are those special circles gencrated
when characleristic lines D, and D, are the Y and
Z axes respectively. As shown in Fig. 8a, for any
cone passing through the ellipse E, the distance
between a variable point on the ellipse and the




Reference

-l cos a
Circle t !

Fig. 8

corresponding point on the reference circle, along
a generating linc of the cone, is (— f cos «). Similarly
as shown in Fig. 8b, for any cone passing through
the hyperbola H, the distance between a variable
point on the hyperbola and the corresponding
point on the reference circle, along a gencrating
line of the cone, is (—a sec ). Let M be any circle
distinct from its reference circle, on a cone of Cg
or Cy. Let r be the distance of M from the reference
circle along a generaling line of the cone. 1l the
cone belongs to Cy then the distance from a vari-
able point on the ellipse to corresponding points
on M along generating lines of Lthe cone 1s given
by (r—fcosa). Il the cone belongs to Cy then the
same distance is given by {r —a scc ).

The distance between the apex of any cone of C,
or Cy and a variable point on the conic it passes
through, is simply the distance between the vari-
able points, P on the ellipse and ¢ on the hyperbo-
la. Thus,

[PQY* =[x(P)—x(D]* + [y (P)— y(Q)]*
+[z(P)—z(Q)]?

which upon simplification yields

PO=asccf—fcose

Thus, for all cones of Cg with apex @ on the hyper-
bola and variable point P on the ellipse, distance
QR is a constant il
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PR=r—fcos¢

and R generates a latitudinal circle of curvature
on the cone. Similarly, for all cones of Cp, with
apex P on the ellipse and variable point Q on the
hyperbola, distance PR is a constant if

QR=r—asecp

and again R generates a longitudinal circle of curv-
ature on the cone. Therefore, as points P and Q
traverse the ellipse and hyperbola respectively, the
point R traces oul ali latitudinal and longitudinal
lines of curvature on the cyclide. For a cyclide,
the parameter r could be chosen to be a positive
or negative constanl and represents the fixed dis-
tance of each circle of curvature from its refcrence
circle. The lollowing steps can be outlined for a
computer implementation of Maxwell’s construc-
tion.

INPUT: Parameters [ f; a, ¥]

STEP 1: Longitudinal circles — for cach fixed point
[P(a)]0<e<360°] on the ellipse, take variable
points [Q(B)[0</<360°] on the hyperbola. On
line segment PQ, the point [R(z QR
=r—asec ff], traces out a longitudinal circle of
curvature.

STEP 3: Latitudinal circles — {or each fixed point
[Q(8)]0 < f#<360°] on the hyperbola, take variable
point [P (x)|0 < <360°] on the ellipse. On line seg-
ment @ P, the point [R{f, «)| PR=r— fcos «] traces
out a [atitudinal circle of curvature.

Cayley’s method. This method of construction of
a cyclide is due to Cayley. It is essentially a proce-
dure for generating one family of curvature lines
on the cyclide, as mentioned in Definition 6. Here
the cyclide is viewed as an envelope of variable
circles. The paramelers required for this construc-
tion are a pair of extreme circles of the cyclide,
on a plane of symmetry. The cyclide is then con-
structed such that it is bounded by the extreme
circles and symmetric about the given plane.

INPUT: Extreme circles C, and C, on a planc
P and the center of symmetry of C, and C, (inner
ofr ouler).

STEP |: Locate inner and ouler centers of symme-
try of C; and C,. Take pencil of lines L through
the chosen center of symmetry.
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STEP 2: On each ;e L draw two circles perpendic-
ular to P, with diameters the segments of /; termin-
ated by circles C, and C,. The end points of every
diameter belong one cach, to C, and C, such that,
the tangents to the circles al these points are not
parallel.

To obtain the second family of curvature lines the
two extreme circles of the [irst family can be used
as parameters. This procedure is simple and amen-
able for computer implementation. The choice be-
tween Maxwell’'s and Cayley’s method for cyclide
construction depends on the context of the in-
tended application. For cxample, if a cyclide (or
a portion of it) is to be constructed on a given
spine, Maxwell's method is more suitable. But if
the cyclide is to be used for a variable radius roll-
ing-ball blend of a cylinder and inclined-plane in-
tersection (Hoffmann 1988), it might be easier to
visualize (and specify) it by the extreme circles
which then represent the minimum and maximum
diameter of the rolling ball (see Fig. 9).

Implicit forms. For a cyclide with anticonic param-
eters a and f and a magnification parameter r, the
implicit equation has been shown by Maxwell to
be

(P +y 22— = 2(x2 4+ r3) (f 2 +a?)
—20—2%)(a’ - [*)+8Bafrx+(a*—f?)* =0

When f and a are increased to infinity, in the limit,
the anticonics become a pair of parabolae in per-
pendicular planes, the focus of one coinciding with
the vertex of the other. Thus, parameters far
are no longer valid. This form of the cyclide is
a cubic surface and its implicit equation can be
derived using Cayley’s Definition 5 as follows.

In Fig. 10, let P, be a parabola on the horizontal
plane with directrix Dp; and focus M, and let B,
be another parabola on the vertical planc, with
directrix Dp, and focus N. Furthermore, if M and
N are the vertices of B, and F; respectivcly, then
the parabolae arc a pair of anticonics. Assume a
fixed sphere F of radius r to be centercd at the
verlex M of F,. The cyclide is the envelope of the
variable spheres U, centered on P, tangent to F.
Points on P, have coordinates (x,, y,) where,

yi=2pt

x1=2p£3-£

286

Fig. 9

B P!

Pz

/ N M\
Bia A

Bl

Fig. 10

where p is the distance between the focus and di-
rectrix of P, and By, and, ¢ is a parameler indentified
geometrically with the gradient of the tangent to
the parabola at that point. The variable radius r,
of the spheres U is now given by

Thus, the spheres of U are given by
p\?
S: (x~2p£z+z) +{(y—2pi)?
2
+z2—(2p12+§— )

The envelope of U is obtained by eliminating the

d .
paramecter ¢, between § and d_f Using resullants
to do so and then simplifying, the cquation for

4 parabolic cyclide reduces (o
Zx—g)+ ¥ (x— I+ (x—g) (x— 1) (x—f) =0




(13}

where,
g’=r+-z-
h'=r—;31-p
f’=—r+§

Furthermore, the characleristic lines of this cyclide
are the lines

x=i; z=0

x=g; y=0

and are on the surface of the cyclide. The meridian
and equatorial circles are given by

2
z=0: y2+(x—§) —r=0

2 2
y=0: z2+(x+§) —( —-g) =0

6 Morphology of cyciides

Let cyclide [ f,a,r] denole a cyclide with the pa-
rameters f, a,r and let parameters in bold indicate
thetr values fixed (i.e., the cyclide [F, a, r] represents
a particular family of cyclides with fixed anticon-
ics). The forms of a cyclide [, a, r] can be classified
at two levels. A primary classification is based on
the first two parameters f and a. Once these param-
eters are lixed, a secondary classification can be
made based on the third parameter r. Thus the
basic form of a cyclide depends on the form of
its anticonics, while the subform depends on the
magnilication of the lines of curvature. There are
four pairs of conics that satisfy the anticonic prop-
erty viz.,, (ellipse/hyperbola), (parabola/parabola),
(circle/straight line) and (degenerate conics) ie.,
points, double lines, and intersccting lines. Since
the ellipse and hyperbola are often referred to as
the central conics, we might call the associated fam-
ily of cyclides, central eyclides. Cyclides having the
parabolae as anliconics have been referred to as
parabolic cyclides. The cyclides with a circle and
a straight line as anliconics always generate sur-
faces of revolution and so we might refer to them
as revolute cyclides and finally the ones with degen-
erate conics might simply be called degencrate cye-
lides. Fixing the anticonics and their parameters,
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/ and a yields a one parameter family of cyclides
that Maxwell refers to as confocal cyclides (analo-
gous to confocal quadrics and confocal conics in
the classical literature (Hilbert and Cohn-Vossen
1932).

Within cach confocal system of a primary category
are three subforms that depend on the value of
r in relation to the values of f and a. Positive and
negative values of r yield symmetric subforms with
reference to the plane orthogonal to the planes of
the anticonics and so it suffices to consider the
positive values of r. The central cyclides are unigue
in that, their anticonics are devoid of any degenera-
cies. As a resull, their subforms are distinct and
have been portrayed in drawings and plaster mod-
els as Lypical examples of cyclides (Hilbert and
Cohn-Vossen 1932). Nevertheless, each primary
category of the cyclides admits a [urther classifica-
tion of its subforms based on the value of parame-
ter r. Basically the value of r, in relation to a and
J. determines the existence of pinch points (or nodal
points) on the surface of the cyclide.

When (0 <r< f) there arc two pinch points on the
surface of the cyclide. These points lie on the ellipse
on a line parallel to its minor axis. The shape of
the cyclide resembles a pair of cresents touching
each other al their ends. When (r=0) the cresents
are equal. As r increases onc cresenl becomes
smaller whilc the other becomes larger. Maxwell
has referred to this subform as a horned cyclide
since it can also be visualized thus. When (r= /)
the smaller cresent completely vanishes and the
larger cresent meets itsell at the ends, in what ap-
pears to be one pinch point on the surface. This
point is now at the vertex of the ellipse (or, focus
of the hyperbola).

When (f <r<a) there are no visible pinch points
on the surface anymore and the cyclide resembles
a squashed torus, the minimum diameter being
around the last pinch point. Maxwell refers to this
subform as the ring cyclide. When (r=a), the inner
circle of the annular ring diminishes to a point
and again a single pinch point appears on the sur-
face at the vertex of the hyperbola (or, focus of
the ellipsc). The surface of the cyclide now resem-
bles that of an inflated spherical balloon, held by
the thumb and index fingers, meeting at a point
away [rom the center.

When (@ <r) the new pinch point becomes a pair
which move away [rom the vertex of the hyperbola
on a line perpendicular to its transverse axis. The
creation of the new pinch point gives rise to a spin-
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dle inside the cyclide. Maxwell has referred to this
form of the cyclide as a spindie cyclide. The process
ol creation of the spindle can be visualized as the
inverse of vanishing of one of Lhe cresents of the
horned cyclide. We classify the various forms and
subforms of the cyclide in Table 1. The associated
pictures are indicated by the respeclive plate
numbers.

By definition, each cyclide can be viewed as Lhe
cnvelope of two distinct families of spheres. For
the purposes of visualization, the envelope of one

Table L. Dupin cyclides

Horn Ring Spindlc
Central
cyclides Plate 1(a) Plaic 1({b) Plawe [{c}
Revolute
cyclides Circle Torus Plale 2{b)
Parabolic
cyclides Mate 3(a) Plate 3(b) Plate 3{a}
Degenerate
cyclides Cone Cwlinder Cone

Cantral Cyclide, Horn Céntral Cyclide, Ring

Plate 1({a)

Cantral Cycelide, Spindle

a: 2 f0nr3

Plate 1{c} Plate 2{b)

Parabolic Spindie Cyelida Parabolic Ring Cyclide

Plate 3{h)
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lamily of spheres is what an observer migh( actual-
ly view the cyclide to be, while the second family
ol spheres forms an envelope that avoids the first.
It might be stated, withoul a discourse on Lhe pro-
cess of visualization, that for a parabolic cyclide,
the horned and spindle subforms are mirror images
of each other, rotated 90 degrees about the trans-
verse axis of cither parabola. Similarly a cone of
revolution il viewed as a degenerate cyclide is a
horn and spindle cyclide with a double line as the
anticonic,

Cayley’s construction (and Definition 6) provides
an alternate method for visualizing aff primary and
subforms of the cyclide. By an appropriate choice
of diameters and positions for the exlreme circles,
all the forms described carlicr can be obtained. In
fact, by this method (he parabolic cyclide, the most
complicated form to visualize otherwise, becomes
very simple as [ollows. The cxtreme circles arc a
straight line and a circle, non-intersecting for a ring
cyclide (Fig. 11a), intersecting otherwise (Fig. 11b).

—
N \ "\ J" / /Fxlrm
Circle
Extreme Circle
Center of
a Symmetry
Circle
Extreme Circlo
Canter of
b Symmetry
Fig. l1a, b




The centers of symmetry for such a pair is defined
to be the points of intersection of the circle and
a perpendicular through its center to the straight
line. The cylinder and cone can also be obtained
tf the extreme circles are a pair of parallel and inter-
secting lines respectively.

Offset surfaces are known to be important in
CAGD. The cyclides have the property that they
are closed under offsetting. Recall from Sect. 3 that
parameter r is directly related to the offset distance
of a cyclide. But there is an exception to this rule
for one subform of the central cyelide namely, the
horn cyclide. As menlioned, in this subform there
are two cresents, call them positive and ncgative
cresents, which meet at two pinch points on the
ellipse. As r increases, the positive cresent increases
while the negative cresent decreases which when
viewed in terms of offsets, implies a positive offset
of the positive cresent and a negative ollset of the
ncgative crcsent. The reverse happens when r is
decreased. The reason for this phenomenon is evi-
dent since at the pinch points of Lhe ellipse the
plane defined by the characteristic line D, crosses
over the cone apex and the parameler r begins
to have an inverse effect. This inherent problem
can be handled by offsetting cach cresent appro-
priately, i.e. by (+r) and (—r).

7 Properties of the cyclide

We now summarize our findings with a short cala-
loguc of the key properties of the cyclide. While
most properties mentioned below have been de-
scribed in Sect. 2 and 3, the others can be derived
from them. Most of these properties provide in-
sights that are helpful in understanding the cyclide
in its entirety for applications in CAGID.

P1l. The cyclide has three degrees of freedom
namely, ¢ and f the focal lengths of its anticonics,
and r, the magnificalion of its lines of curvature.
[t is the only quartic surface with circular lines
ol curvature,

P2 All forms of the cyclide lie between two tan-
gentl planes which meet them along two circles.
The section by planes of its anticonics always yield
a pair of extreme circles of the cyclide.

P3. Fixing the anticonics yield a one paramecler
family of confocal cyclides which can further be
classified as htorn, ring or spindle. Changing param-

Nisual —

Jomputer

cters of the anticonics leads to varying shapes with-
in a primary catcgory. Changing the anticonics
generates cyclides of different primary categories.

P4. Given a cyclide [f,a,r] of a confocal system,
its longitudinal characteristic Dy is parallel to the
Z-axis and intersects the X -axis at a point P’ dis-

lant ('g r) from the origin. [is latitudinal character-

istic Dy is parallel to the Y-axis and inlersects the
[

X-axis at a point Q' distant (fr) {from Lhe origin.
The characteristics Dy, and Dy are polars of each
other with respect to a sphere ol radius r centered
at the origin.

P3. For a cyclide [ f,a,r], the planc U containing
a longitudinal circle of curvature corresponding to
point P on Lhe ellipse makes angle #, with the
X Z planc where « is the eccentric angle of P and,

_a
] fai _f?.
Similarly the plane ¥ containing a latitudinal circle
of curvature corresponding to point ¢ on the hy-

perbola makes angle 8, with the XY planc where
f is the auxiliary angle of @ and

lanf, = tan e

{an 02 :l/—zj-ij’_?- sin ﬁ

a?
Other than the plancs of the anticonics, U and
V are planes which yield a pair of circles when
intersected with a cyclide.

6. Cyclides admit a rational parametrization
(Martin et al. 1986).

P7. The offset of a cyclide [[,a,r] by a distance
d along its surface normals, is the cyclide [f,a,r
+d]?3,

P8. A cyclide can be delined either in terms of
variable spheres, or in lerms of variable circles.
With each circle of curvature of the cyclide [f, a, r]
are associated two radii namely, the radius of the
sphere which contains the circle, and, the radius
of the circle itsell.

P9. Cyclides can always be obtained by inversion
in a cone or cylinder, with respect to a sphere.
Cyclides are anallagmatic surfaces, i.e. inverses of
themselves (Woods 1922).

S Offset distance adjusted for a horn cyelide
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8 Conclusions

Cyclides are being revived by their use in CAGD.
They have been proposed for usc as surface patches
mn free form design and machine vision applications
and as approximants to blending surfaces. The lat-
ter application of cyclides is closely related to the
knowledge of their global geometry. Similarly,
other applications of cyclides might arise out of
such geometric insights. We bclieve that the exer-
cise of visualizing cyclides by spheres, envelopes
and conics (i.c., in the classical framework) is useful
in this context. This geometric approach, as op-
posed to a purcly analytic or algebraic approach,
yields intuitive insights on constructive and non-
constructive properties of cyclides. The construc-
tive properties led to simple algorithms for synthe-
sizing cyclides and to a precise classification of the
morphology of cyclides. Scveral non-constructive
propertics were also detailed. For example, offsets
of cyclides were easily shown to be cyclides and
the radius variation in a cyclide was also character-
ized.
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Appendix -

The computer program used for generating the cyclides shown
in the coler plates is based on a hybrid scheme. For the central
cyclides with input parameters g, £, r the extreme circles on the
planc of symmetry of the cllipse arc determined. They have
radii {a +r) and {a—r} and arc centered at (— £, 6, 0) and (£0,0)
respectively. Similarly, the extreme circles on the plane of sym-
metry_of the hyperbola have radii (f—r) and (f+r), and are
ceatered at (o, 0, 0) and (—a, 0, 0) respeclively. The characteristic

lincs are also determined (ie. Dy on the xz plane is at
r . . -
.\-=f-a— and D_ on the xy plane is at .v:=-jTr). The latitudinal

and longitudinal lines of curvature arc now drawn using Cay-
tey’s Definition 6. The process is simpler for the revolute cyclides
since £=0 and 1he latitudinal curvature lines are contained in
parallcl planes z=¢, where —r<c=< +r.

Fur parabelic cyclides the approzch is the sume, but differs
somewhat in delail, since one of the cxtreme circles in cach
planc of symmetry is now a line. ITence there is only onc pair
ol antiparallel paints, onc of them on a circle, the other on
a line, Note that the parabolic eyclide is a cubic surface.




