
Geometric Constraint Solving in Parametric CAD

Bernhard Bettig∗ Christoph M. Hoffmann†

March 9, 2011

Abstract

With parametric Computer-Aided Design (CAD) software, designers can
create geometric models that are easily updated (within limits) by modify-
ing the values of controlling parameters. These numeric and non-numeric
parameters control the geometry in two ways:

(i) parametric operations, and

(ii) geometric constraint solving.

This paper examines the advances over the last decade in the represen-
tation of parametric operations and of solving geometric constraint prob-
lems. An extensive literature has grown up surrounding geometric con-
straint solving and there has been substantial progress in the types of
objects and constraints that can be handled robustly. Yet parametric
operations have remained largely within the same conceptualization and
begin to limit the flexibility of CAD systems, and so they still do not align
well with a systematic design process.

Keywords: computer-aided design, parametric CAD, geometric constraints,
geometric constraint solving, variational solvers, declarative constraints.

1 Introduction

Parametric Computer-Aided Design (CAD) software is used pervasively in the
design and manufacture of modern-day mechanical products. In parametric
CAD, designers define the size, shape and positions of geometric features and
assembly components in terms of numerical and non-numerical parameters. By
changing parameter values a design can be easily modified, within limits.

Two computational mechanisms, intertwined in current parametric CAD
software, are used to control the geometry from input parameters:

∗Department of Mechanical Engineering, West Virginia University Institute of Technology,
WV 25136; Bernhard.Bettig@mail.wvu.edu

†Department of Computer Science, Purdue University, West Lafayette, IN 47907;
cmh@cs.purdue.edu

1



• Parametric operations, such as extrude and unite, which construct geomet-
ric objects that satisfy implied constraints imposed when the user selects
the operation and its inputs, and

• Geometric constraint solving, which repositions and scales geometric ob-
jects in sketches and assemblies so that they satisfy constraints that are
explicitly imposed on them by the user.

This paper surveys the state of the art in parametric operations and geometric
constraint solving technology. It describes the state of the art a decade ago, as
well as advances that have occurred since then.

The paper first addresses, in Section 2, the technical challenges and advances
related to parametric operations in CAD, and explains how geometric constraint
solving fits with parametric CAD. Then the bulk of the paper addresses advances
in geometric constraint solving techniques, which are discussed in two major
sections:

• In Section 3, a broad range of approaches to constraint solving is dis-
cussed. Over the years, many different approaches have been reported in
the literature, and this section sketches them briefly.

• To-date, the dominant approach to constraint solving is based on a con-
straint graph analysis that formulates a solution plan, followed by a solver
that, usually recursively, elaborates the plan and computes a solution.
This material is developed in Section 4.

Section 5 provides a summarizing discussion with some conclusions.
The scope of the paper is limited to the computation of the size, shape and

placement of geometric objects including points, curves (e.g., straight lines, arcs,
conics, and freeform), and surfaces (e.g., planar, cylindrical, conical, spherical,
and freeform) as controlled through implicitly or explicitly-imposed geometric
constraints. The constraints can be dimensional, relating CAD parameters to
radius, distance and angle, and they can be geometric, positing perpendicular-
ity, concentricity, tangency, and so on. The problems can be posed in 2D or 3D
space. The paper does not address the less centrally related subjects of geomet-
ric topology, feature semantics, knowledge-based engineering, or optimization.

2 Parametric Operations in CAD

Parametric operations are created when a designer uses solid modeling opera-
tions such as extrude, unite, and blend. The parametric operations are recorded
as a sequence (or tree) of construction steps in a construction history that can
be controlled by the user. Parameters, such as the radius for a blend operation,
occur as inputs to the operations. If the value of a parameter is changed, the
construction history is re-executed and the updated geometry is constructed;
e.g., [1]. As shown by the examples in Table 1, parametric operations may
include:

2



(i) user equations—controlling parameters from other parameters;

(ii) parameter controlled geometry—controlling geometry from parameters
and other geometry; and

(iii) measured geometry—controlling parameters from geometric computations.

Variations of these operations may involve other types of parameters (e.g.,
logical, enumerated, text string) and other geometric objects (e.g., complete
sketches, datums, solids), however, the salient point is that there is a fixed di-
rectional dependency between the input entities on the right-hand-side of the
assignment operations and the output entities on the left-hand-side. Therefore,
while the parametric operation conceptualization lends itself to the provision of
computations with diverse kinds of geometric objects and (implied) constraints,
the fixed directional dependency makes it necessary for users to plan ahead
how the features of the model should be controlled and may require manually
uncoupling relationships that would otherwise give rise to cyclic dependencies.
This conceptualization contrasts with the constraint solving conceptualization
in which there are no such fixed directional dependencies. Users introduce pa-
rameters and geometric objects first and then annotate them with constraints,
which are then satisfied through constraint solving computations. Advances in
parametric operations technology relate to improvements in the types and ro-
bustness of parametric operations themselves and to improvements in dealing
with the inflexibility of the fixed directional dependencies.

2.1 Developments Until 2000

The earliest parametric CAD system dates from the 1970s; [2]. It used a dual
representation, describing solids both in Constructive Solid Geometry (CSG)
and in Boundary-Representation (B-Rep). In this dual representation, the solid
model is represented as a binary tree in which the leaves are primitive shapes
such as blocks and cylinders, and the branches are Boolean operations such as
Unite, Intersect, and Subtract. Each primitive can be thought of as a parametric
operation with input parameters defining size and position. The output is then
the shape of the primitive as a B-Rep. Boolean operations take selected B-Rep
shapes as input and output the resulting B-Rep shape. The CSG tree provided
a very basic construction history.

The first parametric CAD system, in the sense as it is understood today, is
Pro-Engineer, released by Parametric Technology Corporation in the late 1980s;
[3]. In this CAD system the sizes and positions of geometric objects could be
directly related to each other [4]. Thus if the user changed the value of a dimen-
sion between geometric objects, or moved a geometric object, this could initiate
other geometric objects to be moved automatically. Dimensions and geometric
constraints appeared in parametric operations in two ways. In the first way, di-
mensions appeared as inputs to parametric operations and specific constraints
were implied. For example, in an extrude operation an input dimension con-
trolled the length of the extrusion and perpendicularity between the side faces

3



Situation Parametric Constraint
Operations Solving

User 1. ri := 5 Parameters ro, ri
Equations 2. ro := ri + 5 ro − ri = 5

ro = 2ri

Parameter 1. Parameter ro := 5 Parameter ro
Controlled 2. Line L1 := Line(1,0,0) Lines L1, L2

Geometry 3. Line L2 := Line(0,1,0) Circle C1

4. Circle C1 := CircleWith- ro = 10
RadiusTangentToTwo- Fixed(L1)
Lines(ro, L1, L2) Fixed(L2)

Tangent (L1, C1)
Tangent (L2, C1)
Radius (C1, ro)

Measured 1. Point P1 := Point(0,0,0) Points P1, P2

Geometry 2. Point P2 := Point(10,0,0) Parameter d
3. Parameter d := Distance- Fixed(P1)

Measure(P1, P2) Fixed(P2)
Distance(P1, P2, d)

Table 1: Examples of Parametric Operations vs. Constraint Solving Problems

and the extruded face was implied. In the second way, dimensions and geomet-
ric constraints could be annotated to curves on a 2D sketch that defined the
cross-section profile for a sweep operation such as extrude or revolve. In a flurry
of activity in the early 1990s; e.g., [5, 6, 7], it became standard for geometric
constraint solving to be used for sketches.

In an effort to expand the benefits of constraint solving beyond the isolation
of sketches in sweep operations, one commercial system (I-DEAS) implemented
numeric equation solving capabilities with inequalities [5]. Some commercial
systems (e.g., I-DEAS and CoCreate [3]) also implemented constraint solving
for three-dimensional solid geometry. As well, some feature modeling research
systems used constraint solving for computing feature sizes and locations in 3D
[8]. One such system tries to maintain consistency between B-Rep, construction
history, and feature model representations with constraint solving occurring in-
dependently within operations of the construction history [9]. Another system
integrates a feature model with a cellular geometric model and performs all
constraint solving prior to combining features in the cellular model [10]. How-
ever, none of these technologies have become wide-spread in CAD, likely due
to the complexity of the interactions that are possible between the constraint
solving and the parametric operations. On the other hand, 3D constraint solv-
ing is now commonplace in assembly modeling where component positioning
constraints are satisfied only after the solid shapes have been generated from

4



Figure 1: Blended edge (a) small radius (b) error condition (c) tangency removed

the parametric modeling operations.
Improvements in parametric operations themselves have primarily been in

their robustness and variety; for example, edge blend operations that used to fail
when the radius of the blend was greater than the width of the tangent face now
automatically forgo the tangency requirement in order to obtain a solution (as
shown in Figure 1); see also [11]. However, the overall framework of parametric
operations has stayed the same. Some applications have made interesting use
of this framework, for example for parametric design optimization in which the
dimensional parameters are manipulated by an optimization algorithm in order
to satisfy a geometric goal (e.g., desired volume) or structural goal (e.g., desired
stress from imposed loads; [12]).

2.2 Developments Since 2000

The emphasis of the last decade has been on mitigating the rigidity inherent
in parametric CAD owing to the parametric operations [13, 14]. For example,
it should be possible to simply grab a face and drag it to where it should be.
Instead, the designer must find the controlling operation in the construction
history, and within that operation find the controlling parameter. This could
be for example a dimension in a sketch or the length of an extrusion. Chang-
ing the value of the parameter may then have unintended side-effects in other
operations; e.g., [1]. To overcome this inflexibility, a variety of hybrid mod-
eling systems have been developed by vendors and researchers that combine
parametric and direct-manipulation interfaces; [15, 16, 17]. In these systems
it is possible to reposition faces, scale the sizes of features or even twist fea-
tures. Unfortunately, these systems implement the direct modeling interactions
as transformation operations that are simply added to the construction his-
tory as additional parametric operations. For example, using the Move Face
operation in Siemens PLM NX 7.5 Synchronous Technology [18] the user can
select a side face on a parametrically-defined solid and translate it interactively
in the graphics display to make the shape 2 mm wider. The magnitude and
direction of the translation is recorded in a new parametric operation and the
previous operations in the construction history are maintained exactly as before.

5



If the dimension for the original width is changed, the construction history is
replayed, including the Move Face operation, which keeps the width 2 mm wider
than specified. Thus meaningful parametric control is lost. Another approach
to resolve the inflexibility problem has been to treat some parameters as soft
parameters and assign intervals [19] or set membership [20].

The limitations inherent with using parametric operations as a basis for
design software are discussed by Bettig et al. [13]. They find that the search
for design solutions when following a systematic design process is impeded by
parametric operations because:

◦ Designs from parametric operations are implicitly fully constrained. In
general, it is not clear which input parameters are controlled by require-
ments and which parameters can be tweaked. As well, some of the con-
straints implied by an operation may be superfluous with respect to the
design intent or design requirements.

◦ Parametric operations are designed to output a unique solution. Often
there are multiple mathematical solutions that should be explored.

◦ Parametric operations inherently bundle all implied constraints control-
ling an object into a single operation. Thus it is impossible to impose
constraints from multiple sources onto a single object without manually
combining them into one operation. It is also impossible to add further
controls on an object once the object has been defined through a paramet-
ric operation. As well, coupled constraints must be manually uncoupled.

◦ The constraints or design intent implicit in a parametric operation can be
violated by the parametric operations that follow it.

Future design software is proposed that does not rely on parametric operations,
however, it is clear that parametric operations will continue to be used for the
near future.

3 Major Approaches to Geometric Constraint
Solving

The literature on geometric constraint solving often abstracts the problem as
follows:

Given a set of geometric objects, such as points, lines and circles;
given a set of geometric and dimensional constraints, such as dis-
tance, tangency, perpendicularity etc.; and given an ambient space,
usually the Euclidean plane; assign coordinates to the geometric ob-
jects such that the constraints are satisfied, or report that no such
assignment has been found.

6



The competence of the solver is related to the report that no solution has been
found: If no solution exists in that case, the solver is fully competent. On
theoretical grounds constraint solving is doubly exponential, so that in practice
we settle for partial competence as long as the solver finds a solution for most
of the problems arising in an application area, in acceptable time and space.

The main approaches to solving constraint problems are graph-based, logic-
based, algebraic, and theorem prover-based. See also [21] that informs some of
the material in this section.

3.1 Developments Until 2000

3.1.1 Graph-Based Approaches

In the graph-based approach, the constraint problem is translated into a labeled
graph, the constraint graph with vertices representing the geometric objects
that are constrained, and edges representing the constraints themselves. We
distinguish three main strands: the constructive approach, the degree of freedom
techniques and propagation methods.

Constructive Approaches

In this approach, the constraint graph is decomposed and recombined to ex-
tract basic construction steps that must be solved. A second phase elaborates
these steps, employing algebraic and/or numerical methods. This approach has
become dominant and will be discussed in depth in the next section.

Degrees of Freedom Analysis

The graph vertices are labeled with the number of degrees of freedom of the
represented geometric object. In 2D, a point would have 2 degrees of freedom,
a circle 3. Each graph edge is labeled by the degrees of freedom canceled by the
represented constraints. If the incident vertices are points in 2D, for instance, an
incidence constraint cancels 2, a distance constraint cancels 1 degree of freedom.
This graph is analyzed for a solution strategy.

Kramer [22, 23] uses this approach to analyze and solve certain mechanisms.
A symbolic solution method is derived using rules that have a geometric mean-
ing. In [23], Kramer proves correctness of his method by establishing that the
algorithm can be understood as a canonical rewrite system. Hsu [24] solves the
constraint problem in two phases, generating first a symbolic rules representa-
tion, followed by elaborating those rules by solving them. If geometric reasoning
fails, a numerical solution is attempted.

Latham et al., [25], decompose the graph into minimal connected compo-
nents they call balanced sets. If a balanced set is in a predefined set of patterns,
then the subproblem is solved by a geometric construction, otherwise a numeric
solution is attempted. This method also deals with symbolic constraints and
identifies under- and overconstrained problems. Overconstrained problems are
approached by prioritizing the given constraints.

7



Propagation Approaches

These methods encode the constraint problem by a graph in which the vertices
represent variables and equations, and edges are labeled with occurrences of
variables in equations. Propagation seeks to orient the graph edges such that
all incident edges to an equation vertex are incoming edges except for one. If
this succeeds, then the equation system has been triangularized. Orientation
algorithms include degree-of-freedom propagation and propagation of known
values; e.g., [26, 27]. The method fails when the orientation creates loops, so the
algorithms include techniques to break loops [27] and may resort to numerical
solvers. In [28] Borning describes a local propagation algorithm that can deal
with inequalities.

3.1.2 Logic-Based Approaches

In this approach the constraint problem is translated into a set of geometric
assertions and axioms. Applying geometric reasoning, this representation is
transformed such that specific solution steps are made explicit. A set of con-
struction steps is available to the solver and are solved by assigning appropriate
coordinate values to the geometric entities.

Aldefeld [29], Brüderlin [30, 31, 32], Sohrt [33], and Yamaguchi [34], use
first order logic to derive geometric information applying a set of axioms from
Hilbert’s geometry. Essentially these methods yield geometric loci at which the
elements must be. Sunde [35] and Verroust [36] consider two different types
of constraints: sets of points placed with respect to a local coordinate frame,
and sets of straight line segments whose directions are fixed. The reasoning is
basically performed by means of a rewriting system on the sets of constraints.
The problem is solved when all the geometric elements belong to a unique set.
Joan-Arinyo and Soto-Riera, [37, 38], extended these sets of constraints with a
third type consisting of sets containing one point and one straight line such that
the perpendicular point-line distance is fixed.

3.1.3 Algebraic Approaches

In this approach the problem is translated into a system of equations whose
variables are the coordinates of the geometric elements and the equations express
the constraints upon them. The equations are in general nonlinear. The main
advantage of this approach is its completeness and dimension independence.
A major difficulty of the approach is that the equation system is difficult to
decompose into subproblems and that a general, complete solution of algebraic
equations is inefficient. Note, however, that small algebraic systems arise in
many of the other solution approaches and are routinely solved.

3.1.4 Symbolic Methods

General equation solvers employ symbolic techniques such as Gröbner bases [39]
or the Wu-Ritt method [40, 41], to triangularize the equation system. Buchanan

8



[42] describes a solver built on top of the Buchberger’s algorithm. Kondo reports
a symbolic algebraic method in [43].

3.1.5 Numerical Methods

Numerical methods are among the oldest approaches to constraint solving. Nu-
merical methods solve large systems of equations iteratively. Methods such as
Newton iteration do well if a good approximation of the intended solution can
be supplied and the system is not ill-conditioned. So, if the starting point is
taken from the user’s sketch, then the sketch should be close to the intended
solution. Nonlinear systems have multiple solutions, but the numerical methods
may find only one and may not offer control over the solution in which the user
is interested.

Borning, [44], Hillyard and Braid, [45], and Sutherland, [46] use a relaxation
method. This method perturbs the values assigned to the variables and mini-
mizes some measure of the global error. In general, convergence to a solution is
slow.

The method most widely used is the Newton-Raphson iteration. It is used
in the solvers described in [47, 48, 49]. Newton-Raphson is a local method
and converges much faster than relaxation. The method does not apply to
consistently over-constrained systems of equations unless special steps are taken,
such as solving a least-squares problem.

Homotopy continuation, [50], is a family of methods that are global and
guarantee convergence. They are exhaustive and allow to determine all solutions
of a constraint problem. Their efficiency is worse than that of Newton-Raphson.
Lamure and Michelucci, [51], and Durand, [52], apply this method to geometric
constraint solving.

3.1.6 Theorem Proving

Solving a geometric constraint problem can be considered a subproblem of prov-
ing geometric theorems. However, geometric theorem proving requires more
general techniques and, therefore, methods which are much more complex than
those required by geometric constraint solving.

Wu Wen Tsün’s Wu-Ritt method, an algebraic-based geometric constraint
solving method can be used to solve geometry theorems; [53, 41]. The method
automatically finds necessary conditions to obtain non-degenerated solutions. In
[40], Chou applies Wu’s method to prove novel geometric theorems, and [54, 55]
reports on automatic geometric theorem proving which allows to interpret, from
a geometric point of view, the proof generated by computation.

3.2 Developments Since 2000

Most of the key advances are described in the following section. Here, we restrict
to advances that interface with other areas or cannot be readily integrated into
graph-constructive solvers.

9



3.2.1 Deformations

Deformation problems can be understood as constraint solving when there are
restrictions placed on the type of deformation. For example, Kavraki [56] con-
siders deformations that minimize bending energy, as does Ahn [57] and others
[58, 59]. Surface deformation under area constraints, e.g., [60], also belongs in
this category. These techniques and insights are rarely integrated with other ge-
ometric constraints such as distance from reference points, angle of intersection,
perpendicularity, etc.

3.2.2 Dynamic Geometry

Given an underconstrained system, we can add constraints to make the problem
well-constrained. These additional constraints can be understood as parame-
ters when they are dimensional, and varying the parameter values, different
solutions arise which can be collectively understood as a dynamic geometric
configuration. A simple example would be a piston-crank assembly. Systems
such as Cinderella [61] are designed to deal with such problems. A number of
papers have investigated these problems from a constraint solving perspective,
including [62].

3.2.3 Evolutionary Methods

In this approach, the problem is re-interpreted as an optimization problem that
is attacked using genetic, particle-swarm or other evolutionary methods; e.g.,
[63, 64, 65].

4 Graph-Constructive Solvers

Graph-constructive solvers have become the dominant class of geometric con-
straint solvers.1 This class of constraint solvers builds first a graph representing
the constraint problem for the purpose of isolating specific, small subsets of ge-
ometric objects and constraints among them that can be solved separately. In a
second phase, the solvers then recursively solve the actual constraints, guided by
the graph decomposition, and determine coordinate assignments that solve the
constraint problem. Each phase can end in failure, either because the constraints
are not satisfiable, or else because the solver does not succeed in breaking down
the problem into subproblems that fit into the repertoire of subproblems the
solver understands. In the following, we refer to the graph construction and
analysis as Phase 1 of the solver, and for the subsequent computations deter-
mining coordinates as Phase 2. We can think of Phase 1 as formulating a plan
for solving the constraint problem, and Phase 2 as solving it according to this
plan.

1We use this term in the broadest sense.

10



The graph that is analyzed in Phase 1 has vertices representing the geometric
objects to be instantiated and edges that represent constraints between them.
Both vertices v and edges e are labeled with positive integral weights. The
weight w(v) of vertex v represents the degrees of freedom when placing the
corresponding geometric object. For example, points and lines in the plane
have two degrees of freedom. Put differently, the weight is equal to the number
of independent coordinates of the geometric object. For edges e = (v1, v2),
the weight w(e) is the number of coordinates of the adjacent vertices that can
be determined from the equation expressing the constraint. For instance, if two
points, represented by v1 and v2, are to be at a given distance, then w((v1, v2)) =
1, but if they are to be coincident, then w((v1, v2)) = 2.

The graph-constructive approach to constraint solving further divides into
three families on account of whether the primary graph analysis is top-down,
bottom-up, or hybrid. Additional distinctions can be drawn by the catalogue
of graph patterns recognized by the graph analysis.

4.1 Developments Until 2000

The top-down approach for 2D constraint problems was pioneered by Owen in
1991 [6]. Owen recursively decomposes the constraint graph into tri-connected
components, in Phase 1, searching for three vertices that split the graph into
three subgraphs. In the recursive process, splitting the graph by an articulation
node into two subgraphs corresponds to finding an under-constrained config-
uration in the constraint problem. The triangles found in this decomposition
correspond to equation systems that involve solving univariate quadratic equa-
tions, thus are simple to solve.

The bottom-up approach was first proposed by Bouma et al in 1993, and
reported in [7]. Here, triangles are located in the graph and correspond to
solvable subsystems, leading to the same repertoire of equation systems in Phase
2 as in the top-down approach. Bottom-up solvers are good at determining
over-constrained subproblems, both consistent and inconsistent. Both Owen’s
top-down and Bouma’s bottom-up methods are of O(n2) complexity in Phase
1; [66].

Research leading up to 2000 focused mainly on extending the repertoire of
subgraphs that the bottom-up approach can handle and seeking good algorithms
for solving the associated equation systems in Phase 2. It also includes work
that shores up the underlying theory of triangle solvers. In particular, we know
that if there is a bottom-up decomposition, then any sequence of decomposition
steps in Phase 1 will succeed [67]. Moreover, the (variant of a) solution found in
Phase 2 does not depend on the order in which Phase 1 decomposed the graph:
the same set of triples is interrogated, albeit in a different order; [67].

Geometric constraint problems correspond to systems of nonlinear equa-
tions. Thus a constraint problem can have multiple solutions. Which solution
is intended is a difficult user-interface problem that was first broached in [7].
For the basic triangle decomposition solvers the problem manifests in how to
place three related geometric elements with respect to each other. So, [7] picks

11



solutions in which such triples are placed as they were in the input sketch. This
works well in many, but not in all, cases. Later work by Sitharam engages the
user in a visual dialogue to obtain guidance from the user.

Extensions to the bottom-up solvers include variable-radius circles [6], cer-
tain cubic Bézier curves [68], conics [69], subgraphs that involve solving algebraic
equations that are higher than quadratic [7]. Owen’s treatment of variable-
radius circles is largely numerical. The equations that arise in general have high
degree in some of the cases as discussed later.

Prior to 2000 there are also attempts at combining different approaches. Fu-
dos succeeded in combining top-down and bottom-up analysis in [70], so creating
a hybrid solver. This allows dealing with under- and over-constrained problems
uniformly. Moreover, Hoffmann and Joan-Arinyo make a first cut at combining
graph-constructive solvers with equation solvers, [71], opening the door to more
general constraint problems that can use symbolic dimensional constraints and
equations relating them by equations supplementing the geometric constraint
specifications.

Graph-constructive solvers for spatial constraints are a natural next step
and have been considered early-on. For spatial constraint solving using this
approach, the main problem is to solve the arising subsystems of equations
which are considerably more complex than in the planar case, even for very
simple subgraph patterns. There are also many subgraph patterns needed for
simple configurations if lines are allowed, a further barrier. Early work therefore
restricts to points and planes in 3D.

In [72], Hoffmann and Vermeer begin exploring the basic subgraph patterns
for spatial constraint solvers using points and planes only. The work explores
both basic sequential as well as basic simultaneous configurations. The simplest
nontrivial subgraph, for simultaneous problems, is the octahedron. In [73] this
subgraph is considered and some of the cases are solved using geometric rea-
soning. Durand [74, 75] solves the equations of the octahedron using homotopy
continuation. This allows a uniform approach to all arising cases but requires
nontrivial numeric computation.

When allowing lines as part of the constraint problem, even sequential con-
structions can be complicated. For example, we can define a line in 3-space by
its distance to four fixed points in space, asking effectively to find a common
tangent to four given spheres. The associated equation system has degree 24,
but with only 12 distinct solutions possible; [76]. It can be shown that some
problem instances have exactly 12 distinct solutions, thus establishing a tight
bound on the number of common tangents.

Most of the work up to that point seeks to either extend the geometric
vocabulary or identifying tractable and practically relevant subgraph patterns.
But the possible subgraph patterns are infinite in number, so work begins before
2000 that asks whether there is a graph decomposition that does not restrict
to a fixed set of subgraph patterns. Lomonosov and Sitharam begin this work
together with Hoffmann and report a decomposition algorithm that identifies
any solvable subgraph using a flow-based approach; [77, 78]. Sitharam perfects
this algorithm later, as discussed below.

12



4.2 Developments Since 2000

4.2.1 Graph Decomposition

In a series of papers, Sitharam and collaborators complete the graph decompo-
sition; [79, 80]. While earlier work concentrates on finding a subset of graph
patterns that correspond to small, solvable subsets and are, at the same time,
sufficiently general to have practical significance, Sitharam’s frontier algorithm
finds all subsets that correspond to subproblems solvable in isolation, thus gener-
alizes the graph decomposition once and for all. Note that the frontier algorithm
works for both 2D and 3D constraint problems, as well as for higher-dimensional
spaces.

Contemporary work and later papers in this space work out variants of the
algorithm or of the earlier decomposition algorithms that are easy to implement
and improve specific details. For instance, [81] addresses the coupled decom-
position when parametric constraints are present; [82] considers the domain of
triangle decomposition; and [83, 84] simplifies the solver architecture. See also
[85].

In 3D constraint solving, the number of simple patterns that can arise when
allowing lines is very high, as discovered by Gao and his collaborators; [86]. This
means that graph constructive solvers must synthesize subgraph pattern as part
of the graph decomposition. Thus, one aspect of the importance of Sitharam’s
algorithm is that the frontier algorithm does exactly that. But it also means
that in Phase 2 the algebraic equation systems will, in many cases, require
generic techniques for solving, and that root selection also must be based on
general principles. Gao’s locus intersection method is one such approach; [87].

Some of the problems associated with the 3D analysis constraint graphs in-
volve characterizing rigidity. This problem has been addressed in papers by
Sitharam and collaborators; [88, 89]. Mathis [90] posits that the rigidity anal-
ysis of the decomposition/recombination approach captures problem invariance
under rigid motion. He then extends the approach by considering other groups
of geometric transformations, so deriving a more general view of decomposition
and recombination.

4.2.2 Under- and Overconstrained Problems

Underconstrained and overconstrained problems may be amenable to special
treatment. In the underconstrained case, Owen’s top-down decomposition and
Sitharam’s frontier algorithm can pinpoint the subgraph that is incompletely
constrained. More is possible when differentiating by constraint type. For
instance, van der Meiden [91] identifies a type of subgraph where groups of
angle constraints are recognized that lead to a finer decomposition and so allows
better strategies for how to interact with the user to complete the constraints.
In [92], he proposes nonrigid cluster rewriting configurations and techniques for
root selection and for certain point configurations in 3D.

Overconstrained problems should be consistently overconstrained, for exam-
ple, if a triangle is specified by three side lengths and one angle, then the angle

13



value stipulated should be consistent with the required side lengths. Bottom-up
solvers are well suited. General work on these problems includes the algorithm
in [93] that addresses how to isolate overconstrained subgraphs.

Joan-Arinyo et al [94] describe strategies to complete underconstrained prob-
lems. This also allows constraints to have priorities and originate from multiple
views. This is an example of approaching overconstrained problems by grad-
ing the constraints, positing that some are more important than others. This
appproach is popular in applications. Jermann et al. [95] so approach overcon-
strained problems, allowing constraints to be arranged in hierarchies.

4.2.3 Variable-Radius Circles

For 2D constraint solvers, the triangle decompositions based on [6] and [7] pro-
vide a practical and useful subset of solvable problems. Extending this subset
by variable-radius circles, that is, with circles whose radii are determined by
the constraint configurations and are not explicitly given, are a logical exten-
sion that expands the solver competence significantly. For the graph analysis,
two patterns must be added, one that determines center and radius from three
constraints sequentially, the other in which the circle links with four constraints
linking two clusters that can move relative to each other with one degree of
freedom. While the sequential case is elementary, the second, simultaneous
case yields algebraic equation systems that can be quite complex. The cases
that arise have been investigated by Chiang et al. [96, 97, 98]. Owen already
knew that one of the cases that arise in the sequential setting is the Apollo-
nius problem. This case can be treated algebraically by transformation to a 3D
configuration space in which the (up to eight) solutions are determined from
univariate quadratic polynomials. The harder cases entail equation systems
that must be solved numerically. Most recently, Chiang et al. revisit this prob-
lem and give a solution to the equation systems that exploits the parallelism of
the graphics processing units (GPU), so providing a fast and practical solution
strategy; [99, 100, 101].

4.2.4 Valid Parameter Ranges

Given a constraint problem with dimensional constraints, we may ask what
ranges of distance and angle constraints lead to solvable problems. This very
difficult question has been considered in a number of papers; [81, 102, 103]. In
general, the problem requires restricting to individual parameters since the so-
lution space is multi-dimensional and not necessarily connected, thus is difficult
to explore. Joan-Arinyo et al. [104] allow specifying intervals on dimensional
parameters and Mekhnacha et al. [105] allow applying probability distributions.
Note that an exploration of valid parameter ranges in geometric constraint solv-
ing provides tools for tolerance and kinematic motion analyses.

14



4.2.5 Root Selection

There are two difficulties selecting, from the multiple solutions, one that cor-
responds to the application and user intent. The first difficulty is technical:
what is a criterion for root selection that is invariant under translation and ro-
tation. For triangle solvers one such criterion, used early-on, is a coordinate-free
interpretation of the relative orientation of three geometric elements. The sig-
nificance of [67] is that it shows the invariance of this criterion under alternative
graph decompositions in Phase 1. The second difficulty is that user guidance,
for instance in CAD applications, is difficult to obtain because the solver is a
deeply embedded component in CAD systems and the user is not likely to un-
derstand how the constraint problem has been formulated and how the solver
works internally, thus posing questions to the user must be back-translated into
terms that are visual and relate to the user’s vocabulary. Sitharam guides user
choice in her implementation by presenting the different root choices as graphical
configurations of the shape elements; [106].

Bettig and Shah [107] propose a set of inequality-based constraints such as
in front of/behind, on indicated side of, same orientation, concave/convex, and
sharp/smooth to allow users to specify the intended solution. Kale et al. [108]
propose an addition to the frontier algorithm that inserts steps into the solu-
tion plan for checking the inequality conditions: if they are not met, backtrack
through previous steps to obtain the next possible solution. The scheme has
been found to be efficient as long as the inequality checking steps follow very
closely behind the equation solving steps to which they apply.

4.2.6 Other Geometric Primitives in 2D

Gao [109] discusses solving constraints with conics and linkages. There is some
overlap between the constraint solving community and the CAGD community.
Some work has attempted to fuse the two geometric vocabularies, to date with
little practical impact. Examples of this work include [110]. Here, again, one key
problem is that Phase 2 has to work with equation systems of potentially high-
degree. These difficulties can be overcome, in part, with GPU implementations;
[111].

Commercial solvers have been more conservative. They allow the traditional
constraints on parametric curves such as prescribed end tangents, but they also
allow constraints on curve length and maximum curvature; [112].

4.2.7 3D Constraints

The early work was heavily influenced by graph pattern analysis. In contrast
to 2D solvers, however, there seems to be no small subset that is both simple
algebraically and practical in applications. In part this is because 3D is inher-
ently harder than 2D, but the difficulties may also be impacted by the paucity
of 3D user interfaces and practical constraint patterns.

Restricting to points and planes, Michelucci uses the Cayley-Menger deter-
minant to devise an elegant algebraic solution to the octahedron pattern [113].

15



Sitharam [114] analyzes coupled 2D and 3D systems as might arise in assemblies
of variational parts. Gao et al [86] show that the number of basic configura-
tions numbers in the hundreds when lines are allowed as primitive geometric
elements.

Geometry theorems constitute implicit constraints that may not be known
to the solver. One method to expose hidden constraints is the witness method in
which random configurations are investigated for unrecognized incidences and
concurrencies; e.g., [61]. Michelucci and Foufou use the witness method to solve
particular constraint problems, including 3D; [115, 116, 117].

4.2.8 Numerical Methods

With the advent of arbitrarily complex subproblems, numerical solution meth-
ods need to be more competent. There is relatively little work on this aspect.
Shi et al [118] consider the question and propose explicit techniques to isolate
subproblems for subsequent numerical solutions. Gao et al [86] propose to cut
some of the constraints and mapping the problem to a dynamic geometry prob-
lem that is numerically approached. The resulting curves corresponding to the
values of the cut constraints can then be intersected with the required values,
so achieving a solution numerically.

4.3 Open Problems

Geometric constraint solving has benefited from many theoretical and practi-
cal advances. Nonetheless, many open problems remain, both with respect to
understanding the theoretical foundations as well as with respect to providing
applications with better capabilities. We give a sampling of problems now.

It should be remembered that the graph analysis does not account for im-
plicit relationships of the numerical parameters. Thus, even though a constraint
graph may be analyzed as overconstrained, the parameter valuation may con-
tain redundancies and the problem may well have a solution. Moreover, in
3D, a complete characterization of when a graph is well-constrained is not fully
understood; e.g., [88, 89, 90].

Rigid subgraphs, identified by the graph analysis, can have arbitrary com-
plexity, and therefore lead to algebraic equation systems of high degree. This
degree barrier has been attacked with a variety of techniques, including most
recently with GPU-based computations; e.g., [99, 100, 101]. These methods
often rely on rendering the equations as manifolds and using graphics opera-
tions in the GPU to find potential solutions. When the dimensionality of those
manifolds is high, straightforward GPU computations do not suffice and more
abstract conceptualizations are necessary.

Given a well-constrained problem, finding valid parameter ranges is of great
practical interest. Here the difficulty is that the solution space is a complex,
high-dimensional manifold that would be very costly to represent and map out
fully. So, existing techniques consider small sets of parameters to keep the
dimensionality low; e.g., [81, 102, 103, 104, 105]. Effective factorization theorems

16



are needed to allow searching such restricted parameter sets in a way that yields
information about the nature of the global solution range, from these local ones.

Equally of great practical interest is to find an effective strategy for root
identification; i.e., to identify which of the different solution should be selected;
e.g., [67, 106, 107, 108]. As for the case of valid parameter ranges, the space of
possible solutions is large and complex, so that mapping it completely is out of
the question. Moreover, as parameters are varied, different paths through the
solution tree may be necessary, depending on the user’s application. In such a
situation a semi-automated method should be considered, adding the difficulty
of how best to communicate the consequence of choices in the interaction with
the user.

Both in 2D and in 3D it is desirable to seek incorporating additional shape
primitives, and parametric curves and surfaces are an obvious choice; e.g.,
[110, 111, 112]. Here we have a clash of conceptualizations: classical geomet-
ric constraint solvers ultimately solve algebraic equations, whereas in CAGD
many of the degrees of freedom are determined by control points or knots. A
unification of the two bodies of work may well require a radically different ap-
proach. Similarly, specifying constraints of minimum length or bending energy
is of practical interest, yet little is known about incorporating such constraints
on curves and surfaces into geometric constraint problems; [57].

5 Conclusions

Over the last decade, the fundamental representations underlying parametric
control of geometry in CAD systems has changed little. Most of the advances
have been to expand the types of objects and constraints that are recognized
and can be handled robustly. However it has also been recognized that the one-
way dependencies inherent in parametric operations severely limit the flexibility
of parametric CAD for designers and cause it to map poorly to recognized
systematic design processes. This observed inflexibility offers opportunities for
future break-throughs.

Geometric constraint solving methods have been developed over the last
decade to expand significantly the scope of solvers, both in regards to the con-
straint graph structure analysis (Phase 1 of Section 4), as well as the types
of geometric primitives allowed. The expanded vocabulary is in part the re-
sult of new insights into geometric properties, and in part reflects advances in
solver software. In particular, GPU-based equation solvers have been shown to
make formerly difficult subproblems easy through sampling and parallelization.
Graphics coprocessors will have continued impact going forward, but their use
should include more abstracted techniques as explained.

To-date, graph-based constraint solving continues to dominate. The begin-
ning part of the decade saw the achievement of a general understanding of graph-
based solving that allowed it to be broadly applied. Advances in graph-based
solving have also been key with respect to specific sub-challenges, including

17



dealing with under- and overconstrained problems, variable radius circles, iden-
tifying valid parameter ranges, root selection techniques, and 3D constraints.
Nevertheless there are open problems despite these achievements.

Some new approaches have also been developed, for example using evolu-
tionary algorithms. The use of techniques from dynamic geometry and the
consideration of deformable geometric objects are more examples of attempts
to broaden the scope of geometric constraint solving. These advances testify to
a vigorous research field with many applications outside CAD as well.

Acknowledgements

This work was supported in part by the National Science Foundation, by grants
0722210 and 0938999, and by a gift from the Intel Corporation.

References

[1] C. M. Hoffmann and R. Joan-Arinyo. Parametric modeling. In G. Farin,
J. Hoschek, and M.-S. Kim, editors, Handbook of CAGD, pages 519–541.
Elsevier, 2002.

[2] A.A.G. Requicha. Representations for rigid solids: Theory, methods, and
systems. Computing Surveys, 12:437–464, 1980.

[3] Parametric Technology Corp. Cocreate, 2010. URL
www.ptc.com/products/cocreate.

[4] C. M. Hoffmann. Constraint-based computer-aided design. Journal of
Computing and Information Science in Engineering, 5:182–187, 2005.

[5] J. Chung and M. Schussel. Technical evaluation of variational and para-
metric design. Computers in Engineering, 1:289–298, 1990.

[6] J. C. Owen. Algebraic Solution for Geometry from Dimensional Con-
straints. In ACM Symp. Found. of Solid Modeling, pages 397–407, 1991.

[7] W. Bouma, I. Fudos, C. M. Hoffmann, J. Cai, and R. Paige. A geometric
constraint solver. CAD, 27:487–501, 1995.

[8] J. Shah and M. Mantyla. Parametric and Feature-Based CAD/CAM.
Wiley & Sons, Inc., New York, NY, 1995.

[9] S. Venkatamaran. Integration of design by features and feature recogni-
tion. Master’s thesis, Arizona State University, 2000.

[10] R. Bidarra. Validity Maintenance in Semantic Feature Modeling. PhD
thesis, Technische Universiteit Delft, 1999.

18



[11] I. Braid. Non-local blending of boundary models. CAD, 29:89–100, 1996.

[12] E. Hardee, K.-H. Chang, J. Tu, K.K. Choi, I. Grindeanu, and X. Yu.
A CAD-based design parameterization for shape optimization of elastic
solids. Advances in Engineering Software, 30:185–199, 1999.

[13] B. Bettig, V. Bapat, and B. Bharadwaj. Limitations of parametric op-
erators for supporting systematic design. In Proc. ASME Design Engi-
neering Technical Conferences and Computers in Engineering Conference,
DETC2005, 2005.

[14] H.T. Ilies. Parametric solid modeling. In Proceedings of the ASME De-
sign Engineering Technical Conferences and Computers in Engineering
Conference, DETC2006, 2006.

[15] C. Clarke. Super models. Engineer, 294:36–38, 2009.

[16] S. Samuel. CAD package pumps up the parametrics. Machine Design,
78:82–84, 2006.

[17] N. Wu and H. Ilies. Motion-based shape morphing of solid models. In
Proceedings of the ASME Design Engineering Technical Conferences and
Computers in Engineering Conference, IDETC2007, 2007.

[18] Siemens PLM Software. Synchronous technology, 2011.

[19] Y. Wang. Solving interval constraints by linearization in computer-aided
design. Reliable Computing, 13:211–244, 2007.

[20] Y.-E. Nahm and H. Ishikawa. A new 3D-CAD system for set-based para-
metric design. International Journal of Advanced Manufacturing Technol-
ogy, 29:137–150, 2006.

[21] C. M. Hoffmann and R. Joan-Arinyo. A brief on constraint solving.
CAD&A, 2:655–663, 2005.

[22] G. A. Kramer. Using degree of freedom analysis to solve geometric con-
straint systems. In J. Rossignac and J. Turner, editors, Symp. Solid Mod-
eling Found. and CAD/CAM Applic., pages 371–378, 1991.

[23] G. A. Kramer. Solving Geometric Constraint Systems. MIT Press, 1992.

[24] C.-Y. Hsu and B. Brüderlin. A hybrid constraint solver using exact and
iterative geometric constructions. In D. Roller and P. Brunet, editors,
CAD Systems Development: Tools and Methods, pages 266–298. Springer
Verlag, 1997.

[25] R. Latham and A. Middleditch. Connectivity analysis: a tool for process-
ing geometric constraints. CAD, 28:917–928, 1996.

19



[26] B. Freeman-Benson, J. Maloney, and A. Borning. An incremental con-
straint solver. CACM, 33:54–63, 1990.

[27] R. Veltkamp and F. Arbab. Geometric constraint propagation with quan-
tum labels. In Eurographics Workshop on Computer Graphics and Math.,
pages 211–228, 1992.

[28] A. Borning, R. Anderson, and B. Freeman-Benson. Indigo: a local prop-
agation algorithm for inequality constraints. In ACM UIST ’96, pages
129–136, 1996.

[29] B. Aldefeld. Variation of geometric based on a geometric-reasoning
method. CAD, 20:117–126, 1988.

[30] B.D. Brüderlin. Rule-Based Geometric Modelling. PhD thesis, Institut
für Informatik der ETH Zürich, 1988.

[31] B.D. Brüderlin. Symbolic computer geometry for computer aided geo-
metric design. In Advances in Design and Manufacturing Systems, pages
177–181, 1990.

[32] B.D. Brüderlin. Using geometric rewrite rules for solving geometric prob-
lems symbolically. In Theoretical Computer Science 116, pages 291–303,
1993.

[33] W. Sohrt and B.D. Brüderlin. Interaction with constraints in 3D modeling.
IJCGA, 1:405–425, 1991.

[34] Y. Yamaguchi and F. Kimura. A constraint modeling system for varia-
tional geometry. In J.U. Turner M.J. Wozny and K. Preiss, editors, Geo-
metric Modeling for Product Engineering, pages 221–233. Elsevier North
Holland, 1990.

[35] G. Sunde. A CAD system with declarative specification of shape. Euro-
graphics Workshop on Intelligent CAD Systems, pages 90–105, 1987.

[36] A. Verroust, F. Schonek, and D. Roller. Rule-oriented method for param-
eterized computer-aided design. CAD, 24:531–540, 1992.

[37] R. Joan-Arinyo and A. Soto. A correct rule-based geometric constraint
solver. Computers & Graphics, 21:599–609, 1997.

[38] R. Joan-Arinyo and A. Soto. A ruler-and-compass geometric constraint
solver. In M.J. Pratt, R.D. Sriram, and M.J. Wozny, editors, Product
Modeling for Computer Integrated Design and Manufacture, pages 384 –
393, 1997.

[39] B. Buchberger. Multidimensional Systems Theory, chapter Gröbner Bases:
An Algorithmic Method in Polynomial Ideal Theory, pages 184–232. D.
Reidel Publishing, 1985.

20



[40] S.-C. Chou. An introduction to Wu’s method for mechanical theorem
proving in geometry. J. Automated Reasoning, 4:237–267, 1988.

[41] W.-T. Wu. Mechanical theorem proving in geometries. In B. Buchberger
and G. E. Collins, editors, Texts and monographs in symbolic computa-
tions. Springer-Verlag, 1994.

[42] S.A. Buchanan and A. de Pennington. Constraint definition system: a
computer-algebra based approach to solving geometric-constraint prob-
lems. CAD, 25:741–750, 1993.

[43] K. Kondo. Algebraic method for manipulation of dimensional relation-
ships in geometric models. CAD, 24:141–147, 1992.

[44] A. Borning. The programming language aspects of ThingLab, a con-
strained oriented simulation laboratory. ACM TOPLAS, 3:353–387, 1981.

[45] R. Hillyard and I. Braid. Characterizing non-ideal shapes in terms of
dimensions and tolerances. In ACM Computer Graphics, pages 234–238,
1978.

[46] I. Sutherland. Sketchpad, a man-machine graphical communication sys-
tem. In Proc. of the Spring Joint Comp. Conference, pages 329–345.
IFIPS, 1963.

[47] R. Light and D. Gossard. Modification of geometric models through vari-
ational geometry. CAD, 14:209–214, 1982.

[48] V.C. Lin, D.C. Gossard, and R.A. Light. Variational geometry in
computer-aided design. ACM Computer Graphics, 15:171–177, 1981.

[49] G. Nelson. Juno, a constraint-based graphics system. SIGGRAPH, pages
235–243, 1985.

[50] E. Allgower and K. Georg. Continuation and path following. Acta Nu-
merica, 7:1–64, 1993.

[51] H. Lamure and D. Michelucci. Solving geometric constraints by homotopy.
In C. M. Hoffmann and J. Rossignac, editors, Third Symposium on Solid
Modeling and Applications, pages 263–269, 1995.

[52] C. Durand. Symbolic and Numerical Techniques for Constraint Solving.
PhD thesis, Computer Science, Purdue University, 1998.

[53] W.-T. Wu. Basic principles of mechanical theorem proving in geometries.
J. of Systems Sciences and Mathematical Sciences, 4:207–235, 1986.

[54] S.-C. Chou, X.-S. Gao, and J.-Z. Zhang. Automated generation of readable
proofs with geometric invariants: Multiple and shortest proof generation.
Journal of Automated Reasoning, 7:325–347, 1996.

21



[55] S.-C. Chou, X.-S. Gao, and J.-Z. Zhang. Automated generation of read-
able proofs with geometric invariants: Theorem proving with full angles.
Journal of Automated Reasoning, 7:349–370, 1996.

[56] M. Moll and L. Kavraki. Path planning for deformable linear objects.
IEEE J. Robotics, 22:625–636, 2006.

[57] Y. J. Ahn, C. M. Hoffmann, and P. Rosen. Length and energy of quadratic
Bézier curves and applications. to appear, 2011.

[58] F. Bao, Q. Sun, J. Pan, and Q. Duan. A blending interpolator with value
control and minimal strain energy. Computers and Graphics, 34:119–124,
2010.

[59] I. Ginkel and G. Umlauf. Local energy-optimizing subdivision algorithms.
Computer Aided Geometric Design, 25:137–147, 2008.

[60] Y. Xu, A. Joneja, and K. Tang. Surface deformation under area con-
straints. CAGD, 6:711–719, 2009.

[61] U. Kortenkamp and J. Richter-Gebert. The Interactive Geometry Software
Cinderella.2. Springer Verlag, Berlin, 2010.

[62] M. Freixas, R. Joan-Arinyo, and A. Soto-Riera. A constraint-based dy-
namic geometry system. In Solid and Physical Modeling, pages 37–46.
ACM, 2008.

[63] C. Cao, B. Zhang, L. Wang, and W. Li. The parametric design based
on organizational evolutionary algorithm. In PRICAI 2006 - 9th Pacific
Rim International Conference on Artificial Intelligence, pages 940–944.
Springer Lect. Notes in AI 4099, 2006.

[64] H. Yuan, W. Li, R. Yi, and K. Zhao. The TPSO algorithm to solve geo-
metric constraint problems. Computational Information Systems, 2:1311–
1316, 2006.

[65] X.-Y. Gao, L.-Q. Sun, and D.-S. Sun. Artificial immune-chaos hybrid
algorithm for geometric constraint solving. Inf. Technology J., pages 360–
365, 2009.

[66] I. Fudos. Constraint Solving for Computer Aided Design. PhD thesis,
Purdue University, Department of Computer Sciences, 1995.

[67] I. Fudos and C. M. Hoffmann. Correctness proof of a geometric constraint
solver. Intl. J. of Computational Geometry and Applications, 6:405–420,
1996.

[68] C. M. Hoffmann and J. Peters. Geometric constraints for CAGD. In
M. Daehlen, T. Lyche, and L. Schumaker, editors, Mathematical Meth-
ods for Curves and Surfaces, pages 237–254. Vanderbilt University Press,
1995.

22



[69] I. Fudos and C. M. Hoffmann. Constraint-based parametric conics for
CAD. CAD, 28:91–100, 1996.

[70] I. Fudos and C. M. Hoffmann. A graph-constructive approach to solving
systems of geometric constraints. ACM Trans on Graphics, 16:179–215,
1997.

[71] C. M. Hoffmann and R. Joan-Arinyo. Symbolic constraints in constructive
geometric constraint solving. J of Symbolic Computation, 23:287–300,
1997.

[72] C. M. Hoffmann and P. J. Vermeer. Geometric constraint solving inR2 and
R3. In D. Z. Du and F. Hwang, editors, Computing in Euclidean Geometry,
pages 266–298. World Scientific Publishing, 1994. second edition.

[73] C. M. Hoffmann and P. J. Vermeer. A spatial constraint problem. In J.-P.
Merlet and B. Ravani, editors, Computational Kinematics, pages 83–92.
Kluwer Acad. Publ., 1995.

[74] C. Durand and C. M. Hoffmann. Variational constraints in 3D. In Proc.
Intl Conf on Shape Modeling and Appl, pages 90–97, 1999.

[75] C. Durand and C. M. Hoffmann. A systematic framework for solving
geometric constraints analytically. JSC, 30:493–520, 2000.

[76] C. M. Hoffmann and B. Yuan. On spatial constraint solving approaches.
In Proc. ADG 2000, ETH Zurich, page in press, 2000.

[77] C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Finding solvable sub-
sets of constraint graphs. In Principles and Practice of Constraint Pro-
gramming – CP97, pages 463–477. Springer LNCS 1330, 1997.

[78] C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Geometric constraint
decomposition. In Bruderlin B. and Roller D., editors, Geometric Constr
Solving and Appl, pages 170–195, 1998.

[79] C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Decomposition plans
for geometric constraint problems, Part I: performance measures for CAD.
JSC, 31:367–408, 2001.

[80] C. M. Hoffmann, A. Lomonosov, and M. Sitharam. Decomposition plans
for geometric constraint problems, Part II: new algorithms. JSC, 31:409–
428, 2001.

[81] R. Joan-Arinyo and A. Soto-Riera. Combining constructive and equational
geometric constraint solving techniques. ACM ToG, 18:35–55, 1999.

[82] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vilaplana. On
the domain of constructive geometric constraint solving techniques. In
R. Duricovic and S. Czanner, editors, IEEE Spring Conference on Com-
puter Graphics, pages 49–54, Budmerice, Slovakia, 2001.

23



[83] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vilaplana. Declar-
ative characterization of a general architecture for constructive geometric
constraint solvers. In D. Plemenos, editor, The Fifth International Con-
ference on Computer Graphics and Artificial Intelligence, pages 63–76,
Limoges, France, 2002.

[84] R. Joan-Arinyo, A. Soto-Riera, S. Vila-Marta, and J. Vilaplana. Revisiting
decomposition analysis of geometric constraint graphs. CAD, 36:123–140,
2004.

[85] C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. Decomposition of
geometric constraints systems: A survey. IJCGA, 23:1–35, 2006.

[86] X.-S. Gao, C. M. Hoffmann, and W. Yang. Solving spatial basic geometric
constraint configurations with locus intersection. In Solid Modeling ’02,
pages 95–104, 2002.

[87] X.-S. Gao, C. M. Hoffmann, and W. Yang. Solving spatial basic geometric
constraint configurations with locus intersection. CAD, 36:111–122, 2004.

[88] M. Sitharam and Y.Zhou. A tractable, approximate characterization of
combinatorial rigidity in 3d. In 5th Automated Deduction in Geometry,
2004.

[89] H. Gao and M. Sitharam. Characterizing 1-dof Henneberg graphs with
efficient configuration spaces. arXiv:0810.1997v2, 2008.

[90] P. Mathis and S. Thierry. A formalization of geometric constraint systems
and their decomposition. Formal Aspects of Computing, 22:129–151, 2010.

[91] H. van der Meiden. Semantics of Families of Objects. PhD thesis, Delft
University of Technology, Netherlands, 2008.

[92] H. van der Meiden and W. Bronsvoort. A non-rigid cluster rewriting
approach to solve systems of 3d geometric constraints. CAD, 42:36–49,
2010.

[93] C. M. Hoffmann, M. Sitharam, and B. Yuan. Making constraint solvers
useable: overconstraints. CAD, 36:377–399, 2004.

[94] R. Joan-Arinyo, A. Soto-Riera, and M. Vilaplana-Pastó. Transforming
an underconstrained geometric constraint problem into a well-constrained
one. In Symp. on Solid Modeling and appl., pages 33–44. ACM, 2003.

[95] C. Jermann and H. Hosobe. A constraint hierarchies approach to geomet-
ric constraint sketches. In 23rd SAC ’08, pages 1843–1844. ACM, 2008.

[96] C.-S. Chiang and C. M. Hoffmann. Variable-radius circles in cluster merg-
ing, part I: Translational clusters. CAD, 34:787–797, 2001.

24



[97] C.-S. Chiang and C. M. Hoffmann. Variable-radius circles in cluster merg-
ing, part II: Rotational clusters. CAD, 34:799–805, 2001.

[98] C.-S. Chiang and R. Joan-Arinyo. Revisiting variable-radius circles in
constructive geometric constraint solving. CAGD, 221:371–399, 2004.

[99] C. M. Hoffmann, C.-S. Chiang, and P. Rosen. Hardware assist for con-
strained circle constructions I. CAD&A, 7:17–33, 2010.

[100] C. M. Hoffmann, C.-S. Chiang, and P. Rosen. Hardware assist for con-
strained circle constructions II. CAD&A, 7:33–44, 2010.

[101] C.-S. Chiang, C. M. Hoffmann, and P. Rosen. A generalized Malfatti
problem. Computational Geometry Theory and Applications, forthcoming,
2010.

[102] C. M. Hoffmann and K.-J. Kim. Towards valid parametric CAD models.
CAD, 33:81–90, 2001.

[103] H. van der Meiden and W. Bronsvoort. A constructive approach to calcu-
late parameter ranges for systems of geometric constraints. CAD, 38:275–
283, 2006.

[104] R. Joan-Arinyo and N. Mata. Applying constructive geometric constraint
solvers to geometric problems with interval parameters. Nonlinear Anal-
ysis, Theory, Methods and Applications, 47:213–224, 2001.

[105] K. Mekhnacha, E. Mazer, and P. Bessiere. The design and implementation
of a bayesian CAD modeler for robotic applications. Advanced Robotics,
15:45–69, 2001.

[106] M. Sitharam, A. Arbree, Y. Zhou, and N. Kohareswaran. Solution man-
agement and navigation for 3d geometric constraint systems. ACM TOG,
25:194–213, 2006.

[107] B. Bettig and J. Shah. Solution selectors: a user-oriented answer to the
multiple solution problem in constraint solving. Journal of Mechanical
Design, 125:443–451, 2003.

[108] V. Kale, B. Bettig, and V. Bapat. Geometric constraint solving with solu-
tion selectors. In Proc. ASME Design Engineering Technical Conferences
& Computers and Information in Engineering Conference, DETC2008,
2008.

[109] X.-S. Gao, K. Jiang, and C.-C. Zhu. Geometric constraint solving with
conics and linkages. CAD, 34:421–433, 2002.

[110] V. Cheteut, M. Daniel, S. Hahmann, R. LaGreca, J. Lon, R. Maculet, and
B. Sauvage. Constraint modeling for curves and surfaces in CAGD. Intl.
J. of Shape Modeling, 13:159–199, 2007.

25



[111] Y.-J. Ahn and C. M. Hoffmann. Constraint-based ln-curves. In SAC,
pages 1242–1246, 2010.

[112] I. Hanniel and K. Haller. Solving global geometric constraints on free-form
curves. In ACM Symp. Solid & Phys. Modeling, pages 307–312, 2009.

[113] D. Michelucci. Using Cayley Menger determinants. In Proc. 2004 ACM
Symposium on Solid Modeling, pages 285–290, 2004.

[114] M. Sitharam, J. Oung, A. Arbree, and Y. Zhou. Mixing features and
variational constraints in 3d. CAD, 38, 2006.

[115] S. Foufou, D. Michelucci, and J.-P. Jurzak. Numerical decomposition of
geometric constraints. In Symp. Solid Modeling and Appl., pages 143–151.
ACM, 2005.

[116] D. Michelucci and S. Foufou. Geometric constraint solving: The witness
configuration method. CAD, 38:284–299, 2006.

[117] D. Michelucci and S. Foufou. Interrogating witnesses for geometric con-
straint solving. In SIAM/ACM Joint Conf. Geom. Phys. Modeling, pages
343–348, 2009.

[118] Z. Shi and L. Chen. Simplified iterative algorithm to solve geometric
constraints. Journal of Computer-Aided Design and Computer Graphics,
18:787–792, 2006. in Chinese.

26


