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ABSTRACT

Structure from motion (SFM) is the problem of reconstructing the geometry of a scene from a stream of images
on which features have been tracked. In this paper, we consider a projective camera model and assume that
the internal parameters of the camera are known. Our goal is to reconstruct the geometry of the scene up to
a rigid motion (i.e. Euclidean reconstruction.) It has been shown that estimating the pose of the camera from
the images is an ill-conditioned problem, as variations in the camera orientation and camera position cannot
be distinguished. Unfortunately, the camera pose parameters are an intrinsic part of current formulations of
SFM. This leads to numerical instability in the reconstruction of the scene. Using algebraic methods, we obtain
a basis for a new formulation of SFM which does not involve pose estimation and thus eliminates this cause of
instability.
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1. INTRODUCTION

Being able to accurately simulate large and complex 3D environments is a core challenge of today’s computer
technology. Indeed for reasons of cost and speed, and to improve the richness of the 3D models, there is a
strong desire to replace manual model creation by an automatic acquisition and rendering system. But despite
tremendous increases in computational power and storage space, current automated systems perform poorly,
even for small and relatively simple environments.

Basically, what we expect from these systems is to be able to acquire the photogrammetric information (i.e.
color, reflectance, texture,. . . ) contained in a scene, and to recreate its effect in a picture, movie or other virtual
environment. Being able to recreate these effects relies, in parts, on being able to reconstruct the geometry of
the scene, i.e. the 3D positions and orientations of the structural elements contained in it. In this paper, we
concentrate on this task. Our data acquisition system consists in an internally calibrated camera. We acquire a
stream of images by either holding the camera in our hands while walking around the scene, or by placing the
camera on a device navigating the scene. A set of feature points is then tracked on the pictures. In order to
facilitate the tracking process, the camera movement is assumed to be relatively smooth. We are interested in
reconstructing the geometry of the scene observed on the image stream. More precisely, we want to determine
the 3D positions of the tracked features from their observed positions on the pictures. This is the well known
problem of structure from motion (SFM).

SFM is, in itself, a very difficult problem. Despite decades of research, a satisfying solution still has not been
found. In all current methods, the computations involved are often tedious and, in all cases, very sensitive. We
attack these problems at the root by mathematically reformulating SFM in a better way. Our goal is to obtain
a set of equations describing the geometry reconstruction process that can be solved robustly.

So why is SFM so difficult? One main reason is that, typically, the camera pose parameters are unknown.
This is because measuring them requires a complicate setup, and precise estimates are difficult to obtain. So
for each picture taken, the positions of the tracked features on the picture yield a set of equations involving the
camera parameters and the reconstructed tracked feature positions in 3D. The camera parameters constitute a
nuisance because they negatively impact the robustness of the reconstruction. Indeed, it has been shown that
estimating the pose of a camera is an ill-conditioned problem.1 This is due to an inherent confusion between the



camera position and the camera orientation which simply cannot be resolved, regardless of the solution scheme
used. This is bad news, since the geometric structure of a scene is linked to the camera pose estimates in a highly
unstable manner.

There is, of course, a straightforward approach to getting rid of this cause of instability: to algebraically
eliminate the camera pose parameters from the set of equations to be solved. For example, Tomasi and Shi2

invented some SFM equations where the camera orientation parameters do not appear (using angles between
camera rays) and used these equations to compute the so-called direction of heading of the camera. Numerical
experiments demonstrated the robustness of this approach. Similarly, Tomasi3 described the image changes
through the angles between the projection rays and showed how these can be used to reconstruct both structure
and motion in a two-dimensional world. Immunity to noise of this method was also noted in experiments,
although the results were observed to be critically dependent on camera calibration. More than ten years have
passed since these works of Tomasi and Shi have been published and still no complete mathematical framework
for SFM without camera parameters (or even just without camera orientations) has been developed. So why
was the idea of pose parameter elimination never exploited to its full extent? This is probably because it is
easier said than done. Indeed, eliminating variables in a set of equations is difficult, especially when the number
of unknowns in the equations is high, as is the case here. The following solves this problem with an effective,
systematic method. It is based on a recent publication by Bazin and Boutin4 which shows that a newly developed
algebraic technique from invariant theory5 can be used to remove extraneous variables in SFM. In Section 5, we
present the results of some numerical experiments which indicate that variable elimination does indeed increase
robustness. In fact, it appears that these modified equations provide a better framework for SFM refinement
than the traditional bundle adjustment method,

2. STANDARD APPROACHES TO SFM

In 3D vision text books (e.g. Ma et al.6), the equations describing SFM are typically introduced as

(

pij
1

)

= cijFj

(

Pi
1

)

(1)

where pij represents the 2D coordinates of the 3D feature point Pi observed on picture j, cij is a constant, and
Fj is a 3-by-4 matrix containing the camera parameters corresponding to picture j. Let us assume that the index
i takes values from 1 to n, where n is the number of features tracked on the image, and that the index j takes
values from 1 to J , where J is the number of pictures taken. The matrix Fj is commonly called the fundamental

matrix. When the camera is internally calibrated, one can assume that the fundamental matrix takes the form

Fj =
(

Rj tj
)

,

where Rj is a 3D rotation matrix and tj is a 3D translation vector. The solution of Equation (1), for i = 1, . . . , n
and j = 1, . . . , J , is only defined up to a Euclidean transformation. Indeed, if Fj and Pi is a solution, then

Fj

(

R̃ t̃

0 0 0 1

)

and

(

R̃−1 −R̃−1t̃

0 0 0 1

)

Pj

is also a solution, for any 3D rotation matrix R̃ and any 3D translation vector t̃. A solution to (1) is thus called
a Euclidean reconstruction (as opposed to projective reconstructions, to be defined shortly.)

One first approach to solving this equations consists in first solving for the fundamental matrices Fj ’s. The
fundamental matrix is then plugged into the remaining equations which are solved for the Pi’s. The structure
of Fj is constrained by the fact that it contains a rotation matrix, and so, numerically, this constraint must be
taken into account, which somewhat complicates the numerical solution process. Overall, this approach is not
robust, as small errors in the fundamental matrix can yield big errors in the Pi’s. In particular, a small error in
the rotation matrix R yields a big error in Pi when that point is far away from the camera center. So one must
estimate all the fundamental matrices with a very high accuracy. Unfortunately, this is impossible, as estimating
Fj is equivalent to estimating the camera pose for picture j, a problem which was proven to be ill-conditioned
by Fermüeller and Aloimonos.1



An alternative approach is the so-called projective reconstruction, which looks for an arbitrary 3-by-4 matrix
Mj satisfying

(

pij
1

)

= cijMj

(

Pi
1

)

(i.e. removing the constraints on the structure of the fundamental matrix.) Observe that, if Mj , Pj are a solution
of the above equation, then for any non-singular matrix Q, MjQ and Q−1Pj is also a solution of the above
equations. This implies that the reconstruction obtained is only known up to a projective transformation.
For this reason, a solution to this set of equations is commonly called a projective reconstruction. Removing
the constraints on the structure of the fundamental matrix yields a set of multi-linear equations and thus
facilitates the solution process. For example, one can solve for all Mj , Pj and cij using factorization methods7–9

similar to Tomasi and kanade factorization algorithm.10 Once the scene geometry is known up to a projective
reconstruction, one upgrades to a Euclidean reconstruction by finding an appropriate projective transform (i.e. a
non-singular 3-by-3 matrix) Q and applying it to all Pj ’s. This upgrade is possible when the internal parameters
of the camera are unknown.11 Unfortunately, this approach suffers from the same problem as the first approach,
as solving for the Mj ’s is, in essence, equivalent to solving for the pose.

A third approach, initially proposed by Hartley,12 is called bundle adjustment.13 It is generally considered
to be the most theoretically justified and accurate of all SFM methods at this point. It consists in solving for
all unknown parameters (camera parameters and Pi’s) simultaneously. This is done numerically by least square
minimization. Obviously, this approach is computationally intense and may converge to the wrong solution (local
minima), or even diverge. So it needs to be initialized with a good initial guess, which is typically provided by
a method falling into one of the two above categories. In fact, because of its high precision, bundle adjustment
almost always follows the reconstruction obtained with other methods. Unfortunately, the problem created by
the need to estimate the pose remains in this approach as well, since the camera pose parameters are an intrinsic
part of the equations to be minimized.

In the next section, we propose a new, improved basis of equations for SFM which aims to improve the
numerical stability of the reconstruction. More precisely, we obtain a set of equations which is equivalent to
the traditional SFM equations (i.e. the set is complete up to functional dependence) where the problematic
camera pose parameters have been eliminated, using algebraic manipulation. We present numerical experiments
demonstrating the improved stability in Section 5. Despite the fact that we used a very basic numerical scheme
(i.e. not much tuning up, as opposed to the current methods for SFM which have been developed for decades)
the numerical results clearly show that this is a better approach. In particular, we see that if the results of our
numerical solution are used as an initial guess in the bundle adjustment method to attempt to refine them, we
obtain no improvement at all. In fact, the refined results tend to worsen. We thus conclude that one should use
our equations to design a better refinement step, to be used instead of bundle adjustment.

3. AN ALGEBRAIC METHOD FOR VARIABLE ELIMINATION

Eliminating the camera pose parameters in the SFM equations is more difficult than one could think, a priori.
For example, it is obvious that the SFM equations can be viewed as a set of polynomial equations, namely

(

pij
1

)

− cijFj(cθ, sθ, cφ, sφ, cψ, sψ)

(

Pi
1

)

=





0
0
0



 (2)

c2θ + s2θ − 1 = 0 (3)

c2φ + s2φ − 1 = 0 (4)

c2ψ + s2ψ − 1 = 0 (5)

where the sine and cosine of the 3D rotation angles θ, φ, ψ have been replaced by the variables cθ, sθ, cφ, sφ, cψ, sψ
and where an additional set of constraints specified by Equations (3)-(5) has been added. One would thus think
that the symbolic elimination tools developed for the case of polynomial equations (e.g. several symbolic algebra
packages which can compute Groebner basis) would be well suited for eliminating the nuisance parameters in



this case. Unfortunately, the set of equations we are dealing with in the case of SFM is so big and involves so
many variables that the programs always seem to run out of memory before the computations finish (we tried
both Singular14 and Macaulay,15 unsuccessfully) Also, by restricting ourselves to polynomial functions, we are
likely to end up with equations of a higher polynomial degree than we began with. Indeed, since division by a
variable is not allowed, the more variables are eliminated, the more the degrees of the polynomials in the basis
tend to increase. This approach to variable elimination thus has the undesired likely potential of increasing the
complexity and the numerical instability of the problem.

In contrast with commutative algebraic approaches, the computational approaches developed in the context
of differential geometry are not restricted to polynomial equations, which gives them distinct advantages (and
also disadvantages, but this is beyond the scope of this paper...) The computational methods we are interested
in come from invariant theory, and so a few, simple definitions must first be given. First, we need the concept of
a group of transformations, which is merely a set of transformations on a space which satisfies some properties.
More precisely, we demand that the set of transformations be such that

1. (closure) for any two transformations in the transformation group, there exists a third transformation such
that successively applying the first two transformations is equivalent to applying the third transformation;

2. (identity element) there exists a transformation which does nothing to the space;

3. (inverse elements) for any transformation in the group, there exists another transformation such that,
applying these two transformations successively is the same as doing nothing on the space.

We also need the concept of orbit passing through a point. Given a group of transformations on a space, an orbit
passing through a point is the set of all points which can be obtained by applying a transformation contained
in the group to this point. Finally, we need to define the concept of an invariant. Given a transformation group
on a space, an invariant is a real valued function which takes constant values on the orbits of the transformation
group. In other words, an invariant is a function whose valued is unchanged by applying a group transformation
to its argument.

We begin with a short example which summarizes how we use invariants to eliminate variables. Suppose
one is interested in finding the value of an unknown vector x and that this vector is known to satisfy a set of
equations. Now assume that among these equations, there is one that can be written as f(x, θ) = 0, where θ
is also unknown (i.e. θ is a nuisance parameter.) In this case, we might be tempted to try to eliminate θ from
this equation, especially if it is a parameter which is hard to estimate numerically. For example, x could be a
two-dimensional vector and the equation f could be

x =

(

cos θ − sin θ
sin θ cos θ

)(

k1

k2

)

,

where k1, k2 are some constants defined by the data obtained in an experiment. Eliminating θ in the above
case is very easy, because the equation satisfied by x simply says that x is on a circle passing through the point
(k1, k2). Since a circle is made of all those points which lie at a fix distance from the origin, we can replace the
above equation by

|x| = |(k1, k2)| ,

thus eliminating the parameter θ.

So what have we done, in this example? We have observed that what our initial equation was saying was
that all x satisfying our equation lies on the orbit of a group action, namely that of the group of rotations in the
plane. The distance from a point to the origin is an invariant under rotations in the plane. Therefore, the point
we are looking for, x, satisfies an equation of the type |x| = c, where c is a constant (because an invariant takes
a constant value on an orbit). Now since the (known) vector (k1, k2) also lies in this orbit, we know the value of
the constant, because |(k1, k2)| = c too.



This is the idea behind using invariants to eliminate variables. We first need to find a group action for which
the set of all possible values of our unknowns is an orbit. Note that this is not necessarily the case, in general.
For this to work, the equations we begin with must define a group of transformation of the type

x = g ∗ k,

where ∗ denotes the application of the transformation g onto a vector k of known quantities. For any invariant
I of this group action, we obtain a new equation

I(x) = I(k),

where the group parameters have been eliminated. Now different invariants may lead to redundant equations,
(e.g. the distance to the origin, and twice the distance to the origin, which is also in invariant in the example
discussed above.) So it is essential to use a set of independent invariants. Moreover, some invariants may lead to
simpler equations than others (e.g. the distance to the origin is easier to deal with than the exponential of the
distance to the origin, which is also an invariant, in the example discussed above.) So it is instructive to consider
the set of equations defined by a so-called generating set of invariants of the group action. By definition, any
invariant is a function (locally) of the invariants contained in a generating set. A set of generating invariants thus
provide a basis for formulating all other possible mathematical frameworks where the nuisance parameters do
not appear. In particular, we may want to look for combinations of the generating invariants which lead to new
invariants satisfying some desirable properties (e.g. simple dependence on certain variables or multi-linearity.)

So for eliminating variables in the case where the unknowns lie on the orbit of a group of transformations, we
simply need to obtain a generating set of functionally independent invariants of this group of transformations.
Fels and Olver5 have recently developed a systematic symbolic computation method for obtaining such a set of
invariants in the case of a regular Lie group action on a manifold. A non-technical summary of this method can
be found in the paper by Bazin and Boutin.4 The reader interested in this computational method can also refer
to a book by Olver16 for a more detailed, yet accessible, presentation.

4. A BASIS FOR A NEW MATHEMATICAL FORMULATION OF SFM

As explained in the previous section, the invariants of a group of transformation can sometimes be used to
eliminate nuisance parameters. However, this method requires that the equations dealt with take a form which
is compatible with that of a group transformation parameterized by the nuisance parameters. So we first need
to show how the SFM equations can be viewed as group transformation equations where the group parameters
include the camera orientation and where the set of all possible reconstructions Pi form an orbit.

To do this is slightly non-trivial and requires some imagination. Indeed, suppose we are given a picture of
3D scene features Pi, i = 1, . . . , n, taken with an internally calibrated camera at time j. We track this feature
on the image and obtain the 2D coordinates pij , for i = 1, . . . , n. The equations relating pij to Pi are the three
equations contained in 1. But these three equations are not a group transformation equations, as the fundamental
matrix transforms a 4-dimensional vector into a 3-dimensional vector. (Recall that a group transformation is a
transformation of a space, not a mapping from one space to another.) So we need to rethink a bit what this
equation is telling us.

We begin by observing that one possibility for the reconstruction of Pi is simply (pij , 1)T , where T denotes
the transpose of a matrix. This would be the case, for example, if the camera center position was the origin,
if the camera plane lied on the z = 1 plane, and if, somehow, the point Pi lies directly on the camera plane.
(All right, this is more like a limit case of a solution than a possible solution, but let us not be overly zealous
here.) This canonical camera position, orientation and 3D point reconstruction is merely one possibility among
infinitely many others, which we now need to express as an orbit of a group of transformation. The set of all
possible points Pi can lie anywhere along the rays of light connecting the camera center Cj and the actual 3D
feature coordinates. This means that one group parameter, say λij , can be a real number which translates Pi
along the ray of light. Now the actual ray of light defined by Pi − Cj could be any rotation and translation of
the canonical ray of light. So the other group parameters can be taken as 3D rotations and translations of the
rays of light. In summary, we can write



Cj = Rj
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with Rj is a 3D rotation matrix, tj a 3D translation vector and λij a real number. From these equations,
we see that all possible (Cj , P1, . . . , Pn) lie on the orbit of a group transformation. The group parameters are
Rj , tj and λij , for i = 1, . . . , n and j = 1, . . . , J . Under this group of transformations, (Cj , P1, . . . , Pn) and
((0, 0, 0)T , (p1j , 1)T , . . . , (pnj , 1)T ) lie in the same orbit.

We can also write equivalent equations in projective coordinates. Let us fix w0 6= 0 and wi 6= 0, w0. Then
there exists W0,Wi such that
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This formulation actually better, since the corresponding invariants take polynomial form, up to a minor change
of variables. In contrast, the Euclidean formulation leads to rational invariants.4 We thus work with the
projective formulation, even though this forces us to deal with more variables.

Using Fels-Olver moving frame method, we obtained functionally independent invariants forming a generating
set. They give us the following equations, for each picture j:

Wij

Wij −W0j

W1j

W1j −W0j

Qij ·Q1j = cst1ij , for i = 3, . . . , n

Wij

Wij −W0j

(

W1j

W1j −W0j

)2
W2j

W2j −W0j

Q1j ×Qij ·Q1j ×Q2j = cst2ij , for i = 2, . . . , n,

Wij

Wij −W0j

W1j

W1j −W0j

W2j

W2j −W0j

Qij ·Q1j ×Q2j = cst3ij , for i = 1, . . . , n,

where Qij = Pi − Cj and the values of the constants are given by the canonical solution, as

wij

wij − w0j

w1j

w1j − w0j

qij · q1j = cst1ij , for i = 3, . . . , n,

wij

wij − w0j

(

w1j

w1j − w0j

)2
w2j

w2j − w0j

q1j × qij · q1j × q2j = cst2ij , for i = 2, . . . , n,

wij

wij − w0j

w1j

w1j − w0j

w2j

w2j − w0j

qij · q1j × q2j = cst3ij , for i = 1, . . . , n,

where qij = (pij , 1)T − (0, 0, 0)T = (pij , 1)T . Note that these equations do not involve the camera orientation.
By independence, none of these equation is redundant. And because our set of invariant is a generating set,
any other SFM equation which is independent of the camera orientation is a direct consequence of the above
equations. It is unclear which equation, among all the consequences of what we wrote will lead to the best
numerical results. However, a slight modification allows us to simplify considerably the equations to be solved.



Indeed, instead of fixing the value of wj0, . . . wjn, and considering Wj0, . . . ,Wjn as unknowns, it is best to fix the
value Wj0, . . .Wjn, and to consider wj0, . . . , wjn as unknowns. For example, we can set Wj0 = 2 and Wji = 1,
for i = 1, . . . , n. Setting Wj0 = 2 also forces wj0 = 2, as well. Also, to obtain a set of polynomial equations, we
then set

γij =
wij

wij − w0j

=
wij

wij − 2
.

This gives us the following system of equations for SFM.

(Pi − Cj) · (P1 − Cj) = γijγ1jk1ij , for i = 3, . . . , n,

(P1 − Cj) × (Pi − Cj) · (P1 − Cj) × (P2 − Cj) = γijγ
2

1jγ2jk2ij , for i = 2, . . . , n, (8)

(Pi − Cj) · (P1 − Cj) × (P2 − Cj) = γijγ1jγ2jk3ij , fori = 1, . . . , n

where the value of the constants k’s are given by the canonical solution as
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1j , 1
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(
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(
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·
(
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1j , 1

)

×
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)

= k2ij
(

pTij , 1
)

·
(

pT
1j , 1

)

×
(

pT
2j , 1

)

= k3ij

Note that the camera orientation parameters have been eliminated. The unknowns are the camera center
positions for each picture Cj , for j = 1, . . . , J , and each of the 3D features positions Pi, for i = 1, . . . , n. There
are thus 3n-3J unknowns. The number of equations is 3J(n− 3). So for n and J big enough, we can attempt to
solve these equations, or a subset of these equations, numerically. In a generic case, the solution is unique when
more equations than unknowns are taken into account.

Figure 1. Ground Truth Comparison of Orientation Error Sensitivity. Using a chessboard equipped with a
mechanically tracked arm, we obtained a ground truth reconstruction and compared it with the results of different SFM
methods. The results displayed were obtained using a linear reconstruction method (SVD), least square minimization of a
subset of our equations, a sparse bundle adjustment method with the linear reconstruction as initial guess, and the same
sparse bundle adjustment method with our results as initial guess. The vertical axis has been cropped for better display.



5. NUMERICAL EXPERIMENTS

At this point, we are unsure which equations among (8), or which combination of equations, would be best to for
SFM, from a numerical point of view. Also, it is unclear whether it is worth it to attempt to remove the camera
center from the equations as well. This is the subject of ongoing research. However, the following experiments
demonstrate that removing the camera orientation from the equations to be solved leads to a SFM formulation
which is less sensitive to pose estimation errors. As pose estimation errors are an issue which cannot be resolved,
this thus shows that our formulation has a definite advantage over other mathematical formulations.

Let us suppose we are given a slightly erroneous estimates of the camera pose for each picture. These estimates
can be obtained with several different methods, but this is irrelevant here, since we merely want to demonstrate
the robustness of our formulation to pose estimation errors. We are mostly interested in errors in the orientation
since this is the focus of our mathematical formulation. So we shall vary the amount of error in the camera
orientation and observe the effect on a solution obtained with our equations. Note that the camera orientation
tends to be the most problematic pose parameter, as it is much more difficult to measure/estimate accurately
than the camera position.

Starting with an estimate for the camera pose, the simplest way to estimate the 3D position of the tracked
features consists in using SVD to solve Equation (1) for all j. As we already mentioned, even though the equations
to solve are linear, small errors in the camera pose can lead to big errors in the reconstruction estimate. What
happens when we take this estimate and use it as an initial guess in a least square minimization of a subset of
our equations? For example, we can take the following 9 degree two equations from the set 8.

(P1 − Cj) · (P1 − Cj) = γ2

1jk1ij , for j = 1, 2, 3

(P2 − Cj) · (P1 − Cj) = γ2jγ1jk1ij for j = 1, 2, 3

(P1 − Cj) × (P2 − Cj) · (P1 − Cj) × (P2 − Cj) = γ2

1jγ
2

2jk2ij , forj = 1, 2, 3.

If we simply assume that the camera center position is equal to the estimate and optimize the values of the
unknowns γ11, γ12, γ13, P1 and P2, then the improvement in the results are surprising good.

Our numerical experiments were done on streams of images with a set of features tracked using the Kanade-
Lucas-Tomasi automatic automatic feature tracking software package.17 For example, we took a chessboard
dataset, captured using an in-house acquisition system, and varied the orientation error from zero to 5 degrees.
We use a mechanically tracked arm (Microscribe Arm G2LX manufactured by Immersion Corporation18) to
obtain very precise measurements of the camera pose (fraction of a degree precision) and chess board position
(millimeter precision) to be used as ground truth in this experiment. The reconstruction error was quantified
using Euclidean norm. The results are plotted in Figure 1. (Note that the reconstruction error axis was cropped;
the points which lie on a vertical line above the graph correspond to diverging results.) These results show
that even this simple approach significantly improves the numerical reconstruction when the pose estimate is
imprecise. This figure also displays the results of taking the pose and geometry estimates obtained with SVD
and using them as an initial guess in the bundle adjustment method. We used a publicly available sparse bundle
adjustment method.19 As can be seen in Figure 1, when the angle error is small, the quality of the reconstruction
obtained with bundle adjustment is equivalent to that of our method. But as soon as the angle error approaches
one degree, bundle adjustment tends to diverges, while our method consistently gives good results.

One can argue that there are better methods for obtaining pose and reconstruction, and that these would lead
better estimate than our method. But fact is, most existing methods are too noise sensitive and thus involve a
refinement phase using bundle adjustment. As a convincing argument, we saw that bundle adjustment does not
improve our method. The results of taking the chessboard dataset reconstruction of our method and refining it
with bundle adjustment, with varying camera orientation estimates error, is plotted in Figure 1. Not only does
bundle adjustment not improve our results, but as as soon as the error approaches 1.5 degree, the refinement
stage leads to diverging results.

A more visual illustration of the numerical stability of our results is given by the giraffe dataset results shown
in Figure 2. In this experiment, we obtained an initial approximation for the pose using triangulation of four



Figure 2. Visual Comparison of Orientation Error Sensitivity We show several reconstructions of a small giraffe
(d) under different amounts of orientation error. (a-c) show the 3D feature points reconstructed using a least square
minimization of a subset of our equations with zero degrees, six degrees and 12 degrees added to the camera orientation
estimate. The reconstruction using SVD degrades significantly when 6 degrees are added to the camera orientation.
Sparse bundle adjustment using the results of SVD as initial guess degrade when 12 degrees are added to the camera
orientation estimate.

tracked landmarks on the giraffe. We then added varying amounts of errors in the camera orientation estimate.
In parts a) b) and c), we display the results obtained with our method when the added orientation errors are
zero, six and twelve degrees respectively. This is contrasted with the tracked feature reconstruction using SVD,
in part e), which degrades when the added error is six degrees. The results of the SVD were also used as initial
guesses for the bundle adjustment method. As seen in part f), the results diverge when the added error is 12
degrees.

We thus conclude that removing the camera orientation from the mathematical formulation of SFM formula-
tion greatly diminishes the sensitivity to pose estimation errors. In particular from the chessboards experiments,
we conclude that if a SFM solution method leads to a better estimate of the camera center and 3D tracked
features, it is most likely better to refine this estimate using a least square minimization of our equations rather
than the bundle adjustment method. But again, we want to emphasize that the particular set of equations chosen
and that the numerical scheme used is far from optimal. In particular, we did not attempt to refine the camera
center estimates using our equations. But, surely, these preliminary results hold the promise of obtaining a very
robust solution of SFM with some more work.
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