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SUMMARY

Computational models of plants have identified gaps in our understanding of biological systems, and have

revealed ways to optimize cellular processes or organ-level architecture to increase productivity. Thus, com-

putational models are learning tools that help direct experimentation and measurements. Models are sim-

plifications of complex systems, and often simulate specific processes at single scales (e.g. temporal,

spatial, organizational, etc.). Consequently, single-scale models are unable to capture the critical cross-scale

interactions that result in emergent properties of the system. In this perspective article, we contend that to

accurately predict how a plant will respond in an untested environment, it is necessary to integrate mathe-

matical models across biological scales. Computationally mimicking the flow of biological information from

the genome to the phenome is an important step in discovering new experimental strategies to improve

crops. A key challenge is to connect models across biological, temporal and computational (e.g. CPU versus

GPU) scales, and then to visualize and interpret integrated model outputs. We address this challenge by

describing the efforts of the international Crops in silico consortium.

Keywords: photosynthesis, flux modeling, whole-plant architecture, transcriptional regulation, multiscale

modeling.

INTRODUCTION: IN SILICO APPROACHES HELP US

LEARN WHAT TO MEASURE

Computational models provide simplified representations

of real-world systems and structures that help to describe

and understand biological complexity. As plant science

becomes increasingly computational, models are in effect

quantitative hypotheses that may combine multiple lines

of understanding to design definitive experiments or direct

observations. However, models contain a number of

assumptions to substitute for incompletely measured or

unmeasured processes, and thus are not complete repre-

sentations of a system. Likewise, models built on existing

knowledge and theory may be difficult to test and validate
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if the data needed for comparison do not exist. These

aspects of mathematical models can be viewed as limita-

tions or, alternatively, as opportunities for discovery. Gaps

in models and validation reflect gaps in data collection,

and can serve as inspiration for experimentation or the cre-

ation of new technologies to obtain key missing data. For

example, mathematical models of the circadian oscillator

in Arabidopsis thaliana led to the development of experi-

ments to resolve transcriptional regulation by a nega-

tive�negative feedback loop (for review, see Bujdoso and

Davis, 2013; Chew et al., 2014). Spatial models of plant cell

and organ development have led to the repurposing of

existing or design of new imaging technologies (Fernandez

et al., 2010; Federici et al., 2012; Jiang et al., 2019). Like-

wise, model guided bioengineering resulted in field

demonstrations of increased photosynthetic efficiency

resulting in substantial productivity gains (Kromdijk et al.,

2016; South et al., 2019).

Multiscale modeling may refer to the integration of data

within and between micro (cellular level) and macro (organ

and/or ecosystem levels) scales. For example, multiscale

modeling that takes advantage of high-throughput ‘-omics’

data and their integration can reveal interactions within

and across molecular scales to uncover emergent proper-

ties, such as growth, development, reproduction and

senescence, that cannot be attributed to any single level in

the system (Fischer, 2008). Likewise, the integration of data

from micro-scales can guide observations made at the

macro-scale and vice-versa. The idea that an integrated

model can be used to help scientists visualize phenomena

that they cannot see is particularly helpful for predicting

how plant growth and development will respond to differ-

ent environmental signals (Lynch, 2007).

Compared with mammalian systems, the growth and

development of plants is a remarkably plastic process.

Even among genetically identical individuals of the same

species, biochemical, cellular and architectural characteris-

tics may dramatically change in response to different envi-

ronmental cues (Sultan, 2000; Des Marais et al., 2013). The

abundance of key floral and fruit volatile compounds in

genetically identical petunia, tomato, strawberry or blue-

berry plants varies in response to the relative availability of

specific wavelengths of light (Colquhoun et al., 2013). A

change in photoperiod can increase the total number of

leaves initiated by the same Arabidopsis genotype by six-

fold (Morris et al., 2010). Reductions in CO2 abundance and

temperature alter both the vegetative and inflorescence

sexuality of teosinte (Piperno et al., 2015). A better under-

standing of phenotypic plasticity and the genetic and

molecular factors that govern responses to the environ-

ment may help to identify crop ‘ideotypes’, which are ide-

alized crops able to adapt and thrive in certain

environments. The variances in how different plant culti-

vars will respond to changes in growing conditions,

whether positive or negative, can be modeled as genotype

by environment interactions (G 9 E). In some cases in the

literature, the general class of ‘environmental’ interactions

is subdivided into ‘management’ (environmental factors

humans can influence, e.g. planting density, fertilizer appli-

cation, irrigation practices, etc.) and ‘environment’ (envi-

ronmental factors not subject to human constraint, e.g.

temperature, rainfall, soil type, solar radiation intensity,

etc.; Wang et al., 2019). Such G 9 E 9 M interactions can

be observed and quantified in models that use data from

panels of related genotypes, increasing the accuracy with

which phenotypic values can be predicted for lines not pre-

viously tested in a given environment (Jarqu�ın et al., 2014).

However, the absence of mechanistic models for why a

given genotype will respond in a certain way in a given

environment makes it difficult to predict how a plant will

respond in untested environments. Simulations from inte-

grative, multiscale models can quickly investigate new sce-

narios to test how the system of interest will respond to

perturbations, and develop hypotheses to guide experi-

mental design and/or new technologies to obtain measure-

ments that will help to future-proof our food supply.

Equally, it may identify root or canopy ideotypes that

would better adapt a crop to a given environment, either

current or future (Srinivasan et al., 2017).

In this perspective, we provide a number of examples in

which mathematical models at individual biological scales

have guided experimentation and scientific innovation. We

specifically explore the utility of Physiological Crop

Growth, Functional-Structural Models of roots, Metabolic

Flux Models, and Gene Regulatory Network (GRN) Models

(Figure 1). We then contend that by integrating models

across scales, we can identify emergent properties of

dynamic biological systems. The insights gained from the

multiscale models can direct experimental measurements

and technological developments to help us better under-

stand how crops will respond to future climates. Model

integration also creates new computational challenges for

the visualization of multiscale model simulations that will

allow researchers to intuitively interpret the results of

cross-scale interactions. This challenge is discussed as an

important future direction for the field.

MATHEMATICAL MODELING GUIDES EXPERIMENTATION

AND DISCOVERY

Physiological crop growth models

Physiological crop growth models (CGMs), i.e. mathemati-

cal models dictating processes related to crop growth at

above-organ (organ, plant, field, ecosystem) scales, are

designed to simulate crop responses to environmental

variations and their integrated impacts on productivity

(Jones et al., 2003; Holzworth et al., 2014). CGMs often

include a set of parameters that describe a specific crop or
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specific genotype of a crop, and a set of time series envi-

ronmental data to drive the simulation. These CGMs are

built upon the collective experimental evidences and theo-

retical understanding of how a plant will develop through-

out the growing season under different environmental

conditions. In the last two decades, CGMs have been

expanded to include genotypic data to predict the emer-

gent phenotypic outcome from complex interactions

among genotype, environment and management (Wang

et al., 2019). Such models have been shown to increase

the accuracy with which plant phenotypic outcomes can be

predicted, particularly in unobserved environments and

genotypes (Cooper et al., 2016; Messina et al., 2018). These

CGMs provide the potential to predict performance not

only of observed plants, but also of hypothetical plants

with modestly different parameter/trait values (Messina

et al., 2018). In this section, we will discuss how simulation

studies using accurately parameterized and validated

CGMs can be used to predict which parameters (i.e. com-

ponent traits) are important for determining the final val-

ues of compound traits, and which specific values provide

optimal outcomes (Hammer et al., 2010).

Crop growth models identify bottleneck traits for further

study. Crop growth models have been used to identify

bottleneck traits for high productivity under different envi-

ronmental and management conditions (Hammer et al.,

2006, 2010; Messina et al., 2019). In one example, crop

model simulations were used to explore the potential dri-

vers related to canopy and root architectures for the

observed yield trend in the US Corn Belt (Hammer et al.,

2009). Recent developments in cross-scale crop models

have enabled in silico testing of the impact that different,

and even hypothetical, photosynthetic manipulations will

have on yield under real environmental conditions (Yin

and Struik, 2017; Wu et al., 2019). Wu et al. (2019) tested

the coupling and decoupling of photosynthesis and stom-

atal conductance (A-gs) in their model, and found that cou-

pled A-gs results in rapid depletion of soil moisture early

in the growing season, thus decoupled A-gs is the pre-

ferred scenario in water-limiting conditions to improve

crop growth. However, whether a decoupled A-gs scenario

is possible for any photosynthetic manipulation remains

unclear. The results of this study suggest that better repre-

sentation of the photosynthesis–stomatal conductance link

in the crop model is required to recapitulate experimental

observations taken over different environmental condi-

tions, especially those under water-stressed conditions.

Computational crop growth models can assess manage-

ment adaptations and environmental impacts. Besides

environmental variations, genetic gain in crop production

at large scales is also affected by management practices.

CGMs can be used to design better management practices,

which can complement with genetic improvement for

higher crop productivity in the field. Many studies have

explored different management changes to sustain crop

production under climate change. Among these efforts,

Hammer et al. (2014) used CGMs to optimize the crop

management practices (planting window, density, and row

configuration) for either a fixed, broadly adapted, or

region-specific adapted sorghum genotypes in Australia,

demonstrating that environment-specific adaptation can

confer both yield and production risk advantages at indus-

try scale. Modeling was used to optimize genotype selec-

tion and agronomy in response to altered management

with the introduction of the more efficient two-row sugar-

cane harvesters in Brazil (Wang et al., 2017). With more

attention to sustainable agriculture (Gliessman, 1990; Hor-

rigan et al., 2002; Conway and Barbier, 2013), the environ-

mental impacts of agriculture cultivation should also be

considered in optimizing the genetic and management

Figure 1. Four types of models functioning at dif-

ferent scales can potentially be integrated together

within a multiscale modeling framework.
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improvement strategies (Peng et al., 2020), which will

require interfacing field-scale CGMs with large-scale hydro-

logical, ecosystem, climate and economic models (van

Ittersum et al., 2008; Sacks and Kucharik, 2011; Levis et al.,

2012; J€agermeyr et al., 2016; Peng et al., 2018).

Functional�structural models

Three-dimensional simulations of root systems and cano-

pies guide the breeding of more resilient crops. Root and

canopy phenotypes with superior ability to acquire water

and nutrients are promising selection targets to develop

the resource-efficient, climate-resilient crops urgently

needed in global agriculture (Lynch, 2007; Srinivasan et al.,

2017). A number of technologies, such as high-throughput

phenotyping, have been developed to rapidly measure

canopy architecture. However, a primary obstacle for

exploring root phenes is the complexity and opacity of the

fitness landscape of root phenotypes. Root systems are

highly complex, dynamic entities growing in a highly com-

plex, dynamic, diverse and opaque medium. Empirical

approaches to analyze the structure�function relationships

of root phenotypes are invasive, difficult, and subject to

serious artifacts. This problem is therefore well suited to in

silico approaches (Vos et al., 2010; Dunbabin et al., 2013;

Lobet et al., 2017; Passot et al., 2018; Postma and Black,

2020). In this section, we provide a case study of the utility

of modeling approaches to understand root/soil interac-

tions, using as an example the heuristic, functional�struc-

tural plant model SimRoot (Lynch et al., 1997; now

OpenSimRoot, Postma et al., 2017), which has been criti-

cally important in several aspects of this effort (Figure 2),

including: (i) evaluating trait utility; (ii) discovering new

traits; (iii) estimating processes that we cannot control or

measure; (iv) exploring decision spaces that are too vast to

explore empirically; (v) evaluating phenotypes and envi-

ronments that do not exist in nature; and (vi) augmenting

empirical phenotyping platforms.

Evaluating trait utility. Root cortical aerenchyma (RCA) is

formed by conversion of living parenchyma cells to air

space via programmed cell death, thereby reducing the

metabolic cost (i.e. C and nutrient requirements) of root tis-

sue. To test the hypothesis that reduced root metabolic

costs would allow greater soil exploration and nutrient

capture, SimRoot was used to estimate the effects of vary-

ing RCA formation in maize and common bean for P cap-

ture, and in maize for the capture of N, P and K, as a

function of nutrient availability (Postma and Lynch, 2010,

2011). Results showed a substantial benefit of RCA for

nutrient capture in maize, which as a monocot has a more

persistent cortex than dicot species like bean (Strock et al.,

2018). Simulation results were later validated by empirical

research, which showed that in maize, natural genotypic

variation for RCA formation is associated with greater

capture of N (Saengwilai et al., 2014a), P (Galindo-Cas-

ta~neda et al., 2018) and water (Zhu et al., 2010; Chimungu

et al., 2015) in the field and in controlled environments in

which those resources limited growth.

Discovering new traits. SimRoot studies examining how

root phenes (i.e. elements of a phenotype; York et al., 2013)

interact to affect soil exploration highlighted the potential

importance of the number of crown roots (CN) in maize root

phenotypes (York et al., 2015). Initially CN was varied as

‘background’ phenotypic variation in studies focused on

the growth angle of crown roots, but the strong effect of CN

on nutrient capture in silico prompted a closer examination

of natural genotypic variation for CN in maize. In the field

and controlled environments, reduced CN was associated

with greater root depth, and greater capture of N under N

stress (Saengwilai et al., 2014b), and water under water def-

icit stress (Gao and Lynch, 2016). In contrast, greater CN

was associated with reduced root depth and therefore

greater capture of P from low-P soil (Sun et al., 2018).

Estimating processes that are difficult to control or mea-

sure. Competition for soil resources within and among

neighboring root systems is an important element of root

foraging efficiency that is exceedingly difficult to measure

empirically. SimRoot was used to test the hypothesis that

ancient maize/bean and maize/bean/squash polycultures

are more productive on low-fertility soils than their respec-

tive monocultures, because of niche complementarity.

Figure 2. SimRoot image of maize root system dynamically interacting with

a nitrate-leaching pulse.
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Simulations predicted better soil exploration and N capture

in the polyculture than in monoculture (Postma and Lynch,

2012), which was later validated in field studies (Zhang

et al., 2014a).

Exploring decision spaces that are too vast to explore

empirically. The interactions of dozens of root phenes

with each other and with a wide range of soil and atmo-

spheric environmental conditions create a vast decision

space that would be infeasible to explore through empiri-

cal experimentation. Furthermore, SimRoot is able to vary

individual phenes and conditions in isolation, which is very

challenging to achieve empirically. As an example, a Sim-

Root study of how axial root phenotypes in common bean

interact to influence the capture of N and P found that the

utility of a root architectural phenotype is determined by

whether the constituent phenes are synergistic or antago-

nistic, and that no single phenotype is optimal across con-

trasting environments (Rangarajan et al., 2018). This

approach is now being extended to optimize root pheno-

types across a wide range of soils and geographic loca-

tions.

Evaluating phenotypes and environments that do not exist

in nature. Whether it is evaluation of unique root pheno-

types or simulating future climates, in silico approaches

have unique value in the analysis of scenarios that do not

exist in nature. For example, SimRoot was useful in simu-

lating N capture by maize roots with altered nitrate uptake

kinetics, to show that existing phenotypes may be

improved through breeding (York et al., 2016). In another

example, SimRoot was useful in showing how specific root

phene states contribute to the greater N capture of modern

maize cultivars in response to density and fertilizer regimes

over 100 years of maize breeding (York et al., 2015).

Augmenting empirical phenotyping platforms. High-

throughput phenotyping of crop germplasm is a challenge

for root phenotypes. In silico tools like OpenSimRoot will

be useful in extending to entire root systems what can only

be readily observed in root crowns, for example (Trachsel

et al., 2011; Colombi et al., 2015; Burridge et al., 2016), or

in extending measurements of young plants, which are

easier to measure, to mature plants, which are more chal-

lenging.

SimRoot and its successor OpenSimRoot have been

critically useful in understanding the fitness landscape of

root phenotypes for water and nutrient capture, which

has led to the breeding of more stress-tolerant, resource-

efficient crops (Burridge et al., 2019). The integration of

root models at the tissue, organ, organism and stand

scales, as exemplified by SimRoot and OpenSimRoot,

with models at cellular and subcellular scales, together

with robust models of shoots, soil, microbes and diverse

agroecologies, will comprise increasingly powerful tools

in guiding the development of the crops and cropping

systems needed to sustain a growing human population

amidst a degrading environment. This has become possi-

ble with the advent of model interconnectors that can

effectively exchange inputs and outputs from one model

(e.g. OpenSimRoot) to another model, such as a shoot

model, even though the two may be coded in different

languages (Lang, 2019).

Parallel 3D representation of canopies has similarly

allowed both understanding of the impacts of dynamic

changes in light at the leaf level, leading to interventions

that have improved productivity, and have identified ideo-

types that would allow increased productivity and water

use efficiency (for review, see Wang et al., 2020).

Metabolic flux and Gene Regulatory Network models

The genetic manipulation of crop growth and architecture

requires knowledge about the underlying metabolic fluxes

that underpin nutrient assimilation and growth. Func-

tional�structural models typically represent metabolic pro-

cesses in a relatively simplistic form, and there is

substantial scope for more detailed models of metabolism

to be embedded within whole-plant models (Baldazzi et al.,

2012). If we consider the crop in terms of the efficiency with

which it assimilates and utilizes absorbed inorganic nutri-

ents, then models of the integrated metabolic systems for

nutrient assimilation and conversion into biomass compo-

nents are of key importance. In this section, we will discuss

how the predictions of metabolic system models can be

exploited. We refer the readers to recent reviews that cover

the methodological approaches for modeling metabolism

and the scope/limitations of metabolic models (N€agele and

Weckwerth, 2012; Rohwer, 2012; Kruger and Ratcliffe, 2015;

Dersch et al., 2016; Basler et al., 2018). For this purpose, we

will assume a metabolic model is in place that simulates

the hundreds of reactions of central metabolism with good

accuracy. We will also assume that the goal is to manipu-

late the existing metabolic system rather than to introduce

entirely new, synthetic pathways. Although synthetic path-

way design holds great promise for improvement of plant

metabolism (Schwander et al., 2016; Erb et al., 2017;

Trudeau et al., 2018), the use of models to guide synthetic

pathway design in plants is in its infancy but has resulted in

a recent success in terms of increased productivity (K€uken

and Nikoloski, 2019; South et al., 2019).

Optimizing flux distributions. There are three principal

ways in which the information from metabolic models can

be used. The first is to exploit the fact that many metabolic

models predict optimal flux distributions with respect to a

specific objective, often growth. By comparison of the opti-

mal flux distribution against reality, inefficiencies in the

crop can be identified. For example, when a multi-tissue
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source-sink model of metabolism was optimized for

whole-plant growth, it was found that it was more efficient

to transfer all nitrate taken up by the roots to the shoot for

assimilation into amino acids (Shaw and Cheung, 2018).

The nitrogen requirement of the root was serviced by

transporting amino acids back to the root from the shoot.

In reality, a variable but significant amount of nitrogen

assimilation typically occurs directly in the root (Andrews,

1986). The comparison of model versus reality therefore

leads to the hypothesis that crop growth would be

increased if more nitrate assimilation occurred in the shoot

(Amthor et al., 2019). High-efficiency flux modes in the leaf

metabolic network have also been identified, requiring

altered flows of ATP and reducing equivalents between

subcellular compartments and increased use of mitochon-

drial oxidative phosphorylation during the light (Shameer

et al., 2019).

Capacity limitations of metabolic systems. The second

way in which metabolic models can be used, is to identify

capacity limitations within the metabolic network. The Vmax

of enzymes in central metabolism are generally in excess

of the flux (Junker et al., 2007; Colombi�e et al., 2015; Sch-

wender et al., 2015), meaning that capacity limitations are

rare. However, the rapid change in environmental condi-

tions in recent decades, such as the increase in atmo-

spheric CO2, leads to a situation in which the capacity of

the metabolic system has not caught up with the higher

carbon assimilation rates that result. Metabolic modeling

has been used to identify enzymes in photosynthetic car-

bon metabolism that have become limiting under modern

CO2 conditions (Zhu et al., 2007). This was done using an

evolutionary algorithm to optimize the amount of enzymes

(assuming a constant amount of total enzyme) in a kinetic

model of the chloroplast electron transport chain, the

Calvin�Benson�Bassham (CBB) cycle, photorespiration,

starch biosynthesis and sucrose biosynthesis. When the

actual amounts of these enzymes were compared with the

model-optimized amounts (with the model run under the

then current atmospheric CO2 concentration of

380 mmol mol�1), it was predicted that greater photosyn-

thetic assimilation would be achieved with substantial

increases in the amounts of the CBB enzymes sedoheptu-

lose bisphosphatase and fructose bisphosphate aldolase

and the starch biosynthetic enzyme ADP-glucose

pyrophosphorylase. Further, if increased triose phosphate/

3PGA export from the chloroplast was allowed, then the

model also predicted an increase in cytosolic fructose bis-

phosphatase to increase cytocolic sucrose biosynthesis.

The predicted effects of increasing the two CBB cycle

enzymes have been confirmed in a range of transgenic

plants (Miyagawa et al., 2001; Lefebvre et al., 2005;

Uematsu et al., 2012; K€ohler et al., 2017; Simkin et al.,

2017). Additionally, transgenic plants with increased leaf

ADP-glucose pyrophosphorylase (Gibson et al., 2011) and

increased leaf sucrose synthesis (Jonik et al., 2012) also

showed increased photosynthetic assimilation rate and

enhanced growth. There is clearly potential to extend this

type of analysis to the wider plant metabolic network and

to include nitrogen assimilation as well as carbon assimila-

tion.

Transcriptional regulation of metabolic networks. So far,

we have considered the identification of direct targets

within the metabolic system itself – i.e. genes encoding

enzymes or transporters of metabolites. However, it is also

possible to link the changes in the metabolic system to

those of the GRN that regulates enzyme levels (Laksh-

manan et al., 2016; Mohanty et al., 2016), which is the third

way in which metabolic models can be used. Regulatory

information can be layered on top of metabolic networks

using information from the transcriptome. GRN analysis

can be done to identify putative transcriptional regulators

of transporters and metabolic genes. One successful way

to construct a GRN is to use available genome-level infor-

mation for a species to identify and analyze putative pro-

moter regions for regulatory elements such as

transcription factor binding motifs (Gutierrez et al., 2008;

Para et al., 2014; Varala et al., 2018). When promoter analy-

sis is combined with co-expression analysis of transcripts,

robust predictions can be made about positive and nega-

tive regulatory relationships (Vandepoele et al., 2009;

Kulkarni et al., 2018). Network analysis can then be used to

identify important regulatory nodes in the GRN. Nodes that

exert a large amount of control over the entire network are

referred to as hub genes that can sometimes be master

regulators of all or portions of biological pathways and

processes. Thus, network analysis can help to identify

genes to target for experimental, functional analysis (for

review, see Gehan et al., 2015; Marshall-Col�on and Klieben-

stein, 2019). Likewise, GRN analysis can identify co-regu-

lated genes involved in common pathways and processes,

which can also direct experimental efforts by revealing

what biological level may uncover a phenotype in

response to a genetic or environmental perturbation that

alters the transcriptome. This was recently demonstrated

in a multiscale model of soybean photosynthesis, in which

GRN, metabolic flux and micro-meteorological models

were integrated to simulate soybean response to elevated

[CO2]. This study examined key regulatory points in meta-

bolic flux and then explored how the genes encoding the

most influential enzymes in the light reactions of photo-

synthesis are regulated at the transcriptional level (Kannan

et al., 2019). Other examples in maize include the use of

GRNs to predict tissue-specific regulation by transcription

factors (Huang et al., 2018) and the molecular mechanisms

contributing to the process of natural leaf senescence

(Zhang et al., 2014b). Likewise, a multiscale digital model
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of Arabidopsis linked multiple interaction processes from

regulation of gene expression to plant structure and bio-

mass, and accurately predicted the difference in above-

ground biomass between two Arabidopsis accessions

(Chew et al., 2014).

CURRENT EFFORTS TOWARD MULTISCALE MODELING

AND FUTURE DIRECTIONS

The above examples show that mathematical models at

single scales (e.g. micro or macro) can form explanations

of biological phenomena and guide the development of

measurements to test model-generated hypotheses. Addi-

tional gaps in our knowledge and missing measurements

may not be revealed until models are integrated across

scales in an attempt to reveal emergent properties of the

system, particularly in tight feedback loops where non-lin-

ear behaviors may manifest through the combination of

systems governed by different methods (e.g. between

‘rule-based’ and stochastic systems, as described in Qu

et al., 2011). By combining modeling efforts into an inte-

grated, multiscale model where boundaries are well-identi-

fied but also high-dimensional, in silico experimentation

can test ‘what if’ scenarios, and potentially identify mean-

ingful new measurements and manipulations to consider.

Scenario testing with integrated models is one goal of the

Crops in silico consortium (cropsinsilico.org; Marshall-

Colon, et al., 2017). Optimization of model representations

at the level of photosynthesis, the canopy, or the root sys-

tem, has already led to improvements at the plant and field

level. However, the greatest prizes will clearly come from

the ability to mathematically optimize more complete inte-

grated systems.

As experimentation can only cover limited G 9 E 9 M

space in reality, crop modeling provides a feasible way to

assess the impacts of genetic improvements at large scales

(Sinclair et al., 2010, 2019; Messina et al., 2015, 2018). How-

ever, this requires an effective bridge to fine-scale (i.e.

gene network, molecular, metabolic, tissue and organ)

models and enable the testing of gene-level improvements

on broad geographic regions using crop models. The chal-

lenge lies in the inherent scale differences between physio-

logical crop models and fine-scale cellular models that are

on different biological, temporal and computational scales

(Baldazzi et al., 2012; Band et al., 2012; Hill et al., 2013).

Developing flexible, robust mechanisms for connecting

independently developed models that operate across a

wide range of spatial and temporal scales has substantial

impact both within the domain of crop sciences and exter-

nal to it. The development of an intuitive computational

framework to facilitate model integration is another key

goal of the Crops in silico consortium. The yggdrasil

framework (Lang, 2019) provides a mechanism for building

flexible, and yet compactly-defined, connections between

models that are robust and extremely low-latency. This

polyglot framework, enhanced with flow control, logic and

in situ visualization, provides a platform onto which analy-

sis, instrumentation and provenance tracking can be built.

While this is similar to large-scale workflow projects such

as Kepler (Ludascher et al., 2006) and DataWolf (Navarro

et al., 2019), the structure of yggdrasil is inverted; rather

than focusing on the overall workflow and building con-

nections as a result of this, the connections are the funda-

mental operations, and the data passed between them are

augmented with semantic information regarding its con-

tent, such as the provenance of the data, the units associ-

ated with it, and any information about the logical

conditions that led to its sharing. The yggdrasil framework

facilitates asynchronous communication among models

written in different languages and that operate at different

scales, resolving the historical problems associated with

integrative and multiscale modeling (Lang, 2019).

The semantically defined networks utilized by models

connected through yggdrasil provide the opportunity for

in situ visualization of connections between models. Such

visualization can provide researchers with deeper insights

about individual models by revealing mismatches

between expectations and model-assumptions upon inte-

gration with another model. Likewise, representing the

output of the integrated, multiscale model simulations as

3D geometry is a natural and easily understandable repre-

sentation for human comprehension. Further develop-

ment of the yggdrasil framework will provide researchers

with a comprehensive workbench for developing, study-

ing and understanding multiscale modeling tasks. The

visualization of multiscale model simulations is key to

understanding the emergent properties that arise from

the interactions within a complex biological system. Thus,

effective visualization of data and simulations is a grand

challenge for multiscale modeling efforts, and the Crops

in silico consortium hope to overcome a number of the

technological and computational challenges that exist in

visualization.

Biological structures have huge variation that depends

on the environment and plant genetics. Recent advances in

geometric modeling of vegetation in computer graphics

(Pirk et al., 2016) allow for the generation of very high-

quality 3D geometries (Pirk et al., 2012), while models writ-

ten directly in higher programming languages such as C++
or Python (Fi�ser et al., 2017) allow for high user control,

and interactive experimentation. Likewise, modern Graphi-

cal Processing Units (hardware devices for processing

geometry) allow for the generation of highly detailed

geometries consisting of millions of polygons in real-time.

However, non-destructive capturing and reconstructing of

fully detailed 3D plant geometry and its development

belong among the biggest challenges of computer vision.

In order to validate the biological models, robust and com-

pact geometric representations are necessary, as well as

© 2020 Society for Experimental Biology and John Wiley & Sons Ltd,
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the ability to reconstruct real plants into the geometric

model.

One promising approach is inverse procedural modeling

that allows for functional�structural representation of veg-

etation (Stava et al., 2014) by estimating the parameters of

a growth model. However, the input of this algorithm is

the reconstructed plant 3D geometry that is difficult to

obtain. Moreover, optimization approaches require metrics

that compare the generated geometry with the captured

geometric model. Deep learning has the potential to aid

the problems in 3D geometry reconstruction. Deep learn-

ing is an umbrella term for a set of algorithms that use

deep neural networks (LeCun et al., 2015), and it has been

successfully applied in biology-related fields, for example

in leaf detection and counting (Ubbens et al., 2018; Kuzni-

chov et al., 2019).

Attempts to reconstruct 3D plant geometry have

revealed a need for more appropriate input data, such as

360-degree depth-images or point clouds of plants rather

than 2D photographs. Appropriate data for these models

are rapidly becoming available through advances in high-

throughput phenotyping and sensor development, in par-

ticular in-depth cameras and LiDAR technologies These

can be mounted on gimbals attached to autonomous

robots that can roam through the crop rows, and to

unmanned aerial vehicles (drones) generating massive

high-quality and stable data streams. These in turn will be

able to interact with models, providing, for example, re-pa-

rameterization, so that combined with agricultural weather

forecasting, futures may be predicted and updated as a

season progresses.

CONCLUSIONS

Advances in technology for model integration and intuitive

visualization of integrated model simulations are opening

avenues for in silico experimentation and scenario testing.

An outcome of this endeavor, which is beginning to

emerge, is the acceleration of directed engineering and

breeding for crop ideotypes that will result in enhanced

crop production and sustainability under challenging

future environmental conditions. Likewise, integrative and

multiscale modeling has the potential to reveal data gaps,

and guide new experimentation, measurement and the

development of enabling technologies.
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