
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

A Geometric Constraint Solver A Geometric Constraint Solver

William Bouma

Ioannis Fudos

Christoph M. Hoffmann
Purdue University, cmh@cs.purdue.edu

Jiazhen Cai

Robert Paige

Report Number:
93-054

Bouma, William; Fudos, Ioannis; Hoffmann, Christoph M.; Cai, Jiazhen; and Paige, Robert, "A Geometric
Constraint Solver" (1993). Department of Computer Science Technical Reports. Paper 1068.
https://docs.lib.purdue.edu/cstech/1068

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A GEOMETRIC CONSTRAINT SOLVER

William Bouma
Ioannnis Fudos

Christoph Hoffmann
Jillzhen Cai
Robert Paige

eSD·TR·93·054
August 1993

A Geometric Constraint Solver

William Bouma- Ioannis Fuclos t Christollh Hoffmann·
Department of Computer Science, Purdue University

West Lafayette, IN 47907-1398

Jiazllen Cai1 Robert Paige}
Department of Computer Science, Courant Institute

251 Mercer Str., New York, NY 10012

Report CSD_'rlt_n.05t, Aug.. ' 19931

Abstract

We report on the development of a two-dimensional geometric COll

straint solver. The solver is a major component of a lIew generation of
CAD systems that we are developing based on a high-level geometry rep
resentation. The solver uses a graph-reduction directed algebraic approach,
and achieves interactive speed. We describe the architecture of the solver
and its basic capabilities. Theil) we discuss ill detail holV to extend the
scope of the solver, with special emphasis placed all the theoretical alld
human fadors involved in finding a solution - in an eXJlonenlially large
search space - so that the solution is appropriate to the application and
the way offincling it is intuitive to an untrained user.

·Supported in part by ONR contract N00014-90-J-1599, by NSF' Granl COA 92-2.'3.502, and
by NSF Grant ECD 88-03017.

lSupported by a David Ross fellowship.
ISupportcd in part by DNR contract NOOOl4-90-J-1890, by AFDSR ~ralLt 91-0308, and by

NSF grant MIP 93-00210.
§This report and others are available via anonymous ftp to artlulT.cs.purdue.edu, i.ll direc

tory pub/emit and subsidiaries

1 Introduction

Solving a system of geometric constraints is a problem that has been consid
ered by several communities, and using different approaches. For example, the
symbolic computation community has considered the ~etleral problem, in the
context of automatically deriving and proving theorems from analytic geometry,
and applying these techniques to vision problems [9, 14,26,27]. The geometrie
modeling community has considered the problem for the purpose of developing
sketching systems ill which a rough sketch, annotated with dimension and con
straints, is instantiated to satisfy all constraints. This work will be reviewed in
the next section. The applications of this approach aTe in mechanical engineer
ing, and, especially, in manufacturing.

With this work, we have mainly manufacturing applications in mind. Our
purposes aud goals are as foUows:

1. We develop a constraint solver in which the information flow between the
user interface and the underlying solver h<l.'> been formalized by a high-level
representation that is neither committed to the particular capabilities or
technical characteristics of the solver, nor is dependent on the interface.
Such a representation becomes the basis for archiving sketches in a neutral
format, with the ability to retrieve the archived sketch and edit it
possibly in a different system with a different solver [24, 23]. Our solution
is also a building block for a larger project of developing a new geueration
of CAD systems based on a neutral, high-level geometry representation
that expresses design intent aud preserves the ability to redesign.

2. We explore the utility of several different general-purpose and interoperat
lng rapid prototyping languages and systems for developing specific tools
for experimenting conveniently with a variety of ideas and approaches to
constraint solving. Aside from well-known special purpose tools such as
LEX and Yacc [25J, our constraint solver also make'S use of the high level
lauguage SETL2 [45] to specify complex combinatorial algorithms and
the transformational system A PTS [12] to perform syntactic analysis and
symbolic manipulation of geometrical constraint spedfications.

3. We study a number of neglected aspects of constraint solving, in par
ticular the process of redirecting the solver to a different solution of a
well-constrained sketch, and to devise generic techniques for extending
the capabilities of the solver willie preserving interactive speed.

This paper reports substantial progress in all three problem dimensions, and
identifies a number of open issues that remain.

2

2 Approaches to Geometric Constraint Solving

We consider only well-constraiIled, two-dimensional sketchl's formed [rom points,
lines, circles, segments and arcs. Constraints are explicit dimensions of distances
and angles, as well as constraints of paraUelisIll, incidence, perpendicularity, tan
gency, concentricity, collinearily, and prescribed radii. We exclude relations on
dimension variables and inequality constraints. In partir.uli:tr, the uscr spedfLes
a rough sketch and adds to it geometric and dimensional constraints that are
normally not yet satisfied by the sketch. The sketch only has to be topologi
cally correct. The constraint solver determines from the sketch the geometric
elements that aTe to be found, and processes the constraints to determine each
geometric element such that the constraints are satisfied.

Our constraint solver is variational. That is, the solver is not obliged to
process the constraints in a predetermined sequence, and thc constraints speci
fied by the user are not !)arametric in the sense that they IllIISt be determine(1
serially, each as an explicit function of the llreviolls constraints. This is anal
ogous to writing the constraints in a declarative language, where tllc solution
is independent of the order in which the constraints are written down. This
greatly increases the generality of the constraint solving llroblem, and demands
solvers that are based on advanced mathematical concepts.

While the users of geometric constraint solving systems t1tink geometrically
and express themselves with visual gestures, the underlyin~ constraint solvers
tYllically work with a different internal rellresentation. Most users will be quite
unaware of the nature of the underlying representation, and of the internal
workings of the constraint solver. Coupled with the fact that a well-constrained
geometric constraint problem has, in general, exponentially many solutions,
only one of which satisfies tIle llser's intent, cOllStl'aint solvers therefore have to
address two distinct tasks:

1. Deterntine whether the problem can be solved and if so, how.

2. Among the possible solutions, identify the one the user has intended.

Most of the literature assumes tacitly that the second task is easy to discharge.
In Section 5, we question tltis assumption and show WIlY Task 2 is difficult for
applications.

Before describing our approae1l to Task 1, it is useful to characterize other
approaches in the literature.

2.1 Numerical Constraint Solvers

In general numerical constraint solvers, the constraints are translated into a
system of algebraic equations and are solved using an iterative method. When

3

base(] on Newton iteration, such solvers require good initial values, which implies
that the initial sketch must almost satisfy all constraints already. The solvers
are quite general, and are capable of dealing with overconstrained, consistent
constraint problems. Many constraint solvers switch to iterative methods in
situations where the given configuration is not solvable by the native method.

Nonlinear systems have an exponential number of solutions, but Newton
iteration will find only one. Numerical solvers based on Newton iteration are
therefore inappropriate when the initial sketch is only topologically correct, or
when the solver locks into a solution that is unsuited to the application and has
no method with which to find more suitable alternatives.

Sketchpad [51] was the first system to use the method of numerical relax
ation. Relaxation is slow but quite general. Many systems like ThingLab [3]
and Magritte [22] can do relaxation as an alternative to some other method. In
(2] a projection method is presented for finding a new solution that minimizes
the Euclidean distance between the old and the new solution.

Newton-Raphson iteration has been used in a number of systems, and is
faster than relaxation, but it may converge to the wrong solution. Unfortu
nately, when this happens, the user has no recourse to instruct the solver to
find alternatives. Juno [37] uses the original sketch as initial state. The CPSM
system of Solano and Brunet [47] also uses a numerical solver that first deals with
sequential constraints and then solves circularly interdependent constraints.

A modification of Newton-Raphson was developed in [;l5], where an improved
way for finding the inverse .Jacobi matrix is presented. Furthermore, the paper
proposes dividing the constraint matrix into submatrices, witll the potential of
providing the user with information about the constraint structure of the sketch.
Although this information is usually quantitative and not very specific, it may
help the user make modifications if the solver fails. A method that represents
constraints by an energy function and then searches for a local minimum using
the energy gradient is presented in [56].

2.2 Constructive Constraint Solvers

This clMs of constraint solvers is based on the fact that most configurations
in an engineering drawing are solvable by ruler, compass and protractor, or
using another, less classical repertoire of construction steps. In these metbods,
the constraints are satisfied constructively, by placing geometric elements in
some order. This is more natural for the user and makes the approaclJ suitable
for interactively debugging a sketch that cannot be solved or has been solved
unsatisfactorily, froIll an application point of view.

4

2.2.1 Rule-Constructive Solvers

One version of the constructive approach uses rewrite rules to dlscover and
execute the construction steps. We call this approach rule-Coll8truclive solving.
Although a Logic Programming style of programming is a ~ood apllroach for
prototyping and experimentation, the extensive computations searching and
matching rewrite rules constitute a liability.

Bruderlin and Sohrt [6, 46J solve constraints in thls way and inc.orporate
the Knuth-Bendix critical-pairs algorithm [29]. They show that their method
is correct and solves all problems that can be constrncted usinp; ruler and com
pass. The method can also be proved to confmll geometric theorems that are
provable in their system of axioms. Bruderlin and Sohl't have implemented au
experimental constraint solving system in Prolo/!;. They do not address how to
devise rules for determining automatically which of tIle possible solutions is the
one the user intended.

Aldefeld [1] uses a forward chaining inference mechanism. He assumes that
lines are directed, and formulates ad(litional rules that rE'strict the number of
possible solutions. A similar method is presented in [52], where handlin/!; of over
constrained and underconstrained cases is given special consideration. Sunde in
[50] also uses a rule-constructive method but has different rulE'S for represent
ing d.irected distance and lmdirected distance, thus adding f1pxlbility for dealing
with the root identification problem discussed in Section .5. In [58] the problem
of nonuniqlle solutions is handled by imposing all order on triples of geometric
elements. A detailed descrl]ltion of a complete set of rules for 20 design can
be found in [.5fi], where the scope of the rules is also characterized. Finally, a
technique called Meta-level Inference is introduced in [10]. The paper claims
that this technique, combined with multiple sets of rulE'S and their seleetive ap
plication, reduces the searcll space. The method has lJeen applied in PRESS
[10], a Jlrogram for algebraic manipulation.

2.2.2 Graph-Constructive Solvers

Another version of the constructive a]lproach has two phases. Durinp; the first
phase, the graph of constraints is analyzed and a sequence of c.onstruction steps
is derived. During the second phase, the construction steps arC! carrled out to
derive the solution. We call this approach gmph-con,~t"lctivcsolving. It is fast,
more me~hodical than the rule-constructive approach, and is llroved to be sound.
However, as the repertoire of possible constraints increases, t.he graph-analysis
algorithm has to be modified.

Fitzgerald [20] follows the approach of dimensioned trees by Requicha [43].
Only horizontal and vertical distances are allowed in this method and so the
applicability of the method is lim.ited. Todd in [53) generalized the dimension

5

trees of Requicha. Owen in [38] presents an extension of this principle to include
circularly dimensioned sketches, and DCM [19J is a commercial constraint solver
using this method.

Since our basic algorithm is based on many of the ideas of [38], we describe *** Changes
Owen's solvers in more detail. The constraint solver described in [38J is a graph-
constructive solver in which the constraint graph is analyzed for triconnected
components. Each trkonnected component is reduced to a number of elements
that interact with other components, and a determination is made how the var-
ious geometric elements whose nodes are in ead graph component fit together.
Thereafter, each component can be separately determined. This procedure. is
recursive in that once components have been reduced, they in turn can become
members of triconnected components in the reduced graph. A key aspect of the
solver is that only constraint configurations are considered that can be solved
using ruler-and-compass construction steps. Algebraically, this is equivalent to
solving only quadratic equations, so that the specific coordinate computations
do not require sophisticated mathematical computations. In [3R] a proof is given
that the solver is complete for ruler-and-compass constructible point configura-
tions with prescribed distances that are algebraically independent.

DCM [19] shares with the algoritllln of [38] the characteristic that it begins *** Changes
by determ.ining the interaction of geometric element groupings before filling in
the individual elements in each group. In addition, we infer that the commercial
version has a significant number of additional flues and transformations that
can be applied to the constraint graph in order to extend the scope of the basic
algorithm. In many cases, the gra])h reduction requires linear time only.

Kramer [32] uses a similar approach. However, instead of determining the
equations of the geometric elements at each construction step, Kramer deter
mines coordinate transformations that successively place points and associated
coordinate frames relative to each other subject to constraints. Kramer's COll
straint solver is for 3D and deals with constraints that arise in kinematics and
characterize basic joint types. Thus, a revolute constraint matches the points
alHI aligns a pair of coordinate axes, allowing a sillgle degree of freedom, a rota
tion about the aligned axes. Complex geometric elements are placed implicitly
by choosing a suitable number of points on them whose cOOl"dinate frames are
relatively fixed, and then placing each point.

2.3 Propagation Methods

Constraint propagation was a popular approach in early constraint solving sys
tems. The COllstraints are first translated into a system of equations involving
variables and constants, and an undirected graph is created whose nodes are
the equations, variables and constants, and whose ed~es represent whether a
variable or constant OCCllrs in an equation. The method then attempts to direet

6

the graph edges so that every eqnation can be solved in turn, initially only from
the constants. To succeed, various propagation techll.iql1es have been tried, Imt
none of them is guaranteed to derive a solution when one exists. For a review
,eo [33, 461.

Sketchpad [51] uses propagation of degrees of freedom and propagation of
known values. Pro/ENGINEER [5, 40J uses propagation of known values. Prop
agation of known values is the inverse process of the propagation of degrees of
freedom. Propagation of degrees of freedom is a more abstract method that
essentially does a graph reduction. In the propagation of known values, we can
account for special values and therefore make the method slightly more pow
erful than pure propagation of degrees of freedom. Both methods are global,
unstable, and do not work for cyclically dimensioned sketches_

CONSTRAINTS [48] uses retraction, wl1ic1l is a localized version of propa
gation of known values that stores information about each variable's interdepen
dencies. A similar technique is used in [34]: First, known values arc propagated
locally. Then, the remaining simultaneous constraints are solved if they form
a linear system of equations. In general, retraction is faster but less powerful
than propagation of known values.

Graph transformation is sometimes used in conjunction with some prop
agation method. In pure graph transformation, some subgraphs of the con
straint graph are identified and are replaced by simVler subgraphs. Bertrand,
described in [33], is a general-purpose constraint specification language, and
is hnplemented using a propagation method in conjunction with an inference
mechanism. LeIer calls this technique augmented tC1"11l l'cwl-iting. In essence,
augmented term rewriting is a graph transformation mechanism Ilsing term
rewriting rules. Additionally, assignments are supported, as is variable typing,
and these additions make augmented term rewriting more expressive tha11 the
term rewriting mechanism of pure PROLOG.

Th·lIlgLab uses the Blue and Delta Blue algorithms described in [3,21], that
are based on a local propagation of degrees of freedom within the consLraint
graph. Magritte [22] employs propagation to transform the undirected con
straint graph, and then uses breadth-first search to derive all solutions.

2.4 Symbolic Constraint Solvers

The constraints are transformed into a system of algebraic equations. The
system is solved wiLh symbolic algebraic methods, such as Grabner's bases, e.g.,
[9], or the Wu-llitt method (57, 14]. Both methods can solve general nonlinear
systems of algebraic equations. The methods have also been llsed in mechanical
geometry theorem proving [16,17, 15,26].

In [30, 31J, Kondo considers the addition and deletion of constraints by
using the Buchberger's Algorithm [7, 8] to derive a polynomial that gives the

7

Graphical
User Interface

k.,=;;:>IErep I-.,----;"'~I Constraint Solver

Figme 1: Architecture of the Constraint Solver

relationship between the deleted and added constraints.

2.5 Hybrid Solvers

Often, constraint solving systems use a combination of the abovp. methods. One
method 1s attempted, and if it does not succeed, another one is tried. The
main (lifficulty is that some of the methods Illay require f'xponential time before
giving a negative response.

3 The Constraint Solving System

3.1 Information Flow and Rationale

The overall architecture of the constraint solver is as shown in Figure 1. The
user draws a sketch and annotates it with geometric constraints. The allowed
constraints include relations such as tangency, perpendicularity, etc, and explicit
dimensioning of angles and distances. Excluded for noW are relations between
dimension variables. Additional capabilities include interacting with the solver
to identify a different, valid solution. The geometric elements available at this
time are segments, points, and circular arcs. Auxiliary lines, points and circles
may also be defined.

The user interface translates the specificatiOll illto a textual langua~e that
is a faithful recor<1 of the problem. Although the user could cdit tIlls textual
problem specification, this is unnecessary, because the specification is edited
and updated automatically from the visual gestures by the user interface. The
language has been designed to adlleve the objectives of [24]- a neutral problem
specification that makes no assumptions about tbe architecture ofthe underlying
constraint solving algoritbm. Thus, it is quite easy to federate Owen's solver [38],
or any other constraint solver capable of handling the geometric configurations
we consider.

The textual problem specification is handed to the constraint solver engine
which translates the constraints into a graph, and, as described later, solves
them by graph reductions that govern the workings of all al,e;ebraic, variational

8

constraint solver. The solver capabilities are the consequellCf' of speciIic con
struction steps that have been implemented. If a particular constraint problem
can be solved using the known construction steps, then Ollr solver will find a so
lution. Where the construction steps involve ruler-and-compass constructions,
only quadratic equations need to be solved_ But some wllstruction steps are
permitted that are not ruler-and-compass, and in those situations the roots of
a univariate polynomial are found numerically. In those situations, the polyno
mial ha.<> been precomputed except for the coefficients which are functions of the
specific constraint values_ The solver architecture is optimized for speed subject
to the strict requirement that the information flow between user interface and
solver does not depend on the internals of either component.

In the worst case, a well-constraillcd geometric problem has exponentially
many solutions in the number of constraints. This is because the solutions
correspond to the algebraic set of a zero-dimensional ideal whose generating
polynomials arc nonlinear. Our solver can determine all possible solutions. But
doing so every time would waste time and overwhelm the user. So, certain
heuristics, described later, narrow down the solutions to a TIna] configuration
that corresponds to the intended solution with high probability. It would 1)e
nice if methods could be devised that identify the solution tIle user intended
every time. But even in very simple situations, additional information that
would help doing so would lead to provably intractable problems. This would
be incompatible with our goal of interactive speed. Instead, we have developed
a paradigm for finding the right solution by using the solver interactively when
its automatic heuristics are insufficient.

Our system will be a component of a constraint-driven varialional CAD sys
tem based on a high-level, declarative, ed.itable geometry representation (Erep)
as discussed in [24, 23]. Such an overall archileclure poses several challenges.
One of them is efficient variational constraint solving, and we address this prob
lem here. Another, key challenge is to formulate the langu<Lge in a neutral way,
committing it neither to the particulars of the user interface nor orthe solver al
gorithms. This is a more subtle challenge because the way in which dimensions
are displayed in the sketch has to make some assumptions about the capabilities
of the IIser interface. Likewise, interacting with the solver to find alternative
solutions requires conceptualizing the solution process 1n a way that makes no
assumptions about how they are found. Here, we assume only that the solver
is capable of undoing the last placement operation, and can look for a differ
ent placement of a geometric element. The textual protoeol for communicating
these matters is encapsulated.

9

3.2 System Implementation

The two-dimensional geometrical design system has two main components, a
graphical interface and a constraint solver engine. The graphical interface is a
C++ program [49] that lnteracts with X Windows in order to allow the user
to sketch a drawing using labeled points, lines, circles, etc. The user is also
expected to supply initial constraints lletween these ~('onJ(>.tric elements. This
initial design is turned into an Erep specification and is passed as text to the
constraint solver.

The solver 1s wriUen using two novel software tools - tIle APTS transfor
mational programmillg system [12] and the high-level langltage SETL2 [45]
each having special features that the solver exploits. The front-end to the con
straint solver engine is an APTS program that reads the Erep program and type
checks it. For example, we check that only lines part1cipate in angle constraints.
If there are no obvious type errors, the Erep program is transformed into an
equivalent Erep specification in a normal forill in which only distance and angle
constraints are allowed. For example, incidence constraints are translated to
zero-distance constraints_ The specification of the orientation of lines in angle
constraints is also regularized. Relations representing a c-onstraint grallh are
then extracted from the Erep program and arc exporte.d via a foreign interfan>.
to a SETL2 program that implements the main algorithmic part of the solver.

The SETL2 program implements a new and extensible algorithm descrilJed
later that analyzes the constraint graph to determine whether the Erep program
is well constrained. If it is, then a particular solution (Le., a specific placement
of the geometr1es) 1s computed as a set of relations that are imported into the
APTS program. Finally, the APTS llrogram incorporate's the solution into the
Erep program, and passes it back as text to the graphical interface for display.

The lise of such novel systems as APTS and SETL2 is motivated by the
special needs of om project. A major component of oUl' research involves thE'.
discovery and implementation of complex nonnumerica[algorithms. Our goal of
high performance hased on a new algebraic approach to constraint solving entails
deep graph-theoretic analysis of implicit dependencies helween constraints, and
complex graph traversals hased on such analysis. A wide variety of heuristics
seem available to us, but a proper evaluation requires extellsive lahor-intensive
computational experiments.

The ease with which complex combinatorial algorithms can be implemented
and modified in the SETL language [44] is well known. Snyder's new SETL2
language [45] significantly improves SETL in regard to its convenience in alF;o
rithm specification, its compile- and run-time reliability and performance, alHl
its portability. The SETL2 language allows the physical organization and even
the performance of data structures and algorithms to be modeled ahstractly
us1ng mathematical data types that are algebraically formed from conventional
data by constructors for tuples, sets, and maps. These data types can be ma-

10

nipulated by a rich repertoire of set-theoretic dictions such as arbitrary choice,
nondeterministic search, set comprehension, and quantincation. Using SETL2
has allowed us to implement our algorithms with surprisin~ speed. In the fu
ture we also hope to make use of a promising new technology, just now being
reported, for mechanically transforming prototype SETL2 programs into high
performance C code [13].

Another major part of our research develops a logical framework for spec
ifying and solving 2-dimensional geometric constraints. The Erep language
provicles a formal syntax and semantics essential to problem specification and
problem solving. We seek a rich language of geometries and constraints for con
veniently describing two-dimensional drawings. The language should also sup
port mathematical analysis and transformation by either manual or mechanical
means. Within the Erep language, we seek mathematical and syntactic char
acterizations of classes of specifications that are COrTcel; i.e., free from surface
errors, valid; Le., mathematical weU constrained, and]ll'Uctical; i.e., effieicntly
solvable and able to express the concepts needed in appliratiolls.

The special syntactic, semantic, and transformational capabilities of APTS
[12] are well suited to a flexible, experimental development of a logical framework
with an evolving Erep language and corresponding solver. Like systems such
as Centaur [4] the Synthesizer Generator [42], and Refine [41], APTS has a
single uniform formalism for lexical analysis, syntactic analysis, and pmtty
printing. However, the semantic formalism in APTS has several advantages
over the more conventional attribute grammar approach [2,~] that is used in
the Synthesizer Generator. APTS uses a logic-based approach to semantics in
which semantic rules that define relations are written in a Datalog-like language
[54, 39] but with the full expressive power of Prolog [18]. These rules are wrillen
independently of the individual grammar productions and without reference to
the parse tree structure. They define relations over a rir.h assortment of primitive
and constructed domains, and have the brevity and conven.ience of unrestricted
circular attribute grammars. We are not aware of any implementation that
allows a comparable unrestricted circularity.

The semantic formalism in APTS is also integrated with a con(litional rewrit
ing component that is lacking in both the Synthesizer Generator [42] and Cen
taur [4], and is more abstract and user/friendly than Refine [41]. Although only
a prototype implementation of APTS is currently available, the inference and
rewriting engines used to compute and maintain semantic. relations involve the
use of such highly efficient algorithms that the observed performance is reason
able [11]. In contrast to Refine, implemented in Common Lisp, APTS is portable
to a wide variety of machines and operating systems a1HI, in particular, to any
UNIX platform.

I j

4 Solver Algorithmics and Extensibility

First, we discuss our basic method for solving geometric constraints. It is based *** Changes
ou Owen's method, but differs In some details. While Owen's solver is top-down,
determining first the interaction between clusters of geometric elements, OUTS

is bottom-up. We begin in the basic algorithm by placing geometric eloments
until a cluster has been determined. The construction steps needed are described
later. Once a cluster cannot be extended, another cluster is constructed in the
same way. Several clusters sharing geometric elements aTe then coalesced based
on some simple rules also described, by a rigid motiou of one with resped to the
other. Coalesced dusters aTe again treated as clusters, so the recursive nature
of Owen's algorithm is also manifest in our approach. In the l)asic algorithm,
only quadratic equations are solved. Thus, the basic algorithm is restricted to
ruler-and-compass constructible configurations.

For the larger class of geometric elements consisting of points, lint's and *** Changes
circles, our basic algorithm and Owen's methods do not solve all ruler-and-
compass constructible configurations. For example, for Su hcase 1 of Table 1
below, our basic solver must be extended. DCM can solve the configuration
sometimes, depending on the way the problem is posed. We suspect that a
complete ruler-and-compass constructible solver for the larr;t>]· class of geometric
elements requires graph rewriting rules that are equivalent to the Knuth-Bendix
algorithm [29J.

We also discuss a general method for extending the solv<,.r to configurations
that cannot be done with the basic algorithm. Our strategy places two ChIS

ters related by three constraints. The extension goes beyond ruler-and-compass
constructions, and requires a root finder for unlvariate polynomials. Concep
tually, the extension corresponds to adding new geometric construction steps.
The solver could be extended arbitrarily further, in an analogous manner, but
at some point the number of construction steps beCOIllp.s too large, and selecting
which one to apply hegins to interfere with the speed of the solver.

4.1 Solving with Graph Reduction

As sketched in [38], we first translate the constraint problem into a constraint *** Changes
graph. Specific graph reduction steps are applied that correspond to geometric
construction steps with ruler and compass, and derive clusters of geometric
elements that are correctly placed with respect to each other. By a recursive
extension, each cluster is then considered as a virtual geometric element, alld
the solver places the clusters with respect to each other. The recursion can go
to arbitrary depth.

12

,
,

a

B

x
A ,.,-__---"a'-----,_--,::.E

Figure 2: Example Configuration and Corresponding Constraint Graph. Unla
beled edges represent incidence.

4.1.1 Cluster Formation

The user sketch, annotated with constraints, is translated into a graph whose
vertices correspond to geometric elements - points, lines and circles - and
whose edges are constraints between them. In particular, a segment is translated
into a line and two points, and an arc into a circle, two arc end points, and the
center of the circle. For example, the sketch of Figure 2 (left) is translated into
the grallh of Figure 2 (right). In the graph, d represents a distance constraint, a
an angle constraint, and p perpendicularity. Tangency has been expressed by a
distance constraint between the center of tIle circle and the line tangent to the
circle. All other graph edges represent incidence. Circles of fixed radius can be
determined by placing the center, so there is no vertex corresponding to arc c in
the constraint grapl1- The basic idea of the solver algorithm is now as follows:

1. Pick two geometric elements (graph vertices) that are related by a con
straint (connected by an edge) and place them with respect to each other.
The two elements are now known, and all other geometries are unknown.

2. Repeat the following: If there is an unknown geometric element with two
constraints relating to known geometric elements, then place the unknown
element with respect to the known ones by a c_onstruetion step. The
geometric element so placed Is now also known.

For example, in the graph of FIgure ·2, we may begin with elements a and B,
effectively drawlng a line a and placing on it the point B anywhere. We can
now place in sequence b, C, and X. At thls point, no additional elements can be
placed and the cluster is complete, as shown In Figure 3. Note that we neither
know where A is situated, nor how far the arc c extends. Starting agaill, two
other clusters are determined. One consists of X, D, d, E, and e. The other

13

x
u

a

c

b

B d,

c
,

Figure 3: Cluster U of Figure 2

cluster consists of a, A, and e. Note that the same geometrir. element lllay occur
in more than one cluster. Both clusters aTe shown side-by-side in Figure 4.

4.1.2 Recursion

Two clusters with two geometric elements ill common can, ill ,!?;f'lleral, hI" placed
with respect to each other simllly by identifying the shared elements.

Three clusters, each sharing a geometrlc element with one of the others, can
also be placed with respect to each other. Figure 5 shows both cases. Exceptions
to these two rules concern specific degeneracies. For example, if cluster U and
V have two lines in common, then they can be placed with respect to each
other. However, if the two shared lines are parallel, then the position of the two
clusters cannot be completely determined.

In the example of Figure 2, there are three clusters sh,Lring the elements a,
e, and X. To place them, we compute the distance of X from a in cluster U, and
the distance of X from e in cluster V. The angle between a and e in cluster W is
already known. These three shared elements can now be placed, thereby fIxing
the relative position and orientation of the three clusters.

v

x

,

,

A .-~,---__--"' _

v
a

Figure 4: Clusters V and W of Figure 2

14

u

•
v

Figure .5: Recursive Cluster Placelllfmt

The two cluster placement rules conceptually build a larger cluster from two
or three smaller ones. Additional clusters sharing two elements with this new
"super cluster" can be added in the same way, thereby growing larger clusters
from smaller ones. Recursively, super clusters can be placed witl] respect to
each other in the same way.

4.1.3 Construction Steps

The reduction steps correspond to standardized geometric construction steps,
and also to solving standardized, small systems of algebraic equations. The
construction steps include the following:

Basis Steps: The basis steps place two geometric elements related by a
graph edge. They include placing a point on a line, v1acing two lines at a given
angle, placing two points at a given distance, and so on. Note that in general
there are several ways to place the geometric element.

Point Placements: These rules place a point using two constraints. They
include placing a point at prescribed distance from two given points, or at
prescribed distances from given lines, and so on. See also Figure 6.

Line Placements: These rules place a line with respect to two given geo
metric elements. They include placing a line tangent to a circle through a given
point, at given distance from two points, etc.

Circle Placement: These rules place a circle of fixed or variable radius.
Fixed-radius circles require only two constraints and determining them can be
reduced to placing the center point. Variable-radius circles require three con
straints and reduce in many cases to the Apollonius problem - fincling a circle
that is tangent to three given ones.

Cluster' Placement; Clusters are placed by placing; shared geometries. IT
necessary, the relationship between the shared geometric elements is computed
within each cluster, whereupon the two or three shared elements can be placed

15

./ r

.:.0:;:>'
. .

(/"::\"j
\·····..l!.·····/

.'........
...'

•

·".""".........

//

Figure 6: Point Placement Rules: Left, by Distance from Two Points; Right,
by Distance from Two Lines.

with respect to each other.
Algebraic Fommlation: Geometric elements are represented as follows: Points

are represented by Cartesian coordinates. A line is determined from its implicit
equation in which the coefficients have heen normalized:

a: mx+ny+p=O

It is well-known that in this formulation p is the distaIlC,C'. of the origin [rom the
line. Because of the normalization, lines are determined only IJy two numerical
quantities, the (signed) distance p of the origin from the line, and the direction
angle cos 0: = n. Therefore, two constraints determine a line. Lines are oriented
by choosing (-n, m) as the direction of tIle line. Circles are represented by the
Cartesian coordinates of the center and the radius, an nnsigned number.

In many cases it is quite obvious how to determine the worclinates of the
next geometric element from tlle constraints relating it to known geometric
elements. By restricting to simple construction steps, the basic algorithm solves
at most quadratic equations. In some cases, up to three simultaneous quadratic
equations must be solved. For example, given three circles of fixed radius,
finding a circle tangent to all three requires solving the foUowiug system,

(x - x,)' + (y - y,)'

(x - X2)2 + (y - Y2r =

(x - x,)' + (y - y,)'

(,. ± ",)'
(, ± ,.,)'
(,. ± ,,)'

where the choice of the sign on the right-hand sides determines which of up to
eight possilJle solutions is determined. Here, (XI:,YI:) is the eenter ofcirde k, and
1'1: is its radius. Such constructions are done by precomputin?; a normal form of
the system from which to the unknowns are easier to filld. Preprocessing can
be done using Grabner bases; e.g., [8].

16

A
•

c•

A----'--o

.----,--c

Figure 7: lndiclence of A with a and C with c and Resulting Constraint Graph.

4.1.4 Graph Transformations

The scope of the basic solver can be extended by certain ~raph transformations.
For example, when two angle constraints Q and [3 are given between tlm.'C' lines,
then a third angle constraint can be added requiring an angle of 1800

- Q -[3.
Similar transformation rules can be introduced for simple geometric relation
ships.

Graph transformations are a simple and effective technique to extend the
scope of the solver. However, one should avoid transformations that restrict *** Changes
the generality of the solution. For example, consider the configuration shown in
Figure 7 in which the point A is constrained to be on line a, and point C olllille c.
The situation implies that either lines a and c are incident, or that l)Qints A and
Care incidellt. As discussed further below, the two possibilities lead to different
solutions. IT we were to apply a transformation to the constraint graph that
added one of the incidences as new graph edge, then we would have excluded
the other possil)ility, and with it some solutions. If we added both incidence
edges, then we would have introduced the unwarranted assumption that both
the points and the lines coincide. In each CMe we can exhibit examples in which
a solvable constraillt problem l)ecomes unsolvable.

4.2 Solver Extensions

The basic algorithm for solving constraillts givon before GLll l)e extended to han
(lie more complex geometric situations. The strategy disc-lIssed here generalizes
the placement of two clusters with respect to each other, when three constraints
between them are given.

4.2.1 Placing Two Clusters

Consider the extension necessary to hamUl'. the situation shown in Fip;ure 8.
A cluster U and a cluster V have been solved separatdy, and three distinct
elements have been identified in each that are COIlS trained such that the two
clusters call be placed with respect to each other. Since six (Ustinct elements
are involved, the basic algorithm cannot solve this problem.

17

A dJi a

d alp'

dJi B dJi b dfi

dJi dJi
dJi

U c C

V

Figure 8, Case (p,p,l) =" (l,I,p)

If we examine every possible configuration of two clusters so related by three
constraints and add graph reductions that place such clusters with respect to
each other, then the solver has been extended to a much lar~er class of con
straint problems. We analyze one constraint configuration. In this particular
configuration, as well as in a uuml)er of other cases, the solver's competence is
extended beyond ruler-and-compass constructible configurations.

Assume that in cluster U the three elements are the points A and Band
the line c, and in cluster V the elements aTC two lines a and b and a llOinl
C. The constraint possibilities aTe d for distance, i for incidence, (L for angle,
and p for parallel. Depending on the combination of these constraint types, a
construction sequence can be determined that fixes one cluster with respect to
the other.

In the configuration considered, it is advantageous to fix duster V and lllove
cluster U relative to it such that all constraints are satisfied. Conceptually, we
solve the cases in one of two ways:

(AJ For some combinations, a sequence of ordinary construction steps places
the second cluster, possil)ly with the introduction of auxiliary construction
points, lines and/or circles.

(BJ For some combinations, we consider two of the three constraints and pre
compute the locus of tbe geometric element whose collstraint has been
ignored for the moment. If this element is a point, the locus is an implicit
algebraic curve whose coefficients are expressions in the given constraints.
Then, the precomputed locus is intersected with a construction line or
circle and the intersections identify those positions for the third geollletric
element for which all constraints are satisfied.

Note that the second method is not necessarily equivalent to a ruler-and-compass
construction.

IS

Subcase Properties Properties Constrain ts Method of

Number olU olY Combination Solution

Aic Cia A i a

1. B dji c C dji b B dji b (A)

AdB a alp b ciC

Ai c Cd a Aia

2. B dji c Cd b B dji b (B)

AdB a alp b c i C

Ad c Cia A i a

3. B de Cd b B dji b (B)

AdB a ajp b ciC

Table 1: Essential Combinations of(p,p,l)= (I,l,p). Constraint symbols are
i = incident, d = nonzero distance, p = parallel, a = nonzero (ltlg-Ie.

Table 1 sumlllarizes the essential cOllll)inations and identifies which approach
is to be used. The other combinations can be mapped to those of the table by
replacing some of the lines in U and V with suitably positionp.d parallel lines.

Consider Subcase 1, assuming that B is not incident to c, and that B should
be at distance e from b. The two clusters are shown in Figure 9, with T tllC'
distance of A from Band t the distance of B from c. Two families of solutions
exist: Either the lines a and c coincide, possibly in oppo:>ite orientation, or
the points A and C coinci(le. In the first situation, the locus of B is a p,ur of
lines parallel to c, at distance t. Four intersections with lines parallel to b at
distance e are four possible locations for B, and each of til em determines the
relative llOsition of U with respect to V. In the second situation, the locus of B
1s a circle aTOund A, and the up to four intersections with lines parallel to b at
distance e are the possible locations for B.

Now consider Subcase 2 in Table 1. We determine the C'.llrve that is the locus
of B, assuming that B has coordinates (x, y). By a eoordinate transformation,

c

a

b

Figure 9: Suhcase 1 Configuration

19

'-~~.
" "

"~~

, , ,
, ,

"

A C
, ,

'.'
"

"
"

"
-------------------------------------~----'"

b

Figure 10: Subcase 1, First Solution

b

"

",

---"

" "

"

"
"

,,

"
.~ /~

, ,"'~.
,,,,,,,,,

:--------"'o-------'-':'~"'--"''''',-'-'-''-'"'''--, .~~ ~~~~
, A,C ' •, ,, ,, ,
\ r ;

,,,,
/-'

Figure 11: Subcase 1, Second Solution

20

,

8

C.. (O,l)

,

Figure 12: Case 8 d c, A i c

moreover, we can assume that C has coordinates (0,1) and that A, constrained
to he on a, has coordinates (a, D). [n the simplest case, A and B are both on c,
distance dj apart. In Figure 12 this wrrcsponds to d2 = O.

The cotangent of the angle 8 between lines c and a is then -a, so th;:L1 we
can express sin () = lin and cosO = -a/n, where u = VI + a2

• The locus of B
can therefore be described by three equations:

xu-au+d1a 0

yu - d] 0

u 2 _ a2 I

Eliminating a with a Grabner basis computation establishes that the locus of B
is the degree 4 curve

If d2 ::j:. 0; i.e., if B does not lie on C, then the equations describing the locus of
B are only slightly more complicated, and are

xu- au+d1u+d2 0

Ylt - d] +d2u 0
u 2 _ a2 1

Again, B lies all a degree 01 curve whose coefficiellts ar~ polynomial in (II and d2

of degree 4.
The most general situation occurs when A is not on c, as shown in Figure 13.

Other cases can be reduced to this sitnation by replacing the lines with parallel
lines at a suitable distance. Referring to Figure 13, the equations describing the

21

B

,

A~(a.o:)",.L-7''-c= -:c
A'~(a',O) a

Figure 1;3: Case B dc, A d c

locus of Bare
xu - au +dIa' + do - d2 0

yu - d} + doa' - d2 (L' 0

a - a' + dou 0
u 2 _ at2 I

By a Grabner basis computation one determines that the locus of 8 is also a
curve of degree 4. The coefficients are polynomials in the dk of degree up to 4.

Many other combinations of three constraints between two clusters must be
considered when so extending the solver. In each case, we conceptually satisfy
two constraints and examine the locus of the geometric item whose constraint we
ignored under the remaining degree offreedom. Thus, it suffices to examlne pairs
of constraints between two clusters and derive, for each arising case, the locus
of the element in question. Since we have the c1lOice of which two constraints
to satisfy, the number of different cases can be reduced significalltly.

IT the element whose locus we determine 1s not a llOint, then we need equa
tions for the determining quantities. In the case of lines, those are the coefficients
of the line equation, or, equ.ivalently, the direction angle and the distance from
the origin. For example, consider the case (p, I, l) == (l, p, l). Here we lllay want
to avproach the situation as we did in the case (p,l,l) == (l,p,p), and precom
pute how the line equation varies w1th the remaining mobility when satisfying
the first two constraints. In the subcase 3, the most general situation, we have
to determine the distance of the moving line from the origin and the components
of the normal vector after norming it to length 1; see also Figure 14. Let a be
the fixed angle between the lines band c, 8 the angle determining a particular
position ofthe moving configurat1on. Let i be the direction angle of a line d wlth
which b is to form an angle 6. Then we mllst solve a±8 = i±6, accounting for
the d1fferent vositions of the moving configuration in which the constraints can
be satisfied. Once 8 is known, the resulting configuration is easily computed. In
more complicated sltuat1ons, a system of equations is formulated as for the point

22

"

d, C=(O,1)

A=(a,O) , ,
A'={a',O) D, a

d"

b

Figure l4: Configuration for Satisfying Line Constraints

locus, expressing line distance from the origin and direction angle as fUlldion
of the parameters and an additional quantity, such as () or the coordinates of a
moving point, and a nonlinear equation is solved that is precomputed from the
system using Grabner bases.

Ultimately, many of the cases and subcases we have to consider reduce to
a few generic situations that are characterized by the selection of which two
of the three constraints govern the relative motion between the two dusters.
Particularly in the case of point loci, classical curves aTe obtained that are
described in the literature; see, e.g., [a6], or the literature on plane kinematics.
The curve of subcase 2 above, with d2 = 0, is a conchoi([of a line. In Figure
15 a segment end is constrained to a circle and the sc,!!;tl1cn t incident to a fixed
perimeter point C. This case is solved by the limacon oj Pascal, a c-onchoj<] of
the circle.

B
c

A

Figure 15: Locus of Segment Through a Fixed Perimeter Point is the Limacon
of Pascal

2;j

",
,,

sp:o,,-..,;

40.0

Figure 16: Several Structurally Distinct Solutions of the Same Constraint Prob
lem

5 User Interaction

In general, a well-constrained geometric constraint problem has an exponential
number of solutions. For example, consider drawing n points, along with 2n - 3
distance constraints between them, and assume that the distance constraints are
such that we can place the points serially, each time determining the next point
by two distances from two known points. In general, each new }lOint can 118
placed in two different locations: Let Po and PI be known points from which the
new point q is to be put at distance do and d[, respectively. Draw two circles, one
about Po with radius do, the other about PI> with radius d\o The intersection
of the two circles are the possible locations of q. For n points, therefore, we
could have up to 2"-2 solutions. Which of these solutions is the intended one
would depend on the application that created the constraint problem in the
first place. We discuss how one might select the "right" solution. We call
this the root identification problem, because on a technical level it corresponds
to selecting one among a number of different roots of a system of nonlinear
algebraic equations.

Although some solutions of a well constrained problem are merely symmetric
arrangements of the same shape, others may differ strllctnrally a great deal.
Figure 16 shows several possibilities to illustrate the possihle range. But an
application will usually requ.ire one specific solution. To identify the intended
solution is not always a trivial undertaking. Moreover, the wide range of llossible
solutions has severe consequences on the problem of communicating a generic
design based on well-constrained sketches. Since a sketch with a constraint
schema would not necessarily identify which solution is the intended one, more
needs to be communicated.

In tltis section, we consider three approaches: selectively moving geomet
ric elements, adding more constraints to narrow down the number of possible
solutions, and, finally, a dialogue with the constraint solver that identifies inter
actively the intended solution. These aTe approaches that have to contend with
some difficult technical problems. We also consider the llossibility of structuring

24

the constraint problem hierarchically. Doing so would increase knowledge of the
design intent, and would diminish some of the mOl'e obviolls technical problems.

5.1 Moving Selected Geometric Elements

All constraint solvers known to us adopt a set of rules by which to selec.t the
solution that is ultimately presented to the user. Whether slated explicilly, as
we will later, or incorporated implicitly into the code of the solver, these rules
ultimately infer which solution would be meant by observing topological and/or
coordinate relationships of the initial sketch with which the user specified the
constraint problem, When the solution is presented graphically to the user, it
seems natural that the user, again graphically, select certain geometric elements
of the final sketch that are considered misplaced. The USCI' could then show
the solver where the selected element(s) should be placed in fplation to other
elements by moving them with the mouse.

This very simple idea ultimately may be effective, Imt there are a number
of conceptual difficulties that need to be overcome. For example, picking it

geometric element is ambiguous. Because of the recursive nature of the solver,
picking could refer to the individual clement, or to the cluster or super cluslers
of which it became part. MOTe importantly, the required restructuring might
entail more complex operations than merely moving a single ~roup of geometric
elements. Furthermore, since the length of segments and arcs often implicitly
depends on the final placement, it is not clear whether lhe user can reasonably
be expec.ted to understand the effect of moving geometriC's.

In DeM [19, 38]' a moue instruction relocates a g:(,01llctrir ('lement. There
upon, the solution can be recomputed, and other elements can be moved. it
appears that the solver uses the new position coordinates when applying: the
normal placement heuristics selecting a solution. We found the move instruc
tion difficult. Some of the time, the effect was as intended, hul lllany times it
was unexpected. However, with more research, a useful paradig:m for identifying
intended solutions of geometric constraint problems may well cmerg:e.

5.2 Adding More Constraints

Consider once more the problem of placing n points with presnibed distances.
We could narrow down which solution is meant in one of two ways: We may add
domain knowledge from the application, or we ma.y give a.d(litional geometric
constraints that actually overconstrain the problem. Unfortunately, both ideas
result in NP-complete problems.

For instance, assume that the set of points is the set of verlices of a polygonal
cross section. In that case, application-specific information might require that

25

d,

Figure 17: Two Solutions for Three Parallel Lines

the resulting cross section is a simple polygon; that is, it should form a polygon
that is not self-intersecting. This may be COlllllllLtUcated by giving, in addHion,
a cyclical ordering of the points; i.e., the sequence of vertices of the cross section.
This very simT)le additional requirement makes the problem NP-complete:

Theorem (Capoyleas)
Given n llOints in the plane that are well-constrained by 2n - 3
point-to-point distances, and a cyclical ordering specifying how to
connect the points to obtain a polygon. Then identifying a solution
for which the resulting polygon is simple, i.e., is not self-intersecting,
is NP-complete.

Consequently, there is little hope for adding domain-specific knowledge about
the application with the expectation of obtaining an efficient constraint solver
that finds the intended solution in all cases.

Instead of adding application-specific rules, for instance to derive simple
polygons, we could add more geometric constraints. For e-xample, consider
specifying three parallel lines along with distances between two pairs of them.
As shown in Figure 17, there are two dlstinct solutions of tltis well-constrained
problem. By adding a required distance between the thir<1 pair of parallel lines
we can eliminate one or tlle other case, and make the solution llluql1e.

Overconstrained geometric problems have been carefully avoided by th(l. field
because the set of constraints might be contradictory. However, blue prints
are usually overdimensioned, although not for reasons of eliminating unwanted
solutions, but for limiting errors through redundancy. Again, it is unfortunate
that even for the simple case of placing parallel lines the overconstrained problem
is NP-complete.

Since adding constraints even in such simple situations results in NP-complete
problems, it seems to us that the attractive idea of adcling more constraints to
narrow the range of possible solutions will not work very well in practice. It is
lllallsible that a heuristic approac11 succeeds in solving this problem in a range
of cases that are of practical interest, but always with the possibility that for
specific instances the solver would bog down. Again, further research is neede(1
to better understalld the potentialities of the approach.

26

5.3 Dialogue with the Solver

The considerations above seem to suggest that no automatic <tvproach to root
identification will succeed in delivering an efficient constraint solver that gets the
intended solution every time. Conscqucntly, we feel tllat a promising alternative
is to devise a few simple heuristics that succeed in many cases and are easy to
understand. Beyond that, we rely on interaction with the user in those cases in
which the heuristics fail to deliver an acceptable solution. Note that placement
rules are used very widely, but are rarely discussed.

5.3.1 Placement Heuristics

All solvers known to us derive from the initial g-eolllf'trir sketch information
that is used to select a specific solution. This is reasonable, since ont>o can
expect that a sketch is at least topologically accurate, so that obscrving on
which side of an oriented line a specific point lies in the sketc.h is often reliably
indicating where it should be in the final solution. HowevPf, when generic
designs are archived and and later edited, one should no longer expect such
simple correspondences between the sketch and the ultimate solution, because
as dimension values change, so may the side ofa line on which a voint is situate<!.

In our system, we use very few but highly effective rules. We keep the number
of rules to a minimum because we do not believe that mot idelltific.ation has a
satisfactory and completely automated solution. Where the rules fail, we rely
on user interaction to amend them M the situation might requ.ire. Note that our
rules are fully supported by the Erep approaclI in that the different situations
can be characterized and recorded faithfully.

Three Points: Consider placing three points, PI, P2 and]13, relative to each
other. The points have been drawn in the initial sketch in some position, and
therefore have an order that is determined as follows. Determine where P3 lies
with respect to the line (PilP2) oriented from PI to P2. If]);1 is on the line, thcn
determine whether it lies between PI alld P2, preceding 1)1 or following P2' The
solver will preserve this orientation if possible.

Two Lines and One Point: When placing a point relativt' to two lines, one
of four possible locations is selected based on the {Juadrallt of the oriented lint's
in which the point lies in the original sketch. Note that tbe line orientation
permits an unambiguous specification of the angle between the lines.

One Line and Two Points: The line is oriented, and the points, PI and
P2, are kept on the same side(s) of the line as they were ill the original skel.ch.
Furthermore, we preserve the orientation of the vector PI' P2 with respect to the
line orientation by preserving the sign of the inner product with the line tangent
vector.

Tangent A1'C: An arc tangent to two lille segments will he centered such that

27

~_..
Figure 18: The Two Types of Tangency lletween an ArC'. and a Segment

the arc subLended preserves the type of tangency. The two types of tangency
aTe illustrated in Figure 18. Moreover, the center will be placed such that the
smaller of the two arcs possihle is chosen, ties broken hy lllacing the center OIl

the same side of the two segments as in the illput sketch. As specific degeneracy
heuristics, an arc oflength 00 is suppressed.

All rules except the tangency rule are mutually exclusive. They are therefore
applicable without interference. The tangency rule could contradict the other
rules, because dimensioned arcs and circles are determined l>y placing lhe center.
In such cases, the tangency rule takes precedence. In aliI' experiments with thE'se
rules, we found that most situations are solved as the user would exped. The
rules arc easy to implement, and are easy to un(lerstand for the user.

5.3.2 Selecting Alternative Solutions

A useful paradigm for user-solver interaction has to be intuitive and must ac
count for the fact that most application users will not (and sllOuld not) be inti
mately knowledgeable about the technical workings of t1](' solver. So, we need
a simple but effective communication paradigm by which the user can interact
with the solver and direct it to a different solution, or even browse through a
subset of solutions in case the one that was found is not "right."

Conceptually, aU possible solutions of a constraint problem can he arranged
in a tree whose leaves are the different solutions, and whose internal nodes
correspond to stages in the placement of elements or dl1sters. The different
branches from a particular node are the different choices for placing the element
or duster. The tree has depth proportional to the number of elements and
clusters. Browsing through all possible solutions would be'! exponential in the
number of elements and would be illaptlTopriate, but steppinj?; from one solution
to another one is proportional to the tree depth only.

We have added to our solver an incremental mode in which the user can
browse through the. construction tree amI be visually infoTluE'.d whieh ele.menls
have been placed at a particular moment. "Vith a buttOll, thp user steps forward
or backwards in the construction sequence, thus traversing the tree patll back
wards, towards the root, or forward, towards a leaf. At each level, the geometric
element(s) placed at that point are highlighted, and a panel displays the lHlluher
of possihle positions. The user can then select which aIle of the]Jossihle choices

28

should be used.
For example, consider the constraint example of Figure 2. TIle role of the arc

is clearly to round the corner that would be formed otherwise by the adjacent
segments. When drawn as indicated in the figure, and with an,!:!;le values larger
than 45°, the solver finds the leftmost solution in Fignre 16. However, when
the angles are changed subsequently to 30°, the solver hellristics will select thp.
solution shown in Figure 19, llecause the center of the arc remains on the same
side of the adjaccnt segments. The user now relocates the center by chan~ill?;

Figure 19: Default Solution After Changing Angles

the placement of ArlO with respect to 897 and 899- By pressing the level
Imttons, the user returns to level 7. Here, ArlO and 897 are highlighted. The
user now changes the solution by prpssing the 801n. buttons. This chauges the
arc center with respect to 897 only. Continuing with the level buttons, on level
4 AriD and 899 are highlighted. Again, a different solution is selected on that
level, changing the arc with respect to 899. Now the solver will construd the
solution shown in Figure 20. We have found this simple interaction technique
highly useful in exploring alternative solutions, and most users become effective
in directing the solution process in a very short time.

In the Erep specifications of the interaction process, the solver is instructed
serially to perform a back-up or to seek the next way to place an element or a
cluster. This convention excludes solvers that find a solution lly a numerical,
iterative computation which places all geometric clements at once, unless the it-

29

P12~

90.000 Sg5

Figure 20: Interactively Changing Solutions: Elements hi?;hlighted are placed
with respect to each other at this level in the solution tree.

30

I 72.0

r 60.0

72.0

L60.0 20.0

Figure 21: A Constraint Problem

eration is based on homotopy contitlllation techniques th,tL can find all solutions
of a nonlinear system of equations numerically.

Note that different solvers liay cluster geometric elements differently and
place the elements and clusters in a different sequence. Therefore, the same
interaction sequence with the solver would have different effects witl\ dlfferenL
solving algorithms. This cannot be avoided: To arrange' thp tree of solutions ill
canonical order, we either prescribe a canonical sequence a-pl'im'i in which the
geometric elements have to be computed, or else we compute a canonicallmsis
for the ideal generated by the constraint equations that describe the geometric
problem, and then enumerate the associated variety in a canonical way; e.g., [8].
m the first case, we would prescribe the solver algorithm to llelong to a certain
family. In the second case, the ideal basis computation is equivalent to solving
the constraint problem and thus constitutes committing to a canonical solver. 1T

Both ways compromise devising a neutral format of archiving. Consequently,
we can neutrally archive a constraint problem (solved or ullsolvNI), but not the
manner in which to solve or seek an alternative solution. This is an intrinsic
problem when solving geometric constraints.

5.4 Design Paradigm Approach

Consider solving the constraint problem of Figure 21. TIl(' role of the arc is
clearly to round the adjacent segments, and thus it is most likely that the
solution shown in Figure 22 on the left is the one the user meant rather than the
one on the right, when changing the angles to 30°. The solver would be unawme
of the intended meaning of the are, a.lld thus needs a. tf'chnical heuristic , such
as the tangent arc rule, to avoid the solution on the right. It would bl" Illllch
simpler if the user would sketch in such a way that the dc-sigll intent of the arc
is evident.

IIBeca.llse SUdl a canonical solver would be completely general, il could not be very fa.~t ill
ma.ny situations, since tile efficiency of constraint solvers rests Oil r~trieting the generality of
the solver.

31

r 20.0

Tv

75.0

30.0 30.0

20.0

Tv
Figure 22: Two Solutions of the Constraint Problem of Figure 21 after Changing
Angles

The difficulty for the geometric constraint solver is that sketches aTe usually
flat; i,e., the geometric elements are not grouped into "features." It would be
better to make sketches hierarchically: First, a basic dimension-driven sketch
would be given. Then, subsequent steps, also dimension-driven, would modify
the basic sketch and add complexity. In our example, the bcu;ic sketch could
be a quadrilateral. There would be one subsequent modification adding a two
dimensional 7YJund with a required radius. This is analogous to feature-based
design a.'> implemented in current CAD systems.

The hierarchical approach to sketching has other important benefits. Since
the sketch is structured, later modifications can be driven [rom constraints usp.d
in earlier steps, so that simple functional dependencies and relations between
dimension variables of previously defined sketch features can be defined and
illl}llemented with trivial extensions of our basic constraint. solver.

6 Summary and Future Work

Researc1l on constraint solving should develop natural paradij:!;llls for narrowing
down the number of llOssibie solutions of a well-constrained geometric prolllem
and devising solver interaction paradigms that allow the user to corred solutions
that were not intended. With increasing penetration of constraint-based design
interfaces, this prolliem is becoming increasingly mon~ pressing.

Which solution is the intended one is also an issne when considering design
archival in a neutral format. So far, neutral archiving formal.s have been re
stricted to detailed design without a formal record of design intent, constraint
schema, editing hancUes, and so on. Where editable design has been archived,
it has been done in a proprietary format native to tlle particular CAD system,
and is typically a record of the internal data structures of the CAD system. In
[24] we have presented alternatives. Current trends in data exchange standards
indicate a growing interest in archiving constraint-based designs in which tItis

32

additional information has been formalized without commitment to a particular
CAD system.

In constraint-based, feature-based design, it is common to have available- a
variational constraint solver for 2D constraint problems, hut not for ;lD geo
metric constraints. This is particularly apparent in the pCl'si..dent id p7'Oblem
discussed in [23]. A well-conceived 3D constraint solver cOlH:eivalJly can avoid
these problems and assist in devising graphical techniCJues for generic design.

III manufacturing applications one is interested in functional relationships
between dimension variables, because such relationships can express design in
tent very flexibly. Some parametric relationships can be implemented easily by
strncturing the sketcher as advocated in Section 5.4. Moreover, simple func
tional relationships are the content of certain geometry theorems, such as the
theorems of proportionality, and many other c1a.'isical resulls. Such theorems
can l)e added to the constraint solver in a mamler analo/1;olls to the extensions
we have discussed before. But in general, functional relationships between di
mension variables necessitate additional mathematical techni{IUes. Geometric
theorem proving has developed many general techniques that are applicable,
but suitable restrictions are still needed to achieve higher solver speeds.

Geometric coverage refers to the range of shapes the constraint solver un
derstands. In this work, we have restricted the geometric coverage to points.
lines and circles. Conic sections would be easy to add, as would be splines such
as Bezier curves, when translating the constraints to equivalent ones on control
points. There is a rich repertoire of literature in CAG D that provides convenient
tools for doing so. Yet it is far from clear whether control point manipulations
are a universal tool for expressing constraints tllat the llser finds natural, and
we miss stu{lies that analyze how to design with splillPS from all application's
point of view.

Even with the restided geometric coverage discussed here, some theoretical
problems remain open. Althongh no IJrecise analysis has been made, neither
Owen's nor our constraint solving algorithm seems to run in worst case time
linear in the number of graph edges. We conjecture that both algorithms run in
quadratic time due to repeated traversals over regions of the graph. It would be
worthwhile to analyze the worst case running times of these algorithms precisely,
and study how to improve it. It is also worthwhile to consid{'r how to minimize
the arithmetic operations involved in the constructiou steps, and to analyze
construction sequences for numerical stability.

Acknowledgement

We had several insightful discussions with John Owen from D-Cubed, Ltd.

33

References

[1] B. Aldefeld. Variation of geometries based on a ,!'!;c'ometric-reasoning
method. G'ompuic7' Aided Design, 20(3): 117-126, April 1988.

[2] L. A. Barlord. A Gmphical, Language-Based Editol' /01" Generic Solid Mod·
cl.~ Represented by Constminls. PhD thesis, DC'pt of Computer Science,
Cornell University, March 1987. TR 87-813.

[;3] A. H. Barning. The programming langua,!!;e aspects of ThingLab, a COll

straint oriented simulation laboratory. AeM TOPLA 8, 3(4):353-387, 1981.

[4] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. Centaur: the system. Technical Report Rapports de Recherche
777, INRlA, 1987.

[5] D. H. Brown Associates. Conceptual Design: Tradeolfs in PerfOl'mance and
Flexibility. Notes on the design of Pro/ENGINEER, Hl91.

[6J B. Brllderlin. Constructing Thee-Dimensional Geometric Objects Defined
by Constraints. In Workshop on Intemctive 3D Graphics, pages 111-129.
ACM, October 23-24 Hl86.

[7J B. Buchberger. Ein Algorithmus zum Auffinden del' Basiselcmente des
Rcslklassenringes nach einem nttlldimensionalen Polynomideal. PhD the
sis, University of Innsbruck, Austria, 1965.

[8] B. Buchberger. Grabner Bases: An Algorithmic Method in Polynomial
Ideal Theory. In N. K. Bose, editor, M1tltidimcll.~ional Systems Theory,
pages 184-232. D. Reidel Publishing Co., 1985.

[9] B. Buchberger, G. Collins, and B. Kutzler. Algebraic methods [or geometric
reasoning. Annual Retliews in Computel' Science, 3:85-120, 1988.

[10J A. Bundy and R. Welham. Using Meta-level Inference for Selective Appli
cation of Multiple Rewrite Rule Sets in Algebraic Manipulation. Al'tijicial
Intelligence, 16:189-212, 1981.

[11] J. Cal. A language fOT semantic analysis. Technical Report 635, New YOTk
University, Dept. of Camp. Science, 1993.

[12] J. Cai, P. Facon, F. Henglein, R. Paige, and E. Schonberg. Type trans
formation and data structure choice. In B. MoeUcr, ('clitOT, COllsll'ucting
Proymms From Specijicatio7l.':;, pages 126-124. North-Holland, 1991.

[13J J. Ca.i and R. Paige. Towards increased productivity of algorithm imple
mentation. ACM SIGSOFT, to appear, 199;3.

34

[14] C.-S. Chou. Mechanical Theorem Proving. D. Reidel Publishing, Dordrecht,
1987.

[15] C.-S. Chon. A Method for the Mechanical Derivation of Formulas in BIt:!·
mentary Geometry. Jov.mal of Automated Reasoning, :3:291-299, Hl87.

[16] C.-S. Chou. An Introduction to Wn's Method for Mechanical Theorem
Proving in Geometry. Jom'nal oj Automated Reasoning, 4:237-267,1988.

[17] C.-S. Chou and W. Schelter. Proving Geometry Theorems with Rewrite
Rules. Joumal of Automated Reasoning, 2:253-273, 19R6.

[18] W. Clocksin and C. Mellish. Pmgramming in Pm/og. Springer Verhtg, 1981.

[19] D·Cuhed Ltd, 68 Castle Street, Cambridge, CB3 OA.J, England. The Di
mensional Constmint Manager', May 1993. Versioll 2.5.

[20] W. Fitzgerald. Using Axial Dimensions to Determine the Proportions of
Line Drawings in Computer Graphics. Computel' Aided Design, 13(6):377
382, November 1981.

[21] B. Freeman-Benson, J. Maloney, and A. Borning. An Incremental Con
straint Solver. CACM, 33(1):54-63,1990.

[22] J. Gosling. Algebraic Constraints. Technical Report CMU-CS-R3-132,
eMU, 1983.

[2:3] C. M. Hoffmann. On the semantics of generative geometry rcprC'sentations.
In 19th A5'ME Design Automation Conference, 199;3.

[24] C. M. Hoffmann and R. Juan. Erep, a editable, high-IevC'!l representation
for geometric design and analysis. In P. Wilson, M. Wozny, and M. Pratt,
editors, Geometric and Pmducl Modeling. North Holland, 1993.

[25] S. Johnson. Yacc - yet another compiler compiler. Tec1mical Report Com·
puter Science Report 32, AT&T Bell Laboratories, Murray Hill, N.J., 1975.

[26J D. Kapur. A rcfutatiollal approach to geometry theorem proving. In
D. Kapur and J. Mundy, editors, Geometlic Rcm:oning, pages 61-93. M.LT.
Press, 1989.

[27] D. Kapur and J. Mundy. Wu's method and its applications to perspective
viewing. In D. Kapur and J. Mundy, editors, Gcomctlic Reasoning, pages
15-36. M.LT. Press, 1988.

[28] D. Knuth. Semantics of context-free languages. lv/athematical Systems
Theory, 2:127-145, 1968.

35

[29] D. Knutll and P. Bendix, Simple word problems in universal algebras. In
J. Leech, editor, Computational P1'Obiems in Ab.~tmct Algebm, pages 263
297. Pergammon Press, Oxford, 1970.

[30J K. Kondo. PIGMOD: parametric and interactive geometric 1llodeller for
mechanical design. Computer Aided Design, 22(10):6;3;3-644, December
1990.

[31] K. Kondo. Algebraic method for manipulation of dimensional relationships
in geometric models. Compute1' Aided Design, 24(;3):141-11\7, March 1992.

[32] G. Kramer. Solving G'eometr7:c G'onstmint Sy.~tems. MIT Press, 1992.

[33J W. LeIer. Conslmint Frogmmming Languages: Theil' Specification and
G'enemtion. Addison Wesley, 1988.

[34J J. Li. Using algebraic constraints in interactive text and graph.ics editing.
In D. A. Duce and P. Jancene, editors, EU1'Ogmphies '88, pages 197-20.5.
Elsevier North-Holland, 1988.

[35J R. Light and D. Gossard. Modification of geometric models through vari
ational geometry. Computel' Aided Design, 14:209-214, .July 1982.

[36] E. H. Lockwood. A Book oj CUl"es. Cambridge University Press, 1961.

[37] G. Nelson. Juno, a costraint-based graphics system. In SIGGRAPH, llages
235-243, San Fratlcisco, July 22-26 1985, ACM.

[38J J. Owen. Algebraic solution for geometry from dimensional constraints. In
ACM Symp. Found. oj Solid Modeling, pages 397-407, Austin, Tex, 1991.

[39J R. Paige. Apts external specification manual. internal documentation,
1993.

[1\ OJ Pro/ENGINEER. Modeling Use",,; Guide: 2D Skctchcl'. ParametriC'Tech
nologies. Release 8.0.

[41J Reasonlng Systems. Refine User's Guide, 1990. Version :}.O.

[42] T. Reps and T. Teitelbaum. The 8ynthsizC1' Generat01·. Springer Verlag,
1988.

[43] A. Requicha. Dimensionlning and tolerancinp;. Technical report, Production
Automation Project, University of Rochester, May 1977. PADLTM-19.

(44) J. Schwartz, R. Dewar, D. Dubinsky, and E. Schonberg, Pmgrammillg with
Sets: Au iutmduction to SET£. Springer Verlag, 1986.

36

[4,s] K. Snyder. The SETL2 programming languag~. Technical rcport, New
York University, Computer Scicnce, Couranl Institute, 1990.

[46] W. Sohrt. Interaction with Constraints ill three-dimensional Modeling.
Master's thesis, Dept of Computer Science, The University of Utah, March
1991.

[47] L. Solano and P. Brunet. A system for constructive cOIlstl'aint-based model
ing. In B. Falcidieno and T. Kunii, editors, Modeling in Computcl· Gmphics.
Springer Verlag, 1993.

(48] G. 1. Steele and G. 1. Sussman. CONSTRAINTS - A Language for Ex
pressing Almost-Hierarchical Descriptions. A1-tijicia[Intellige.nce, pages 1
39, .January 1980.

[49] B. Stroustrup. The C++ Pmgmmming Language. Addison-Wesley, Read·
ing, MA, 1991.

[50] G. Sunde. Specification of shape by dimensions and othp.r geomelric con
straints. In M..J. Wozny, H. W. McLaughlin, and J. 1. Encarnacao, editors,
Geomet1ic Modeling for CAD Applications, pages 199-21:1. North Hollaud,
1FIP, 1988.

[51] 1. Sutherland. Sketchpad, a man-machine graphical commllllication system.
In Proc. of the sp1ing Joint Camp. Confen;nce, pages :329-34,1). IFIPS, 196:3.

[52] H. Suzuki, H. Ando, and F. Kimura. Varlalion of geometries based on a
geometric-reasoning method. Comput. t1 Gmphic.~, 14(2):211-224, Hl90.

[53] P. Todd. A k-tree generalization that characterizes consistency of dimen
sioned engineering drawings. SIAM J. DISC. MATH., 2(2):2.5,5-261,1989.

[,54] J. Ullman. Principles of Database and I(nowledge-Base Systems. Computer
Science Press, 1988.

[,55] A. Verroust, F. Schonek, and D. Roller. Rule-oriented method for param
eterized computer-aided design. Compute1· Aidc(l Design, 24(3):5;31-540,
October 1992.

[56] A. Witkin, K. Fleisc11er, aile! A. Barr. Energy Constraints on ParameterizC'-d
models. Computer Gmphics, 21:225-232, 1987.

[57] Wu Wen-Tsiin. Basic principles of mechanical theorem proving in geome
tries. J. of Systems Sciences and Mathematical S'ciellces, 4:207-23,5, 1986.

[,58J Y. Yamaguchi and F. Kimura. A constraint modeling syslern for variational
geometry. In M. J. Wozny,.J. U. Turner, and K. Preiss, editors, Gcomet1ic

37

Modeling for Pmduct Engineel'i,ny, pages 221-23:3. Elsevier North Holland,
1990.

38

	A Geometric Constraint Solver
	Report Number:
	

	tmp.1307986960.pdf.q9Lrq

