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ABSTRACT

Image segmentation is a fundamental task that has benefited from recent advances in machine learning.
One type of segmentation, of particular interest to computer vision, is that of urban segmentation.
Although recent solutions have leveraged on deep neural networks, approaches usually do not consider
regularities appearing in facade structures (e.g., windows are often in groups of similar alignment,
size, or spacing patterns) as well as additional urban structures such as building footprints and roofs.
Moreover, both satellite and street-view images are often noisy and occluded, thus getting the complete
structure segmentation from a partial observation is difficult. Our key observations are that facades and
other urban structures exhibit regular structures, and additional views are often available. In this paper,
we present a novel framework (RFCNet) that consists of three modules to achieve multiple goals.
Specifically, we propose Regularization to improve the regularities given an initial segmentation,
Fusion that fuses multiple views of the segmentation, and Completion that can infer the complete
structure if necessary. Experimental results show that our method outperforms previous state-of-the-art
methods quantitatively and qualitatively for multiple facade datasets. Furthermore, by applying our
framework to other urban structures (e.g., building footprints and roofs), we demonstrate our approach
can be generalized to various pattern types.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Image segmentation is a fundamental task addressed with
machine learning and also plays a crucial role in computer vi-
sion. It has many real world applications, including building
reconstruction, procedural modeling, and augmented/virtual re-
ality. Recently, deep learning based segmentation has shown
its power but two main drawbacks exist: enforcing structured
regularities and compensating for missing data (in our case of
urban structures). Regarding regularity, Figure 1 (a) shows
street-view facades images with windows, doors, and balconies
that should be rectangular, horizontally and vertically aligned,
spaced equally or with a clear pattern, and/or groups of simi-
lar size. Further, this problem is also present in satellite facade
images (Figure 1 (b)) and in segmentations of other urban struc-
tures such as building footprints and roofs (Figures 1 (c-d)).

Regarding incomplete data, street-view images often have
only partial observations of facades and satellite images suf-
fer more due to limitations in resolution, noise, complex cam-
era models, limited viewing angles, and occlusions (Figures 1
(e-f)). In these cases, segmentation of a single image can
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only show a partial facade structure. Additional work needs
to be done in order to complete the facade (e.g., image in-
painting/completion). Fortunately, a second or more views for
both street-level and satellite are usually available as seen in
Figure 1 (g-h). However, only fusing or combining all views
still cannot guarantee that the facade is fully covered as also
observed in Figure 1 (g-h). Thus, completion techniques are
still necessary. Moreover, segmentation of the aforementioned
building footprints and roofs may also exhibit incompleteness
due to occlusion.

To address the above challenges, our approach takes as in-
put a segmentation from one or more viewpoints as illustrated
in Figure 2. Our Regularization module improves the regu-
larization of inputs, Fusion module fuses multiple views of the
urban structure, and Completion module infers the complete
structure if necessary.

Our framework Regularization, Fusion, and Completion Net-
work (RFCNet) yields improvements over other methods ap-
plied to the same data. For several datasets, our method is con-
sistently better than prior work both quantitatively and qualita-
tively. As far as we know, our work is the first pipeline to han-
dle regularization, fusion, and completion of facades and other
urban structures all together using deep learning techniques for
both street-view images and satellite-based images. In addition,



Fig. 1. Motivations. (a-b) ECP (Teboul et al., 2011) and satellite facade im-
ages, and their segmentations with lack of regular structure and with oc-
clusions. (c-d) SpaceNet (Etten et al., 2018) building images, and their foot-
print segmentation or Canny (Canny, 1986) edges, showing limited quality.
(e) Multi-views of partially occluded Google Street View images. (f) Satel-
lite facades with occlusions/shadows. (g-h) Multi-views of satellite facade
images.

our approach directly takes the initial segmentation as a start-
ing point and focuses on enhancing the segmentation without
labor-intensive annotation. We hope our work inspires possible
future directions for segmentation mask refinement. In short,
our main contributions are summarized as follows:

e we propose a novel deep learning based framework (RFC-
Net) which improves regularities for patterns, fuses mul-
tiple views, and generates plausible and complete urban
structures altogether,

e we train our novel pipeline with self-supervision to avoid
time-consuming and expensive data annotations,

e we create a synthetic training dataset which incorporates
versatile regularities of facade patterns and supports more
general facade styles, and perform comprehensive experi-
ments demonstrating usage on both street-view and satel-
lite images, and

e we illustrate usage of our approach for other urban struc-
tures such as building footprints and roofs.

2. Related Work

2.1. Segmentation

Semantic segmentation is a classic topic in machine learn-
ing and in computer vision. In recent years, with the amazing
success of deep learning, many state-of-the-art segmentation
networks (Long et al., 2015; Ronneberger et al., 2015; Chen
etal., 2015; Badrinarayanan et al., 2017; Chen et al., 2017; Isola
et al., 2017; Zhang et al., 2018; Chen et al., 2018; Takikawa
et al., 2019) can be applied to urban structures. Specifically,

2

DeepLab (Chen et al., 2015; Chen et al., 2017; Chen et al.,
2018) maintains high-resolution by replacing strided convo-
lution with atrous convolution. Encoder-decoder frameworks,
like U-Net (Ronneberger et al., 2015), infer high-resolution fea-
ture maps by joining the top-down and bottom-up pathways
with lateral connections. GAN based frameworks, like Pix2Pix
(Isolaetal., 2017), consider segmentation as an image-to-image
translation problem. However, those approaches most often fo-
cus on the general network structure and learning methodol-
ogy, and include many more content pixels than boundary pix-
els. This imbalance causes them to produce inaccurate structure
edges and cannot ensure structural regularities and complete-
ness (of man-made urban structures).

Nonetheless, there are some proposed deep learning net-
works particularly focused on urban structures. The DeepFa-
cade approach (Liu et al., 2017) used a fully convolutional net-
work with a special loss function in order to segment facade im-
ages. Although their loss function penalized segmented regions
that were not horizontally and vertically symmetric, structural
regularities were limited to symmetry; fusion and completion
was not addressed. FrankenGAN (Kelly et al., 2018) did have
a regularizer step to regularize facades and roofs. However, the
approach was not data-driven, and only focused on alignment
regularity for facade regularization. As for roof regularization,
it focuses on roof detail labels (e.g., chimneys, roof windows).
The roof itself is assumed to be already regularized. Moreover,
none of the aforementioned works dealt with satellite data. Ter-
nausnetv2 (Iglovikov et al., 2018) and Mahmud et al. (2020)
are able to perform binary instance segmentation of the build-
ing footprints from satellite imagery. Nauata and Furukawa
(2020) can vectorize satellite-based buildings and roofs by de-
tecting primitives (e.g., edges). Even so, urban structure reg-
ularities and occlusions were not handled in (Iglovikov et al.,
2018; Mahmud et al., 2020; Nauata and Furukawa, 2020).

Moreover, some existing works (Zheng et al., 2010; Fried-
man and Stamos, 2012) try to explore, detect, and use large
scale repetitions and regularities of urban structures for consol-
idating noisy and incomplete scans. However, they focus on 3D
data (e.g., point cloud and LiDAR). In addition, there are prior
works handling facade occlusions. Kozinski et al. (2015) in-
cludes provisions for occlusions but depends on assumed struc-
tural priors for object classes and SIFT features. Cohen et al.
(2017) also depends on SIFT to extract a set of key-points. On
average the satellite facades are only 20x90 pixels in size and
thus make it prohibitive to determine such detailed structures.

2.2. Inverse Procedural Modeling

Inverse Procedural Modeling (IPM) attempts to find proce-
dural representations (e.g., rules and/or parameter values), and
yields desired and regularized outputs. Nishida et al. (2018) can
generate well regularized synthetic building mass and facades
by estimating parameters belonging to one of a set of prede-
fined grammars. Nevertheless, it required training a large num-
ber of models and performance was limited to the supported
building mass and facade grammar styles and it does not work
on satellite data. More recently, Zhang et al. (2020) proposed
a grammar-based approach that works on satellite data. How-
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Fig. 2. RFCNet. Two scenarios are shown. For single image facade segmentation (dashed box), it will be processed by Regularization and Completion. For
multi-view facade segmentation, Fusion will combine the pairwise latent vector of inputs. (a-c) Multi-view facade segmented images. (d-e) Intermediate

fused facade images. (f) Final synthetic output of RFCNet.

ever, it supports only a single facade style and does not address
fusion (and completion is only partially addressed).

2.3. Image Fusion

Image fusion merges information from multiple images of
the same scene taken from various sensors at different positions
and/or different times, hopefully collecting complementary in-
formation. However, most recent approaches (e.g., (Prabhakar
et al., 2017; Joo et al., 2018; Li et al., 2018; Trinidad et al.,
2019; Li et al., 2020; Zhu et al., 2020)) focus on multi-modal
fusion (i.e., combining information from different domains).
In our case, we are focusing on fusing same-domain images
from different viewpoints. Our fusion is more similar to Ol-
szewski et al. (2019) which aggregates multiple volumetric la-
tent representations of the same object, and then applies a sim-
ple channel-wise averaging operation to obtain a fused repre-
sentation. A problem with their basic averaging strategy is that
feature maps are fused together without measuring the useful-
ness of each feature vector; hence, useless and useful features
might be mixed together.

2.4. Image Completion

Filling-in missing pixels of an image, often referred to as im-
age completion or image in-painting, is an important task. Deep
learning and GAN-based approaches (e.g., (Yu et al., 2018;
Zheng et al., 2019; Yu et al., 2019, 2020; Jie Yang, 2020)) have
achieved promising results in this task. Compared to real-image
completion, segmented-image completion is more challenging
due to the lack of color and contextual information. We show
comparisons to these approaches in Section 4.

3. Method

In this section, we describe our characterization of pattern
regularity and generation of pattern styles for training, present
the overall architecture of our RFCNet, and then detail each
module of our architecture. Finally, we describe RFCnet im-
plementation.

3.1. Pattern Regularity and Styles

In the following, we describe our assumptions about the pat-
tern structural regularity and styles. We focus on the case of
facades to illustrate the details of our method; details for other
patterns are defined in an analogous way (see Appendix F for
building footprint and roof details).

3.1.1. Structural Regularity

We characterize the structural regularity of facades by the
arrangement of their features. Windows and doors are the pre-
dominant features visible in both street-level and satellite-based
facade segmentation. Nonetheless, we also support additional
labels for street-level observations (e.g., balconies). The place-
ment of windows/doors can be described by their alignment (A),
size (S') and spacing (P) as shown in Figure 3. Since most win-
dows are rectangular and windows shapes are difficult to differ-
entiate in low-resolution satellite images, a window b; is defined
by rectangle {x;, y;, w;, h;} where (x;, y;) is its top-left corner and
(w;, hy) 1s its size (S). A group of windows is left aligned (A;)
when the x coordinates of the top-left corners are equal. Right
(A,), top (A,) and bottom (A,) alignments are defined similarly.
The horizontal spacing (P;) between two horizontally adjacent
windows (b, by) is defined by x; — (x; + w;) (assuming by, is at
the right of b;). Thus a group of windows has the same horizon-
tal spacing when the computed horizontal spacing among those
windows is equal. The vertical spacing (P,) is defined analo-
gously. Note: We can theoretically grow the space of possible
window shapes (e.g., including circular or oval windows) and
account for any actual facades. It’s listed as future work.
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Fig. 3. Illustration of Structural Regularity. (a) Left, right, top and bottom
alignments are in different colors. (b) Different window sizes are in differ-
ent colors. (c) Horizontal and vertical spacing are in different colors.



3.1.2. Style Generation

Within a facade there can be one or more groups of win-
dows/doors exhibiting different combinations of the aforemen-
tioned structural characteristics A;/A,/A,/Ap, S, and P,/P,. A
particular combination of characteristics defines a facade style.
For example, the facade style (a) in Figure 4 is based on the
combination of constraints: A; and A, for each column of win-
dows, A; and A, for each floor, windows of same size S, and
same Pj, and P, spacing. (b) in the same figure differs from (a)
by having more than one group of windows of the same S. The
facade style (c) differs from (a) by having 2 groups of P}, in the
facade.
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Fig. 4. Example Facade Styles. (a-d) show progressively more general fa-
cade styles, with (d) being supported by our approach.

In the specific case of facade segmentation, prior work as-
sumes specific structural constraints. For instance, Zhang et al.
(2020) addresses facade segmentation and completion but only
for facades of style (a). Nishida et al. (2018) defines a specific
set of 16 synthetic facade styles, similar to styles (a-c). For each
proposed facade style, they generated enough synthetic training
images to train a set of deep networks. For published facade
datasets like CMP (Tylecek and Séra, 2013) or ECP (Teboul
et al., 2011), the supported facades are limited to the styles ob-
served in the cities where the facades were collected. Further,
they assume facades are captured at sufficiently high resolu-
tion and completeness to observe the supported stylistic details.
Training based on those datasets will fail when handling other
facade styles or satellite facade images.

Unlike the aforementioned methods, our approach is based
on a much more general set of assumptions. For facades, our
approach works as long as the facade satisfies the near mini-
mal constraints of basic alignment (i.e., A; and A, for groups of
columns of windows, A, and A, for groups of floors as seen in
real facade images from Figure 1), and groups with same size
S and groups with similar spacing P;, and/or P,. During train-
ing, we will generate a very large number of training examples
that essentially will include all the prior sets of specific styles
as well as other more general facade styles like (d) of Figure 4.
To show the facade generality of our set of assumptions, we test
several models against the styles in Figure 4. In Appendix D,
we summarizes the quality of the results and clearly show that
our method works comparatively best.

3.2. Architecture

Our RFCNet, as illustrated in Figure 2, contains three se-
quential modules: Regularization module (R), Fusion module
(F), and Completion module (C). RFCNet takes as input a seg-
mentation from one or more viewpoints. For a single viewpoint,
the input segmentation passes through Regularization and Com-
pletion. For the multi-view scenario, inputs will be successively
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combined by Fusion in pairs. In both cases, the output is a well-
regularized, crisp and complete synthetic structure. Moreover,
the whole network is trained in an end-to-end manner.
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Fig. 5. Modules. Structural details of Regularization, Completion and Fu-
sion modules.

3.2.1. Regularization

The design of our Regularization module is mainly based
on a Convolutional Autoencoder (Masci et al.,, 2011). Our
Regularization consists of two main blocks as shown at the
left of Figure 5: an encoder part E® and a decoder part DR.
To be specific, ER takes the raw (un-regularized) segmenta-
tion I® € R¥*WXC ag input, and first passes through a spatial
transform network (STN) (Jaderberg et al., 2015) which pre-
dicts a global affine transformation 7 to align the facade I% to
I® = T(®). I® will be downsampled by a series of 2D con-
volutions layers into a lower dimensional latent representation
ZR € RH>WXC" that contains the informative content of the fa-
cade. DR is trained to up-sample and reconstruct a regularized
and synthetic output /X € R?*WXC from ZR. Each layer is either
a convolutional layer (by default) or a residual block (He et al.,
2016). We also add an attention module CBAM (Woo et al.,
2018) to bias allocation of the most informative feature expres-
sions and simultaneously suppress the less useful ones. Please
see the attention analysis in Appendix A.

3.2.2. Fusion

In order to fuse multiple facade segmentations {..., I%, If, ...},
our Fusion module takes a pair of encoded latent representa-
tions (Zf,Z,f) e RI>WXC from ER as inputs each time and
generates an accumulated representation Zﬁ. Then Zﬁ( passes

through DF for subsequent processing. The Fusion module is
shown at the right of Figure 5. Our Fusion naturally extends to
an arbitrary number of inputs in this way (e.g., an example of
3 inputs shown in Figure 2). Unlike the work Olszewski et al.
(2019) using basic averaging-based fusion (or, max, min, or ad-
dition), our proposed Fusion not only incorporates all those ba-
sic fusion strategies, but also learns the weights of how to fuse.
In the beginning, (Zj.e , Z,f) are scaled by their confidence values

(or score) (wj.D , w,f ), and then they are concatenated together to
form a deeper representation Z = concat(w¥ x Z§, wi’ x Z)



and Zf' € RF>W>2C" The confidence value corresponds to the
quality of the input facade (e.g., given different views of the
same facade, the user may provide one of 1.0, 0.75 or 0.5 that
correspond to high, medium and low quality images respec-
tively). This confidence value especially helps when we use
satellite based segmentation as illustrated in Appendix B. Next,
the concatenated representation Z/ is compressed by passing
through a 1 x 1 convolutional layer to reduce the depth of chan-
nels to the original size C’. An attention module CBAM is also
added to measure the usefulness of each feature vector, and fil-
ter out less important features.

3.2.3. Completion

Our Completion module takes the partially viewed and well-
regularized segmentation I € R¥*W*C ag input, and then gen-
erates a well-regularized and complete synthetic output ¢ €
RA*XWXC ag shown in the middle of Figure 5. The Comple-
tion architecture is similar to Regularization but with several
notable differences. STN is not necessary since the input has
been aligned during Regularization. Since completion is more
about propagating feature information globally, the bottleneck
latent representation is fully connected to the previous layer.
Skip connections (Ronneberger et al., 2015) are added between
the layer in the encoder and the corresponding layer in the de-
coder. Please see Appendix C for how a fully connected layer
improves completion. Note: Since our Fusion module fuses a
pair of encoded latent representations of two views of the same
facades, training a combined Regularization-Completion mod-
ule does not guarantee that the latent code only represents the
visible part of each fagade — therefore the Fusion process would
work incorrectly.

3.3. Implementation

We perform self-supervised training using synthetic data for
our proposed network implemented in PyTorch (Paszke et al.,
2017). The weights are trained by the Adam (Kingma and Ba,
2015) optimizer where initial learning rate is set to le-3. Our
typical input image sizes are (H, W,C) = (128,128, 1) and la-
tent space dimensions are (H', W’,C’) = (4,4,256). It runs on
an Intel 19 workstation with NVIDIA RTX 2080 8GB cards. In
the following, we describe training, loss function, and testing.

We generate 500,000 synthetic images for RFCNet training
as per our general set of style assumptions in Section 3.1.2. For
data augmentation, we first apply a random occlusion mask M
to create a masked image I = Io(1-M). Then, to add noise and
irregularities to facade images, we apply random local window
deformations Tj,.. (€.g., translation and scaling ) and global
affine transformations T4y (€.g., translation and rotation)
yielding the final input training image f, = gg(,bal(Tlocal(f)).
Likewise, in terms of data transformation for other patterns,
please find details in Appendix F. Thus our aforementioned
I® = I,. To train Regularization and Completion end-to-end,
we also need that the output of Regularization goes into Com-
pletion directly, thus I¢ = IR.

We formulate Regularization as a supervised learning prob-
lem and compute its loss £X as the weighted sum of the squared
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L2 losses of the image and its spatial gradient map (using Sobel
operator). It is defined as:

L= LfvaLt,

L =* -1, M

LI =1 d = fDl.
where f stands for generating the spatial gradient map (with
an empirically determined 4 = 10). In a similar way, the loss
function for Completion £ is defined as follows (with 8 = 10
determined empirically to work well):

L6 = L7 +BLE,
L8 =1 - 11, )
L = Ifd%) = fFDls.
Thus the total loss function is the following:
L=L+ L6 3)

After we have trained Regularization and Completion, we
use the sub-parts ER and Dy to help train Fusion. Since the
input for the Fusion module is a pair of encoded feature rep-
resentations (Z, Z{) generated by EX and the output goes into
Dg, we freeze EX and DR and then only update the Fusion block
during its training with a fusion loss function £7 defined in a
similar way as L*. In order to generate (ZF, Z) for a given /,
two masks, local deformations and global transformations (e.g.,
two different views of the same facade) are needed to get a pair
of (1;? D).

4. Experiments

We quantitatively and qualitatively evaluate our approach on
building facades, for which we have ample ground truth. We
also show preliminary qualitative results for building footprints
and roofs.

4.1. Facade Datasets

For facades, we test on three datasets: ECP dataset (Teboul
et al., 2011), a WorldView3 Satellite dataset (WVS), and a
Google Street View dataset (GSV). Our method supports mul-
tiple facade labels and we show such results in Figure 9 (a) and
more in Appendix F. However, we focus on window patterns
in all datasets for consistence since they are most important and
obvious to have regularities, and other labels/details are difficult
to see from satellite imagery.

4.1.1. ECP

ECP dataset consists of 104 images of building facades. All
images in ECP dataset contain rectified and complete building
facades in Paris. We use the annotations provided by Math-
ias et al. (2016). To show that our approach can enhance the
initial facade segmentation from a variety of models, we train
and test three segmentation models whose architectures are sig-
nificantly different: U-Net (Ronneberger et al., 2015), Pix2Pix
(Isola et al., 2017), and DeepLabv3+ (Chen et al., 2018). We
leave 20 images for evaluation (4 of the 20 images are manually
masked for completion evaluation).



4.1.2. WVS

We present a dataset of satellite-captured facades, and it in-
cludes 152 rectified high-resolution satellite images (i.e., 0.3m
per pixel) from WorldView3. The images have been manually
annotated with two labels: one for windows/doors and the other
for the walls. These images contain complete facades, partially
occluded facades (e.g., due to shadows, trees, etc.), and multi-
view facades. We train and test three segmentation models:
Pix2Pix (Isola et al., 2017), EncNet (Zhang et al., 2018) and
DeepLabv3+ (Chen et al., 2018). We leave 20 complete, 4 par-
tially occluded and 4 sets of multi-view facades for evaluation.

4.1.3. GSV

We collected 4 complete facades, 4 occluded facades and 4
sets of multi-view facades from Google Maps. We rectified the
images and manually created annotations. For segmentation,
we directly use the models trained for ECP.

4.2. Facade Evaluation Metrics

We rigorously evaluate our RECNet in the case of facade seg-
mentation. In particular, we evaluate two ways: facade correct-
ness and facade regularization. Facade correctness focuses on
the pixel-level performance of the facade. Facade regularization
measures the regularities of the facade. Please see the evalua-
tion code in our supplementary materials.

4.2.1. Correctness
For facade correctness evaluation, we use the following sta-
tistical measures:

TP+TN

e Accuracy: ~;

TP

e Precision: TPLiFP

e Recall: TP+FN

Precision=Recall
o F1: 2« Precision+Recall
with true positives T P, false positives F P, true negatives TN,
and false negatives F'N for window/door class.

4.2.2. Regularization

Three metric error terms are defined to measure the regular-
ization of a facade layout: alignment (E,), size (E;) and spacing
(Ep). The errors measure the deviation from having groups of
perfect alignment, groups of equal size, and groups of equal
spacing. We adapt and modify the relevant definitions of Jiang
et al. (2016).

e Group: We use a threshold ¢ to split the window elements
into a set of groups G = {..., g;, ...} for the regularization
error terms. A candidate group g; = (E;, V;) contains a set
of window elements E; that share the regularization term,
and a set of values V; (e.g., it is a set of x coordinate of
left-corner from E; for left alignment) that will be used
to compute the corresponding regularization error. Please
refer to Section 3.1.1 for definitions of these values.

e Alignment Error: E, is defined as:
stdvar(g ;)
E(l -
Z Z scale(g)

where A; stands for one alignment type among top, bot-
tom, left and right alignments. g; is a candidate group
of A;. stdvar(g;) measures the standard deviation of V; in
gi. scale(g;) is used to scale the error. For left and right
alignment, it is equal to the minimal width of window ele-
ments E; in g;. For top and bottom alignment, it is equal to
the minimal height of E;. ||G]| is the number of candidate
groups of A;. We add ||G|| to encourage fewer and larger
groups. w, is a weight that balances the two terms (e.g.,
wg = 0.01).

e Size Error: E; is defined as:

E. Z stdvar(g j)

scale(g ;)

+ wallGI), @)

+ willGll, 5)

where g; is a candidate group that has the same window
size. stdvar(g;) measures the standard deviation of V; in
gi. scale(g;) is equal to minimal height or width of E; in g;.
[|G]| is the number of groups. w; is a weight that balances
the two terms (e.g., w, = 0.01).

¢ Spacing Error: E), is defined as:
stdvar(g;) stdvar(g)

E —
Z Z scale(g ;)

where P; stands for horizontal or vertical spacing. g; is a
candidate group of P;. stdvar(g;) measures the standard
deviation of V; in g;. scale(g;) is equal to minimal spacing
of V; in g;. ||G|| is the number of candidate groups of P;.
w, is a weight that balances the two terms (i.e., we usually
set w, = 0.01).

+wpllGlD, (6)

4.3. Facade Comparison

We evaluate RFCNet on the aforementioned ECP, WVS and
GSV datasets with our defined evaluation metrics. To verify
effectiveness of our method on enhancing initial segmentation,
we compared our method to three segmentation models, state-
of-the-art image completion models, and IPM methods both
qualitatively and quantitatively. The comparison exhibits our
approach shows a significant improvement. In the following
sections, we only show comparison with one initial segmenta-
tion model. Please see Appendix E for more comparisons.

4.3.1. Regularization

We apply our Regularization to initial segmentations for each
of our three datasets and in all cases achieve better performance.
The initial segmentation for each of the datasets is the first row
in each group of Table 1 (e.g., for WVS, we improve the accu-
racy of the initial segmentation of Pix2Pix by 6.2% and reduce
alignment error E, by 60.8%). In addition, we retrain models
in IPM methods (Nishida et al. (2018); Zhang et al. (2020)) us-
ing corresponding datasets for fair comparison. It shows our



method improves facade correctness compared to them (e.g.,
accuracy is improved by 30.2% for ECP, 30.1% for GSV, and
4% for WVS). Moreover, as shown in Figure 6, our module
generates visually pleasant facade structures.

Table 1. Regularization Quantitative Comparison. We compare our Regu-
larization (R) with the initial facade segmentation and IPM methods for
ECP, WVS and GSV datasets. For facade correctness, higher is better. For
facade regularization error, lower is better. Note: IPM methods generate
regularized outputs, so regularization error is close to 0 but correctness is
lower than others.

Method ‘ Facade Correctness | Facade Regulariz. Error
| Acc. [ Pre. [ Rec. | FI | E, [ E; | E,
DeepLabv3+ | 96.4% | 84.7% | 94.6% | 89.2% | 1.01 | 0.05 0.18
ECP Nishidaetal. | 69.0% | 50.8% | 53.3% | 51.7% | — — —
R 99.2% | 95.3% | 99.4% | 97.2% | 0.32 | 0.04 0.12
Pix2Pix 87.2% | 70.1% | 91.9% | 79.0% | 0.74 | 0.12 0.27
WVS Zhangetal. | 89.4% | 80.5% | 84.6% | 822% | — — —
R 93.4% | 81.6% | 96.8% | 88.2% | 0.29 | 0.08 0.16
U-Net 90.5% | 75.0% | 90.0% | 81.6% | 0.76 | 0.05 0.22
GSV Nishidaetal. | 68.0% | 50.2% | 51.6% | 50.7% | — — —
R 98.1% | 92.8% | 99.5% | 95.9% | 0.25 | 0.04 0.13

Dataset

@

Fig. 6. Regularization Qualitative Comparison. (a) Facade images from
ECP, WVS and GSYV respectively. (b) Ground Truth. (c) Initial Segmenta-
tion. (d) IPM results. (f) Our Regularization.

4.3.2. Regularization and Completion

For incomplete or partially occluded facade segmentation, as
shown in Table 2, our Regularization and Completion (R & C)
not only significantly improves the facade correctness and reg-
ularization metrics (e.g., for WVS, we improve the accuracy of
the initial segmentation of Pix2Pix by 8.4% and reduce align-
ment error E, by 72.4%), but also achieves better performance
compared to the initial segmentation augmented by the image
in-painting method DeepFill (Yu et al., 2018) (e.g., accuracy
improved by 5.4% and alignment error E, reduced by 74.7%
for WVS). For a fair comparison, we refine DeepFill using
our facade synthetic dataset. In addition, our method improves
IPM methods with respect to facade correctness (e.g., accuracy
improved by 29.5% for ECP, 26.5% for GSV, and 3.1% for
WVS). Further, our R & C outperforms the single Regulariza-
tion module in terms of accuracy and recall. As illustrated in
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Figure 7, the outputs of our Regularization and Completion are
visually appealing as well.

Table 2. Regularization and Completion Quantitative Comparison. After ap-
plying Regularization and Completion (R & C) to the initial segmentation,
we compare our results to the segmentation, segmentation after completion
using DeepFill, IPM methods and our Regularization (R). Note: DeepFill
means DeepFill takes the initial segmentation of the initial segmentation
(i.e., Pix2Pix) as inputs.

Facade Correctness

‘ | Facade Regulariz. Error
| Acc. | Pre. [ Rec. | FI

Dataset Method

[ E [ E [ E

DeepLabv3+ | 91.0% | 74.0% | 74.8% | 74.1% | 0.77 | 0.05 0.18

DeepFill 932% | 73.5% | 95.8% | 82.6% | 0.80 | 0.04 0.21

ECP Nishidaetal. | 67.4% | 50.4% | 54.4% | 52.3% | — — —
R 95.3% | 92.8% | 78.4% | 86.6% | 0.27 | 0.03 0.12

R&C 96.9% | 84.6% | 99.7% | 91.7% | 0.24 | 0.03 0.15

Pix2Pix 84.8% | 77.2% | 659% | 71.1% | 0.87 | 0.07 0.32

DeepFill 87.8% | 75.5% | 84.1% | 79.5% | 0.95 | 0.07 0.33

WVS Zhangetal. | 90.1% | 823% | 87.7% | 84.5% | — — —
R 89.9% | 88.3% | 74.3% | 80.9% | 0.21 | 0.05 0.14

R&C 93.2% | 83.2% | 94.7% | 88.5% | 0.24 | 0.05 0.19

U-Net 82.7% | 74.7% | 55.3% | 60.9% | 0.71 | 0.06 0.14

DeepFill 87.3% | 75.5% | 77.5% | 75.7% | 0.89 | 0.07 0.26

GSV Nishidaetal. | 67.1% | 50.1% | 51.3% | 50.5% | — — —
R 88.5% | 91.6% | 65.4% | 78.3% | 0.20 | 0.04 0.07

R&C 93.6% | 83.8% | 93.4% | 88.0% | 0.26 | 0.06 0.12

Fig. 7. Regularization and Completion Qualitative Comparison. (a) Oc-
cluded facade images from ECP, WVS and GSYV respectively. (b) Ground
Truth. (c) Initial Segmentation. (d) Segmentation completed by DeepFill.
(e) IPM results. (f) Our Regularization. (g) Our Regularization and Com-
pletion. Note: We manually mask ECP facade images shown in red box.

4.3.3. RFCNet

For partially-occluded facade segmentation with additional
views, as shown in Table 3, our RFCNet achieves better facade
results when evaluated for facade correctness and regulariza-
tion as compared to the segmentation of the first view (e.g.,
for WVS, improves the segmentation accuracy by 9.1% and re-
duces alignment error £, by 60.8 %) and the segmentation com-
pleted using DeepFill (e.g., for WVS, improves accuracy by
4.4% and reduces E, by 70.1%). Moreover, our RFCNet ob-
tains better performance compared with only applying our Reg-
ularization and Completion to the first view. In addition, our
method improves facade correctness compared to IPM meth-
ods (e.g., accuracy improved by 28.4% for GSV and 5.6 % for
WVS). What’s more, our RFCNet improves accuracy and recall
compared to both R & C and R. As demonstrated in Figure 8§,
our RFCNet results are qualitatively preferable.



Table 3. RFCNet Quantitative Comparison. We compare the initial facade
segmentation, the segmentation completed by DeepFill, IPM methods, and
the outputs after applying our Regularization (R) and our R & C to the
segmentation for the first view in WVS and GSV. Further, we evaluate the
output after fusing additional views by applying our whole RFCNet.

‘ Facade Correctness ‘ Facade Regulariz. Error

| Acc. [ Pre. [ Rec. [ FI | E, [ E; | E,
Pix2Pix 85.9% | 86.1% | 65.8% | 74.0% | 0.51 | 0.09 0.27
DeepFill 90.6% | 85.1% | 85.2% | 85.1% | 0.67 | 0.13 0.43

Zhangetal. | 89.4% | 80.7% | 86.2% | 83.3% | — — —

Dataset Method

wvs R 90.1% | 94.7% | 72.8% | 81.9% | 0.19 | 0.06 0.14
R&C 93.5% | 85.5% | 95.1% | 90.0% | 0.20 | 0.10 0.15
RFC 95.0% | 88.7% | 96.0% | 92.2% | 0.20 | 0.09 0.15
U-Net 83.6% | 80.0% | 53.8% | 62.2% | 0.71 | 0.07 0.15
DeepFill 87.2% | 792% | 71.1% | 74.0% | 0.89 | 0.11 0.19
GSV Nishida etal. | 66.9% | 50.3% | 50.7% | 50.4% | — — —

R 89.7% | 94.0% | 67.6% | 80.5% | 0.20 | 0.06 0.11
R&C 91.6% | 81.3% | 88.1% | 83.9% | 0.28 | 0.06 0.14
RFC 95.3% | 86.4% | 95.2% | 90.4% | 0.15 | 0.06 0.09
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Fig. 8. RFCNet Qualitative Comparison. (a) First view of facade images
from WVS and GSV. (b) Additional views. (c¢) Ground Truth. (d) Segmen-
tation of the first view. (e) Segmentation completed by DeepFill. (f) IPM
results. (g) Our Regularization. (h) Our R & C. (i) Our entire RFCNet.

4.4. Footprints and Roofs

We evaluate our approach on SpaceNet dataset (Etten et al.,
2018) for footprints and roofs. The dataset includes high-
resolution (0.3m per pixel) satellite imagery from several cities.
Building footprint annotations are already available and we
manually annotate the roof structures. In addition, we train
Mask R-CNN (He et al., 2017) to get the initial footprint seg-
mentation and we take Canny edges (Canny, 1986) as inputs for
roof pattern.

As shown in Figure 9 (b), our method improves the regular-
ities of footprints (e.g., straight walls, parallel walls and cor-
ners with right angles) compared to the initial segmentation.
As illustrated in Figure 9 (c), the roof outputs of our approach
are visually pleasant as well (e.g., roofs with rectangular com-
ponents, ridges parallel to rectangle edges, hips perfectly con-
nected to the ridges). We provide more examples and details
(e.g., assumptions of structural regularities and styles, and syn-
thetic data transformation) in Appendix F.

4.5. Failure examples

Although we support a very wide range of facade styles, there
are always exceptions (e.g., columns of windows that are pur-
posefully unaligned). Currently for styles outside our assump-
tions, our approach gives its best guess. In the first example
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Fig. 9. Additional Urban Structures. We show (a) ECP facades with multiple
labels, (b) building footprints, and (c) roofs. For each, i) ECP or SpaceNet
provided image, ii) ground truth, iii) initial segmentation or Canny edges,
and iv) our RFCNet result. Note: More results are in Technical Appendix
Section F. Roof outputs are rendered using the average color.

(€)

Fig. 10. Failure Examples. (a) Facade images. (b) Initial segmentation. (c)
Our results.

of Figure 10, due to our A, (bottom alignment) assumption for
each floor, our method enforces the facade output to satisfy A,
regularity. As for the second one, there are six columns in the
facade image. However, our approach generates four columns
of windows by combining the first three columns into one col-
umn with wider windows. We explain the reasons behind the
missing columns. Figure 11 (a) shows the original segmenta-
tion and our result of the second example in Figure 10. As
you can see, the two colorful (blue and orange) line segments
cross the window below , and it causes no spacing among these
columns of windows in the segmentation image which is out-
side of our facade assumptions. Moreover, we manually remove
parts of the top two windows to leave spacing for each column,
shown in Figure 11 (b). We generate reasonable output this
time.

In theory, our framework can handle these failure scenarios
by adding more versatile facade patterns to our synthetic train-
ing datasets. This is listed as future work.
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Fig. 11. More about Failure Examples. (a) Original segmentation and our
results. (b) Manually modified segmentation and our results.

5. Conclusion

We have proposed a novel deep learning based framework
RFCNet, which improves regularities of urban structures, fuses
multiple views, and generates plausible and complete struc-
tures. Through comprehensive experiments, we show our ap-
proach significantly enhances urban segmentation for multiple
datasets. However, our approach has some limitations. Al-
though we support a very wide range of styles, there are always
exceptions. Please find visual failure examples in Section 4.5.

Our approach has several avenues of future work. For exam-
ple, we would like to generate geometric structures based on
our refined segmentation. Also, we would like to combine our
framework with the segmentation model so as to handle real im-
ages directly. Moreover, we would like to support more window
shapes (e.g., circular windows, oval windows, etc.). Finally, we
are also interested in applying our framework to other pattern-
like applications (e.g., textures, sketches, floor-plans, etc.).
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Appendix A. Attention

In Table A.1, we show an analysis of our network without an
attention block, with SEA (Hu et al., 2018), with CBAM (Woo
etal., 2018) or with DA (Fu et al., 2019). It shows using CBAM
improves our network the most.

Appendix B. Confidence Value

We analyze how confidence values help to improve the per-
formance and robustness of our approach in Figure B.1. Even
fused with a noisy and low quality view of a facade, our method
is still able to retrieve useful information and generate a good
output.

Table A.1. Attention Analysis. We employ different attention blocks and
evaluate them on different facade styles as shown in Figure 4 of the paper
in terms of £® defined in Equation 1 of the paper.

Models | @ | ® [ © | @
No Attention | 0.0068 | 0.0074 [ 0.0075 | 0.0086
SEA 0.0061 | 0.0070 | 0.0071 | 0.0082
CBAM 0.0061 | 0.0069 | 0.0069 | 0.0081
0.065 | 0.0072 | 0.0071 | 0.0084

L

(a) (b) (©) (d)

Fig. B.1. Confidence Value. (a) and (b) are two views of satellite facade ex-
amples. Confidence values are inside the red box. (c) Our outputs without
applying confidence values. (d) Our outputs with confidence values.

Appendix C. Latent Vector

In Table C.1, we conduct an analysis of our Completion mod-
ule using a convolutional latent vector, or a fully-connected la-
tent vector. It shows the fully-connected latent vector has better
performance.

Table C.1. Latent Vector Analysis. We experiment on different latent vector
types for our Completion module and evaluate them on different facade
styles as shown in Figure 4 of the paper in terms of £C defined in Equation
2 of the paper.

LatentVectors [ (@ [ (® [ (© [ (@
Convolutional 0.0055 | 0.0066 | 0.0064 | 0.0088
Fully-connected | 0.0045 | 0.0058 | 0.0055 | 0.0076

Appendix D. Facade Generality

To show the generality of our facade set of assumptions, we
test several models against the styles in Figure 4 of our paper.
Model I is trained using only facades of style a and Model 11 is
trained using facades of style c. Both models, and our RFCNet



are tested against 1000 images of each of the styles a, b, ¢, and
d. Table D.1 summarizes the quality of the results and clearly
shows that RFCNet works best.

Table D.1. Evaluation on different models. We evaluate styles (a-d) from
Figure 4 of the paper on Model /, Model // and RFCNet in terms of £
defined in Equation 3 of the paper.

Styles [ Model / | Model /I | RFCNet

(a) 0.0024 0.0290 0.0096
(b) 0.0800 0.1062 0.0114
(c) 0.0530 0.0052 0.0118
(d) 0.1164 0.0784 0.0150
Average | 0.0630 0.0547 0.0120

Appendix E. Comparison

We evaluate RFCNet on the aforementioned ECP, WVS and
GSV datasets with our defined evaluation metrics. We show
comparisons with other initial segmentation models, state-of-
the-art image completion models and IPM methods both quali-
tatively and quantitatively in the following sections. The com-
parison shows our approach shows a significant improvement.

Appendix E.l. Regularization

Regarding complete facade, our Regularization (R) achieves
better performance across our three datasets with respect to fa-
cade correctness and regularization metrics compared with ini-
tial segmentation models: U-Net (Ronneberger et al., 2015),
Pix2Pix (Isola et al., 2017), EncNet (Zhang et al., 2018) and
DeepLabv3+ (Chen et al., 2018) as shown in Table E.1.

Table E.1. Regularization Quantitative Comparison. We compare the initial
facade segmentation to the output after applying our Regularization (R)
for ECP, WVS and GSV datasets.

Facade Correctness ‘ Facade Regulariz. Error
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Table E.2. Regularization and Completion Quantitative Comparison. We
compare the initial facade segmentation to the initial segmentation after
completion using DeepFill, and to after applying our Regularization and
Completion (R & C) for all three datasets.

Facade Correctness ‘ Facade Regulariz. Error

Method ‘

Dataset

| Acc. [ Pre. [ Rec. [ FI | E, | E; | E,

U-Net 90.8% | 75.1% | 73.6% | 74.3% | 0.57 | 0.05 0.18

ECP DeepFill 93.3% | 74.6% | 95.0% | 83.4% | 0.65 | 0.04 0.20
R&C 97.5% | 87.4% | 99.7% | 93.1% | 0.24 | 0.04 0.12

Pix2Pix 89.7% | 90.6% | 72.8% | 80.7% | 0.80 | 0.05 0.17
ECP DeepFill 94.9% | 90.2% | 92.6% | 91.4% | 0.84 | 0.05 0.23
96.1% | 0.28 | 0.04 0.14

R&C 97.9% | 93.2% | 99.3%
EncNet 84.6% | 84.4% | 653% | 73.3% | 0.88 | 0.07 0.21
WVS DeepFill 86.8% | 81.8% | 76.6% | 79.0% | 0.97 | 0.07 0.33
R&C 92.8% | 86.1% | 93.2% | 89.3% | 0.23 | 0.05 0.15
DeepLabv3+ | 84.7% | 81.2% | 68.4% | 74.0% | 0.99 | 0.11 0.29
WVS DeepFill 87.0% | 80.6% | 78.6% | 79.4% | 1.09 | 0.10 0.32
R&C 93.2% | 86.4% | 93.8% | 89.8% | 0.24 | 0.05 0.20

Pix2Pix 84.3% | 73.9% | 64.2% | 67.3% | 0.62 | 0.08 0.24
GSV DeepFill 89.7% | 75.4% | 89.4% | 81.6% | 0.73 | 0.07 0.25

R&C 94.8% | 84.1% | 96.8% | 89.9% | 0.22 | 0.06 0.15
DeepLabv3+ | 79.7% | 60.9% | 61.3% | 60.8% | 0.51 | 0.07 0.28
GSV DeepFill 82.1% | 63.1% | 78.9% | 70.0% | 0.65 | 0.11 0.35
R&C 90.2% | 75.9% | 92.2% | 83.2% | 0.21 | 0.08 0.22

Appendix E.3. RFCNet

For partially-occluded facade segmentation with additional
views, as shown in Table E.3, our RFCNet achieves better fa-
cade results when evaluated for facade correctness and regular-
ization as compared to the segmentation of the first view and
the segmentation completed using DeepFill.

Table E.3. RFCNet Quantitative Comparison. We compare the initial fa-
cade segmentation, the initial segmentation completed by DeepFill, and
the output after fusing additional views by applying our whole RFCNet
framework in WVS and GSV to the initial segmentation.

Facade Correctness Facade Regulariz. Error

Dataset | Method 35 T Rec. [ FI | 5 | £ | E,
EncNet | 884% | 89.6% | 68.1% | 77.6% | 054 | 0.08 | 0.15

WVS | DecpFill | 93.7% | 89.6% | 89.8% | 89.5% | 071 | 009 | 0.19
RFC | 96.9% | 914% | 99.0% | 95.0% | 023 | 005 | 0.10

Dataset | Method } Acc. | Pre. | Rec. | FI | E, | E, | E, DeepLabv3+ | 87.0% | 82.6% | 71.1% | 75.8% | 0.55 | 0.09 | 0.22
ONet 96.6% | 878% 1 92.1% | 897% 1098 1 0.60 | 017 LA DeepFill | 90.7% | 85.4% | 82.4% | 83.7% | 0.92 | 0.15 | 029
ECP R 98.9% | 95.9% | 97.7% | 96.8% | 0.33 | 0.04 | 011 RFC 95.7% | 87.2% | 99.7% | 931% | 0.23 | 0.08 | 0.19
Pix2Pix | 95.4% | 89.2% | 932% | 90.9% | 0.90 | 0.05 | 0.21 Pix2Pix | 85.5% | 76.5% | 67.3% | 70.7% | 0.53 ] 0.07 |  0.19
ECP R 99.4% | 98.2% | 99.1% | 98.6% | 0.32 | 0.04 0.15 GSV DeepFill 90.1% | 79.8% | 85.4% | 82.1% | 0.65 | 0.07 0.17
EncNet | 87.2% | 83.9% | 77.3% | 79.4% | 0.87 | 0.12 | 0.18 RFC 955% | 86.1% | 98.0% | 91.6% | 022 | 0.06 | 0.13
WVS R 93.3% | 91.4% | 87.8% | 89.1% | 0.32 | 0.07 0.12 DeepLabv3+ 81.9% 68.0% 59.2% 62.6% | 0.57 | 0.08 0.25
DeepLabva+ | 86.1% | 76.5% | 82.9% | 78.5% | 0.89 | 0.12 | 0.15 GSV DeepFill | 84.1% | 68.1% | 76.3% | 71.8% | 0.75 | 0.10 | 0.32
WVS R 94.0% | 88.2% | 92.9% | 90.0% | 0.31 | 0.08 | 0.3 RFC 90.1% | 76.1% | 91.1% | 82.9% | 0.24 | 0.09 | 0.20
GSV Pix2Pix | 92.6% | 84.8% | 88.1% | 862% | 0.68 | 0.07 | 0.0
R 99.1% | 96.6% | 98.7% | 97.6% | 0.19 | 0.06 | 0.13
Gsy | DeepLabvd+ | 9L4% | 80.6% | 87.9% | 83.0% | 0.76 [ 0.08 | 028
R 98.4% | 96.6% | 97.0% | 96.7% | 0.26 | 0.06 | 0.20

Appendix E.2. Regularization and Completion

For incomplete or partially occluded facade segmentation,
as shown in Table E.2, our Regularization and Completion (R
& C) not only significantly improves the facade correctness
and regularization metrics, but also achieves better performance
compared to various initial segmentations augmented by the
image in-painting method DeepFill (Yu et al., 2018).

Appendix F. Additional Urban Structures

We demonstrate the usage of our framework on additional
urban structures, including multiple label ECP (Teboul et al.,
2011) facades and SpaceNet (Etten et al., 2018) satellite-based
building footprints and roofs, as shown in Figure F.1. In the
following sections, we describe the details of applying our ap-
proach to these patterns.
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Fig. F.1. Additional Urban Structures. We show (a) ECP facades with
multiple labels, (b) building footprints, and (c) roofs. For each, i) ECP
or SpaceNet provided image, ii) ground truth, iii) initial segmentation or
Canny edges, and iv) our RFCNet result. Note: Roof outputs are rendered
using the average color.

Appendix F.1. Multiple Label Facades

Our RFCNet can significantly improve facade correctness
and regularization as shown in the comprehensive experiments
in the paper. To be able to compare between satellite and street-
view facades, we focused on windows. Yet, as seen in Fig-
ure F.1 (a), our approach indeed supports multi-label facades.

As in Section 3.1 of our paper, windows usually show regu-
larities as a whole facade (e.g., A; and A, for each floor, A; and
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A, for each column of windows). However, based on our ob-
servations, balconies (or doors) usually exhibit regularities floor
by floor (e.g., A, and one or multiple groups of A, for each floor
as seen in Figure F.1 (a)).

Following the above assumptions, we add single floor syn-
thetic examples supporting one or multiple groups of A, (e.g.,
see Figure F.2 (a)) to the existing synthetic dataset described in
Section 3.3 of the paper. After refining our existing models, we
generate outputs for windows, balconies and doors separately.
Especially for balconies, we get results floor by floor. In the
end, we combine all together and get the final output illustrated
in Figure F.1 (a). Compared with the initial segmentation, our
approach generates regularized and visually pleasant results.

g
LI
(a)
a

(b)

Fig. F.2. Data Transformation. We show (a) ECP facades with multiple
labels, (b) building footprints, and (c) roofs. For each, i) Clean and regu-
larized synthetic images. ii) Images after corresponding transformation.

Appendix F.2. Building footprints

Regarding regularities, (man-made) buildings exhibit prop-
erties (see Figure F.1 (b)) such as straight walls, parallel walls,
walls meeting at one of a set of predetermined angles (e.g., 90
or 135 degrees), symmetrical arrangements, and other features.
For the sake of simplicity, we focus on straight walls, paral-
lel walls and right angle regularities. In order to support vari-
ous building styles (shapes), our synthetic dataset includes the
rectangle, L, T, U, Z and H shapes. In addition, in order to
represent the noisy and irregular building footprint segmenta-
tion, we need to transform our clean/regularized synthetic im-
ages (see Figure F.2 (b)). We apply random occlusion or bumps
(e.g., different shapes and sizes) around the footprint bound-
aries. Based on experiments, furthermore, we include different
levels of transformations (low-noisy, medium-noisy and high-
noisy) when training. Finally, we train our framework and gen-
erate the outputs shown in Figure F.1 (b). Our method improves
the regularities of footprints (e.g., straight walls, parallel walls
and corners with right angles) compared to the initial segmen-
tation.

Appendix F3. Roofs

As for roof regularities (as seen in a 2D image), two aspects
are involved: external edges (e.g., eaves) and internal edges
(e.g., ridges and hips). In our experiment, we consider roofs
consisting of rectangular components, meaning that the exter-
nal edges form parts of a rectangle. For internal edges, ridges
should follow the main direction of the roof (e.g., parallel or
perpendicular to eaves), and hips are connected to ridges. In
our current synthetic dataset, we support flat, gable, hip and



pyramid styles. Further, We transform the synthetic roof im-
ages by adding random noisy curve lines and randomly remove
small parts of the edges (see Figure F.2 (c)). During training,
similarly we apply different levels of transformations. For vi-
sual performance, we render our results by computing the av-
erage color of individual faces, and present example results in
Figure F.1 (c).
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