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Variable Radius Blending Using Dupin Cyclides 

Vijaya Chandru, Debaaiah Dutta 

School of Industrial Engineering 
Purdue University, W. Lafayette, IN 47907 

and 

Christoph M. Hoffmann 

Department of Computer Science 
Purdue University, W. Lafayette, IN47907 

1. Introduction 

Mechanical parts can, in general, be decomposed into primary 
and secondary surfaces. While the primary surfaces define the part 
profile, the secondary surfaces are required to smoothly connect 
them. These secondary surfaces are referred to aa blending surfaces 
or simply blends. 

It is difficult to find a mechanical part or an assembly without 
any blending surfaces. Fillets and rounds are the most common 
forms of blends. Others include fairings and sculptured surfaces. 
Typically, smoothness of contact is a constraint that all blending 
surfaces must satisfy. If there are no other constraints, these 
blending surface are easy to derive algebraically [Hoffmann and 
Hopcroft 85, 86]. 

However, various engineering applications impose geometric 
constraints on the blending surfaces. The cross-sectional profile of 
most blends are required to be circular. As such, common practice 
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in engineering drafting is to specify blends by an appropriate radius 
(e.g. 0.5R). When circular cross-sections are required, the blending 
surfaces are mathematically more complex. Such surfaces are 
typically of high algebraic degree and are difficult to derive 
analytically in closed form. As a result, surface interrogations 
become computation intensive. 

The circular cross-sections of fixed radius permit a 
straightforward specification. Such blends have been approximated 
by Rossignac and Requicha [Rossignac and Requicha 86]. An 
attractive feature of their approximation method is that only 
standard CSG primitives, in particular, cylinders and tori are used. 

When applications require the circular cross-section to vary in 
radius (e.g. in the design of molds and dies), the problem becomes 
more complicated. Not only do the standard CSG primitives appear 
to be insufficient for an approximation scheme, but even a precise 
analytical definition of variable radius blends does not exist. 
Consequently, current practice defines these surfaces ambiguously. 

In this paper, we present a mathematically unambiguous 
procedure for defining variable radius blends. We use Voronoi 
surfaces — a generalization of the Voronoi diagrams in 
computational geometry — for such a definition. Next, we examine 
the complexity of constructing such blending surfaces explicitly. It is 
seen that, even in very simple cases an explicit construction is quite 
complex. This motivates an approximation strategy. 

When approximating variable radius blends, cyclide patches 
seem natural approximants since their principal lines of curvature 
are always circles. The rich variety of geometric properties of 
cyclides has been reviewed in [Chandru et al. 1988]. Other authors 
have considered cyclides for the purpose of free-form surface design, 
e.g. [McLean 84], (Martin et al. 86], However, it appears that for 
free-form surface design the cyclide is not sufficiently flexible, at 
least not when patching along principal lines of curvature. In 



contrast, using cyclides for blends is promising since all constraints 
are in one dimension, rather than two. 

Later, it is shown in our case study that, cyclides can be used, 
as a whole, for specific variable radius blending applications. This 
fact has also been discovered by others, including [Pratt 88]. 

When a cyclide cannot be used in its entirety to represent the 
variable radius blending surface, it remains, however, a good 
candidate for an approximant. In general, the approximation of 
variable radius blends is complex. Technically, approximating a 
fixed radius blend requires interpolating a set of space curve points 
and associated tangents by pieces of circles and straight lines. For 
variable radius blends, the elements to be used in the approximation 
are restricted to be the conic spines of the cyclides. By using a 
scheme of biarc approximation combined with Liming's method, 
moreover, we increase flexibility. 

2. Existing Methods 

In recent years, a fair amount of attention has been devoted to 
blending surfaces by researchers in CAGD, [Hoffmann and Hop croft 
85, 86, 86a] [Owen and Rockwood 86] [Rossignac and Requcha 86] 
[Varady et al. 88]. However, variable radius blends have not been 
addressed nearly as much. Pegna's work in modeling variable 
radius blends by sweeps seems to be the only literature available 
[Pegna 87]. 

From fixed radius blending we will use the concepts of a 
moving sphere and a spine to define variable radius blends. For fixed 
radius blends, the spine is well defined as the intersection of the 
offsets of the primary surfaces, i.e. the two surfaces being blended. 
More generally, given a suitable spine, a variable radius blend can 
be defined in principle. It is the surface generated by a variable 
sphere as its centre moves on the spine while it maintains contact 
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with the primary surfaces. 

In Pegna's approach, a user defined reference curve is the 
initial spine and one of the primary surfaces is used as a reference 
surface. Since the reference curve is not the intersection of offsets it 
is adjusted to assume the positon of the actual spine by an iterative 
algorithm- However, Pegna's method for obtaining the correct spine 
has the following deficiencies. 

• The iterative algorithm does not use the exact distance of 
a point on the reference curve to the reference surface. 

• The iterations to obtain a point on the exact spine (i.e. one 
which is equidistant from both primary surfaces) may 
exhibit sideway drifts in a manner that cannot be 
controlled analytically. 

One way of overcoming the above deficiencies is to consider 
planes through the two perpendiculars at each reference curve 
point. In Fig. 1, let p be a point on the reference curve Cr and F be 
a reference surface. Let dp{p) be the perpendicular distance of p to 
F. 

[Fig. I here] 

Now construct offsets of the primary surfaces by the distance dp{p). 
Let S denote the plane defined by the perpendiculars from p to the 
primary surfaces. The point on the exact spine curve, corresponding 
to p on Cr, is given by the intersection of the two offset surfaces and 
H. 

The above method to compute the exact spine curve from a 
given reference curve is analytically precise. However, if on the 
reference curve there exist points which have more than one 
Trti-nirnn-m length perpendicular to the reference surface, this method 
would be insufficient. 



Although computing the exact spine by the above method is 
clean and. precise, we believe it is overly complicated to merit actual 
usage. Moreover, it does not provide any mathematical insights on 
the surfaces being considered that might be beneficially exploited. 
Thus, we do not explore this method any further, but use the 
concept of points equidistant from two surfaces to introduce 
Voronoi surfaces next. 

3. Voronoi Surfaces 

In computational geometry Voronoi diagrams are widely used 
in the study of proximity problems. In essence, a Voronoi diagram is 
the tesselation of a plane by polygons, each containing a point p of 
a given set S. The basis for construction of the polygon W 
associated with point p is that W is the locus of all points on the 
plane that are closer to p than any other point of S. Each point of S 
has a unique polygon containing it and the Voronoi diagram of the 
set S is the collection of the polygons. (See Fig. 2). 

[Fig. 2 here] 

Voronoi digrams have interesting properties and for a detailed 
discussion the reader is referred to [Preparata and Shamos 85]. It is 
easy to see that each edge of a Voronoi polygon consists of points 
that are equidistant from points p{ and pj, of the given set S, that it 
separates. Voronoi diagrams can be defined for any dimensions, in a 
manner analogous to the planar case. 

In the previous section, we were interested in the spine curve 
for variable radius blends. We noted that all points of the spine 
curve had to be equidistant from the two primary surfaces being 
blended. Thus, a collection of such equidistant points, from two 
given surfaces, can be conceptualized as a Voronoi surface — a 3D 
analogue of the Voronoi diagram on the plane. The Voronoi surface 
we are considering, is more complicated than simply a 3D version of 
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the planar Voronoi diagram since, the given set of point S, in 3D, is 
now replaced by the two primary surfaces. If there are three given 
surfaces, the Voronoi surfaces would be reduced to equidistant 
curves that are the intersections of several Voronoi surfaces. 

Let lis consider two primary surfaces, F and G. The Voronoi 
surface V{F, G) is then defined to be the locus of all points 
equidistant from F and G. Thus mathematically, 

v{F,C)-[pe]& \dftp)->dG[p)] 

where dp(p) and d(j{p) are the perpendicular distances of point p 
from F and G respectively. 

To compute the Voronoi surface V{F, G) a general method can 
be described as follows. Consider two spheres Sp and SQ, each of 
radius r, with centres on F and G respectively. Letting r be the 
offset distance, the oflset surfaces of F and G, are given by the 
envelopes generated by Sp and SQ as they move on F and G. This is 
equivalent to displacing the centres (ui,u2)u3) of Sp and (u1} t>2,U3) 
of SQ, as they move on F and G, by the radius of the spheres. 
Denoting the pair of linearly independent tangent directions to F at 
any point on it by and t2 and similarly to G by t\ and t2 w e 

the following ten equations. 

F: / (u 1 , u 2 , u 3 ) = 0 

G: ff(vlfv2tv3) = 0 

Sp: ( x - U l ) 2 + ( y - u 2 ) 2 + ( z - u 3 ) 2 - r 2 = 0 

SG: ( s -uO 2 + (y-v2)2 + (z-v3)2 - r2 = 0 

( V SF . TY ) « 0 

( V Sp . t2 ) = 0 



(VSG.t[ ) = 0 

( V 5 C . < 1 ) = 0 

Thus, we have eight algebraic equations in 10 unknowns. By 
eliminating the variables [ ui,u2>u3>ui>wz»u3»r ] w e can. obtain the 
equation of the Voronoi surface V{x,y,z) = 0 associated with F and 
G. 

We illustrate the above procedure by an example. Let F be a 
cylinder of unit radius, parallel to the z-axis and having the line 
(a;=0, y=2) as its axis. Let G be another cylinder of unit radius, 
parallel to the x-axis and having line (z=0, y= —2) as its axis. 
Thus we have the equations 

F: x2 +{y-2)2 - 1 = 0 

G: z2 + (y+2)2 - 1 = 0 

Let r be the radius of the spheres Sp and SG. At points 
(u1}u2ju3) (ui>u2»u3) on F G respectively, we have the 
equations 

F: ttf + (u2 - 2)2 - 1 = 0 

( i - u O 2 + (y-«2)2 + - r2 = 0 

G: vl + (t>2 + 2)2 - 1 = 0 

+ (y - " 2 ) 2 + (z-«3)2 - r2 = 0 

The gradients VF and VG are given by (2u1} 2u2—4, 0] and [0, 
2u2"H, 2u3]. The two independent tangent vectors at (u1>u2) U3) on 
F, are (0,0,1) and (2—u2,u1,0) and at (t>i,t>2,t>3) on G are, (1,0,0) 
and (0,—u3,u2+2). Thus, the final system of eight equations are 
given by 



u l + («2 - 2)2 - 1 = 0 

(x - W l)2 + (y - u2)2 + (z - u3) - r2 = 0 

4 + ("z + 2)z - 1 = 0 

(x - V l ) 2 + (V - v2)2 + (z - u3) - r2 = 0 

z — u3 = 0 

(a; - «x)(2 - u2) + (y - u s ) ^ = 0 

x — Vi = 0 

— {y — vi)vz + iz — " s X ^ + 2 ) = o 

After elimination, we obtain the equation of the Voronoi surface as 

x2 — 8y - z2 = 0 

which is a hyperbolic paraboloid, as shown in Fig. 3. 

[Fig. 3 here] 

4. Variable Radius Blends 

We can now give a precise definition of variable radius blends. 
Conceptually, the variable radius blending surface can be thought 
of as being generated by a moving sphere of varying radius. The 
envelope of spheres of constant or varying radius have been referred 
to, in the classical literature, as canal surfaces [Hilbert and Cohn-
Vossen 52]. Thus, the variable radius blend is the portion of a canal 
surface, bounded by the curves of tangency with the primary 
surfaces that the variable sphere maintains contact with, during its 
motion. 



Mathematically, a variable radius blend C(F, G) smoothly 
connecting surfaces F and G at their curve of intersection, can be 
stated as 

where, ? is a spine curve and f is a radius variation function. 

Further, the spine curve is defined 

<}=V{F,G)n[RS} 

as the intersection of the Voronoi surface of F and G and a given 
reference surface J22S]. The choice of a reference surface will depend 
upon the particular surfaces being blended. When either F or G is a 
plane, [-RS] can be chosen to be a plane and the spine $ will be 
given by 

VOcijyi.Zi) D [axi + byi + czx + d\ 

The radius variation function f" defines the law by which the radius 
of the moving sphere varies. In general, it can define the variable 
moving sphere as follows. 

f: (X - + ( y - Vi)2 +(Z~ *i)2 - (yiSm(a) - z.Cosia))2 

where or is the angle subtended by [RS] with the vertical plane. The 
envelope of the moving sphere can now be obtained by eliminating 
(i1,y1,2!1) from f and its first derivative f1 . 

Note that in simple cases the radius variation function f" can 
also be specified by a maximal radii of the moving sphere. 

T = (-ft mm or i?max) 
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5. Complexity of Explicit Variable Radius Blends 

The above method for defining and generating variable radius 
blends is computationally very intensive. The explicit derivations of 
the Voronoi surface, spine curve and subsequently the envelope of 
the variable sphere, require excessive symbolic computations and 
were not possible given the computational resources available to us. 
While the rigour of specification is an attractive feature, the 
required computations render such a process impractical, except as a 
preprocessing step. This motivates alternative strategies. For the 
problem at hand, a three part alternative can be outlined as follows. 

• Use geometric insights, if possible, to predetermine the 
form of the Voronoi surface. 

• Determine the spine curve numerically only, by tracing it 
in higher dimensions.' 

• Approximate the variable radius blend by an appropriate 
lower order surface. 

We remark on each alternative below. 

The general method outlined for computing the Voronoi 
surface is intractible for practical purposes (i.e. lack of swap space 
in our computer). However, geometric properties can sometimes be 
exploited to overcome the computational difficulties. For example, if 
one of the primary surfaces is a plane and the other a cylinder or a 
cone, the associated Voronoi surface is always a cone. We conjecture 
the following Voronoi surfaces associated with pairs of standard 
CSG primitives: a hyperbolic paraboloid for cone/cone, 
cone/cylinder and cylinder/cylinder; a paraboloid of rotation for 
sphere/plane; a degree four surface for sphere/cylinder and 
sphere/ cone. 

The evaluation of space curves defined as the intersection of 
two surfaces (parametric or implicit) is of prime importance in 
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CAGD. To overcome the excessive computations necessary in order 
to determine such curves explicitly numerical tracing in higher 
dimensions is an attractive alternative [Hoffmann 89], Merits and 
procedures for tracing algebraic curves can also be found in [Bajaj 
et al. 88], [Hoffmann 88]. Using concepts from classical algebraic 
geometry such numerical procedures have been made robust to 
overcome difficulties associated with curve singularities. In our 
problem, tracing the spine curve numerically in 10-dimensional 
space serves a dual purpose. Not only does it simplify the 
computation, but also yields the common distance and footpoints of 
the perpendiculars from each curve point to both the primary 
surfaces. 

Finally, the high degree of the exact blending surface, (in 
general degree 16 or higher) and difficult computations associated 
with such surfaces make approximations an attractive alternative. 
In the case of fixed radius blends, a method exists due to Rossignac 
and Requicha [Rossignac and Requicha 86], Their method 
approximates the fixed radius blends by smoothly joined pieces of 
cylinders and tori. For variable radius blends, cyclides appear to be 
a natural choice for the approximant. 

6. CASE STUDY: Cylinder and Inclined Plane 

In this section we will consider an example to demonstrate the 
concepts developed so far. We have chosen the example with a view 
to keep computations tractible but one which does not compromise 
on the general problem characteristics. In particular, we consider 
the problem of variable radius blending of a circular cylinder and 
an inclined plane. This problem permits us the choice of a simplest 
possible reference surface — a plane. 
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0.1 Voronoi Surface Computation 

Let C be the cylinder of radius R with its axis coincident with 
the z-axis. Let L be the inclined plane making an angle a with the 
z-axis (see Fig. 4). 

[Fig. 4 here] 

To obtain the Voronoi surface V(C,i?) we can apply the 
proposed method. The cylinder offset surface by a distance d is 
given by 

x2 + y2 -(R+d)2 =0 

The offeet of the plane by the same distance d is given by 

Cos(a) z — St'n(a) y + d = 0 

The Voronoi surface V(C,L) being the locus of all points 
equidistant from C and L is now obtained by eliminating the 
distance parameter d between the above two equations. Doing so, 
we obtain 

x2 + V2 ~ [i? + (y Sin (a) - zCos{a))\2 

which is a cone having for its base an ellipse on the plane L. 

6.2 Cyclides and Special Reference Planes 

We consider the simplest possible reference surface, a plane. 
So, the spine curve which is defined as the intersection of the 
reference surface and the Voronoi surface, is now a conic and can be 
easily computed. 
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Adhering to the morphology of cyclides presented in [Chandru 
et al. 88], we know that a central cyclide, with an ellipse and a 
hyperbola as spines, has the general equation 

( i 2 + y2 + z2)2 - 2(x2 + r2)(a2 + / 2 ) - 2{y2 - z2) 

(a2 - /2) + 8afrx + (a2 - / 2 ) 2 = 0 

The three parameters associated with this form of a cyclide are a, / 
and r. Here, a and / are the semi-major axis and focal lengths, of 
the ellipse, respectively, and r is a constant. When / < r < a, the 
form of the central cyclide resembles a squashed torus and is 
referred to as a ring central cyclide. Elementary geometric 
properties of the ring central cyclide readily imply the following. 

Observation: The variable radius blend is a ring central cyclide 
iff [55] is orthogonal to the cylinder axis. 

This observation was also made by Pratt [Pratt 88]. When 
[.RS] is orthogonal to the cylinder axis, the cross-sectional profile of 
the blended joint, on the XZ-plane, is as shown in Fig. 5. Thus, the 
radius variation function can be specified as a maximal radii (e.g. 
in Fig. 5). The cyclide parameters g, r and / are then determined 
as follows. 

a =R + rx 

r = R 5m(o;) + rL 

/ = (5 + r 1 )5m(a ) 

[Fig. 5 here] 

The cyclide surface and hence the required blend, can be 
constructed by algorithms discussed in [Chandru et al. 88]. In our 
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case study, i.e. for the special position of [55], the circular cylinder 
is tangent to the cyclide at its inner extreme circle on the plane of 
the elliptic spine. Thus, the blending surface is actually a quarter of 
the cyclide surface bounded by two special latitudinal lines of 
curvature namely, the inner extreme circle on the plane of the 
elliptic spine and the circle at which its lower tangent plane touches 
the cyclide. 

6.3 General Reference Planes 

When the reference plane [iZ5] is in a general position (i.e. not 
orthogonal to the cylinder axis), a conic is still obtained for the 
spine curve of the blending surface. However, a ring central cyclide 
can no longer be used in its entirety to blend the cylinder and 
inclined plane at their intersection. In general, we obtain the 
following set of equations describing the blending surface. 

1. Spine: [Voronoi Surface] f l [i?S]. 

[V"(u,u,w)] D [mu + nv + pw + ?] 

2. Moving sphere S centered at (u,v,tu). 

(z - u)2 + (y - vf +{z~ wf - (u Sin(a) - w Cos{a)f 

3. Directional derivative at (u,v, w). 

(5U,5P,SW) • (m, n, 1) x (Vu, V„ Vw) 

Here, [(m, n, 1) x (Vu, Vw)] is the spine tangent obtained as 
the cross product of the intersecting surface normals. The equation 
of the variable radius blending surface can be obtained by 
eliminating the variables u, t; and tu from the above set of 
equations. However, even when m = 0 and specific values are given 
for ot, n, p and q, extensive computation is required for determining 
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the variable radius blending surface. For m = 0, the exact blending 
surface is of degree 16. 

The computational difficulties motivate approximating the 
blending surface. For fixed radius blends, a method exists due to 
Rossignac and Requicha [Rossignac and Requicha 86]. In their 
method, the blending surface is approximated by piecewise cylinders 
and tori, implying that the spine curve is approximated by circles 
and straight lines. Using cyclide pieces instead of cylinders and tori 
requires that the spine curve of the variable radius blend now be 
approximated by the elliptic spines of the cyclides. 

7. Approximation with Cyclides 

Insights into the global geometry of cyclides are helpful in 
outlining a procedure for approximating blends with cyclides 
[Chandru et al. 88]. Central to this issue is a methodology for space 
curve approximation by cyclide spines. The following steps outline 
the procedure to join cyclides. 

1. Define the spine to be approximated. 

2. Approximate it with piecewise cyclide spines. 

3. Erect over each element of the approximated spine a 
cyclide piece. 

Step 1 is the definition of the spine for a variable radius blend 
and has been dealt with in Section 4. Step 3 requires algorithms for 
the construction of a cyclide by its lines of curvature and has been 
discussed in detail in [Chandru et al. 88]. Thus, it remains to outline 
a procedure for Step 2. However, we note that the Steps 2 and 3 
are not independent of each other in that, for conics to be cyclide 
spines, additional constraints are imposed. We remark on the 
constraints further. 
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Firstly, the tangents to the curve points are skewed lines in 
space. Thus, a single conic element cannot interpolate a pair of 
curve points and the associated tangent directions. To overcome 
this difficulty, we use biarc elements for the approximation. In 
essence, conic biarcs are pairs of smoothly joined conics that 
interpolate the given curve points and their associated tangent 
directions, by introducing a set of points we refer to as the join 
points. The join point <?,• is associated with the biarc B{( U, V). As 
shown in Fig. 6, biarc i?,-( U} V) interpolates space curve points 
(P,,P,-+1) and tangents (T,-, 2\+1). The join point Qi lies on a line 
Ri that can be thought of as a connecting rod resting on the 
tangents T,- and T l + 1 . 

[Fig 6 here] 

Each biarc in itself defines two control triangles. In Fig. 6, the 
control triangles are AP,- O,- Q{ and AQt-0 (+1P,-+1 respectively. 
Within every such triangle, Liming's method can be conveniently 
used to obtain specific conics — ellipses in our case [Faux and Pratt 
79]. As shown in Fig. 7, the pencil of conics obtained by Liming's 
method pass through the vertices A and B, of AABC, and are 
tangent to the sides AC and BC. The following equation describes 
the pencil of conics 

( X ) M G + ( 1 - X ) J | = 0 

The choice of a shoulder point on the median line CD, 
predetermines the specific type of conic — ellipse, parabola, or 
hyperbola — obtained within the control triangle &ABC [Dutta 89]. 

[Fig. 7 here] 

The collection of surface normals at every longitudinal line of 
curvature on the cyclide forms a right circular cone. The elliptic 
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spine of a cyclide is the locus of vertices of all such cones. Thus, to 
obtain a C1 continuity between the surfaces of adjacent cyclide 
pieces, it is necessary for the cones (of surface normals) of adjoining 
cyclides to coincide. Illustrated in Fig. 8, this constraint implies the 
following: 

• Angles at the vertices of the two cones must be equal. 

• Perpendicular distances of the bases of the two cones, from 
their common vertex, must agree in magnitude and 
direction. 

[Fig. 8 here] 

The approximation procedure is detailed in [Dutta 89]. A 
simplifying fact is that, since right circular cones are being matched, 
appropriate rotations about their respective axes has the effect of 
untwisting the space curve approximation procedure into one plane. 
In particular, we consider the problem on the plane containing the 
elliptic spines of adjacent cyclide pieces. Thus, the aforementioned 
constraints associated with the common cone, in 3D space, can now 
be related to a pair of intersecting (generating) lines that represent 
the cone on the plane of axial cross-section. 

Each right cone that has its vertex on the elliptic spine of a 
cyclide contains the foci of the ellipse. Thus, on the plane of the 
ellipse, an axial cross-section of every such cone is given by the pair 
of intersecting lines joining the foci to that point on the ellipse, 
which is the vertex of the cone being considered. In view of the 
above fact, the vertex angle constraint for common cones between 
adjacent pieces, translates to common focal lines through the cone 
vertex, on the plane of the ellipses. Focal lines Ly and L2 are 
common to the adjacent ellipses U and V, in Fig. 9. It is shown in 
[Dutta 89] that Liming's method can still be used to obtain ellipses 
within the control triangles, that satisfy this constraint. 
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[Fig. 9 here] 

Every longitudinal circle of curvature on the cyclide, intersects 
the plane of its elliptic spine in two diametral end-points. The line 
joining these two points is the projection of the circle of curvature 
of the cyclide, on the plane of the ellipse. Thus, on such a plane," the 
constraint of a common base implies that the line through the 
diametral end-points is common to both ellipses (see Fig. 10). This 
line always intersects the major axes of the adjacent ellipses. The 
ratio in which the point of intersection divides each major axis 
determines the sub-form of the associated cyclide i.e., horned, ring, 
or spindle [Chandru et al. 88]. 

[Fig. 10 here] 
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