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Urban Ecosystem Design
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Figure 1: This example demonstrates the need for urban ecosystems. The image in a) shows a terrain occupied by a wild ecosystem and
b) displays the same ecosystem grown over the city layout, where the vegetation invades all areas and attempts to fill them entirely and the
ecosystem is chaotic with no control. The image c) shows the managed urban ecosystem that has areas with wild plant growth but also areas
controlled by our plant management system.

Abstract

We address the open problem of spatial distribution of vegetation
in urban environments by introducing a user-guided simulation and
procedural system for integrating plants into the interactive design
process of 3D urban models. Our approach uses as input 3D ge-
ometry of an urban layout from which it infers initial conditions
and parameters of procedural rules. A level of manageability is cal-
culated for each area of the urban space. The manageability level
defines the amount of influence between the wild ecosystem simu-
lation, where the plants compete for resources and seed freely, and
the managed ecosystem, where nearly no seeding is allowed and the
plants grow only under well-defined conditions. The wild ecosys-
tems are handled by a simulation of plant competition for resources,
whereas the procedural generation is based on an expandable set of
behavioral rules of owners and typical plant management. Our sys-
tem provides an interactive semi-automatic method to calculate a
spatial plant distribution and to create an urban model with plants
covering an area of several square kilometers in less than a minute.
It provides a high degree of controllability and works tightly with
an urban simulation system. We show various examples, such as
plant development over time in managed and unmanaged areas, ef-
fect of procedural rules on the plant distribution, and the effect of
changing the level of manageability and the plant distribution.
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1 Introduction

We present an interactive procedural system for integrating plants
into the design process of 3D urban models. Currently, in 3D ur-
ban modeling vegetation is generally not the main focus, despite it
serving as an important visual cue and a necessary background. If
plant models (i.e., trees and bushes), and their arrangement, are not
generated with proper quality, they can rapidly trigger unwanted
attention and cause severe visual disruption. A variety of methods
exist for plant generation that range from the modeling of individual
plant organs to large plant populations. Nonetheless, plant model-
ing is very complex and thus their use in an interactive modeling
process is not common.

Several methodologies have separately been proposed for the mod-
eling of urban areas and for the modeling of plants. On the
one hand, urban modeling algorithms exploit procedural tech-
niques [Merrell and Manocha 2008; Müller et al. 2006; Parish and
Müller 2001], integrate with urban simulation processes [Aliaga
et al. 2008a; Vanegas et al. 2009a; Vanegas et al. 2009b], or use
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example-based synthesis [Aliaga et al. 2008b; Merrell 2007] to cre-
ate models of entire cities. Further, various individual aspects of ur-
ban model authoring have been also addressed in more detail, such
as façades [Müller et al. 2007], road generation [Galin et al. 2010],
and even tourist maps [Grabler et al. 2008]. On the other hand,
various techniques and algorithms for the generation of ecosys-
tems have also been published. In addition to various procedural
techniques based on L-systems [Prusinkiewicz and Lindenmayer
1990], one of the most interesting is an automatic spatial plant dis-
tribution algorithm based on plant competition for resources [Lane
and Prusinkiewicz 2002]. The algorithm populates large areas with
widely distributed plants of different species [Deussen et al. 1998;
Lane and Prusinkiewicz 2002]. Typically, there is a little control
of where and how plants appear and grow. However, in a city
plants are not allowed to grow wildly, residential areas are repeat-
edly pruned, trees are planted at exact locations and protected from
damage, only certain species are allowed to grow around roads, etc.
To our knowledge, creating a framework for the interactive design
of plant ecosystems in urban areas has not been addressed by previ-
ous works, despite the visual importance of including plants in 3D
city models. A fast, easily controllable, and intuitive integration of
plant and urban layouts remains an open problem.

The key observation behind our design approach is that plants in
urban areas are not distributed arbitrarily but are affected by the
structure and inhabitants of the city. Urban plant ecosystems can be
interpreted as being managed directly by the city residents and em-
ployees and indirectly by the geometry of the urban surroundings.
The management of the plants can be expressed as a set of procedu-
ral rules for use by an automatic algorithm and for use in an inter-
active design process. For example, plants around the roads usually
form alleys, trees are planted between buildings and roads, residen-
tial houses usually have large lawns in the backyards, skyscrapers
are surrounded by trees, and so forth. Using a provided urban ge-
ometry, we can (automatically) infer the aforementioned rules and
then use these rules in an algorithm for generating a plant distri-
bution. Additional control and flexibility of the design process can
be achieved by user-specified modifications of the rules and their
parameters. Moreover, quick and automatic plant generation can be
accomplished by a GPU-based plant distribution algorithm.

We present an interactive solution which simultaneously designs a
3D urban model and solves the open problem of generating a plau-
sible spatial plant distribution in the same urban area (Figure 1).
Our algorithm works in a closed loop fashion with an interactive
urban modeling system (e.g., we use [Vanegas et al. 2009b] but
other systems could be used) and adds a component for generating
a spatial distribution of managed and unmanaged (i.e., wild) plants.
Users can interactively alter multiple parameters of the urban model
and plant model creation process, each time resulting in a new 3D
model. In [Vanegas et al. 2009b], the urban model creation pro-
cess is controlled by user-specified alterations to the distribution of
population, jobs, and roads as well as by geometry and style pa-
rameters. The plant model creation process uses a set of procedural
rules to calculate an initial plant distribution and then a competition
for resources algorithm is executed to produce a final plant distri-
bution for use in the city model. Optionally, the parameters of the
procedural rules can be edited via a simple user-interface.

To enable the aforementioned plant creation process, our method
automatically extracts semantic information from the geometry and
calculates a level of plant manageability for different areas of the
city. Each city block is assigned a level of plant manageability.
Expensive areas are fully controlled, whereas low-cost areas are
mostly influenced by plant competition growth. For instance, areas
such as parks , the vicinity of roads and arterials, and backyards,
are assigned a high level of manageability. These areas are seeded
by grown trees, similar to what city gardeners or house owners do.

Further, they are protected from the influence of other plants, old
trees are replaced, and no other plants are allowed to grow there.
The plants in areas with low manageability are governed by a com-
petition for resources algorithm - they approximate a wild ecosys-
tem. On the boundary of high and low manageability areas, the wild
ecosystems attempt to invade the managed areas, and the managed
vegetation can freely send their seeds into the wild ecosystems.

We show various examples, such as plant development over time in
managed and unmanaged areas, effect of procedural rules on differ-
ent areas, and the effect of changing the level of manageability.

2 Previous Work

Urban layout generation can be roughly classified into two main
categories: procedural modeling and simulation-based modeling.
One of the first papers for a procedural urban layout generation
is the seminal work of [Parish and Müller 2001] where the street
layout was generated by Open L-systems [Měch and Prusinkiewicz
1996], blocks and parcels were generated from the street graph, and
the parcels were completed by procedurally generated buildings.
Procedural generation of street layout using tensor fields was intro-
duced in [Chen et al. 2007] and a technique for interactive editing
of existing urban layouts was introduced in [Aliaga et al. 2008a].
Complete buildings can be generated by CGA, a procedural model
introduced in [Wonka et al. 2003]. In our previous work we have
presented an approach for creation an urban layout by procedural
completion of urban layout examples [Aliaga et al. 2008b]. One
of the principal disadvantages of the procedural models is their low
controllability. The pure procedural models can be controlled by
defining the generating rules, the example-based techniques rely on
the input data, but their combination is again controlled only at a
very high level. Semi-interactive techniques, such as [Lipp et al.
2008], allow for a high level of control, but the building generation
can take very long time.

The second class of algorithms for urban model generation is based
on urban simulations. Two computer graphics approaches pre-
sented so far include [Vanegas et al. 2009b; Weber et al. 2009]
which use simplified rules for jobs and population distribution to
generate underlying urban layouts. Secondary values, such as zone
accessibility, land value, amount of people commuting to their jobs,
are provided and these values are used to generate streets, blocks,
parcels, and buildings. The system presented in this paper uses our
previously published system for urban model generation by simula-
tion [Vanegas et al. 2009b]. However, in order to provide a general-
purpose method that is not tied to a single system, our system uses
only urban geometry and can be seamlessly merged with virtually
any city generation application (e.g., CityEngine).

Techniques for the modeling and visual simulation of plants and
plant ecosystems have been presented for nearly thirty years. The
algorithms can be classified according to their level of detail. On the
lowest level are the algorithms for individual plant organs [Zhang
et al. 2006], or even cellular subdivision [Lindenmayer 1968].
These techniques are typically used for detailed close-ups. Our fo-
cus is a large area of the city that leaves these algorithms out of the
scope of this paper.

Entire plants can be generated by sketching [Chen et al. 2008;
Ijiri et al. 2006b; Ijiri et al. 2006a], interactively [Lintermann and
Deusen 1996], by procedural techniques [Prusinkiewicz and Lin-
denmayer 1990; Měch and Prusinkiewicz 1996], by a biological
simulation [Benes and Millán 2002; Palubicki et al. 2009], or by
hybrid methods [Benes et al. 2009]. In our implementation we aim
to model thousands of plants and thus their individual modeling is
not a viable option. Because of this limitation we have decided to
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use a fixed number of predefined plants in different stages of devel-
opment and each with various levels of geometric detail. Our trees
were generated using the XFrog system [Lintermann and Deusen
1996; Lintermann and Deussen 1999].

Techniques dealing with plant ecosystems focus mostly on the spa-
tial plant distribution in the scene. Existing works [Alsweis and
Deussen 2005; Deussen et al. 1998; Lane and Prusinkiewicz 2002]
focus on the idea of plant competition for resources. Chances of
a plant surviving vary according to its age, specie, and local re-
sources. If more plants appear in the same area they compete for
resources and some plants survive whereas others die. Entire plant
ecosystems are simulated over long periods of time (e.g., tens and
hundreds of years) and the result is the spatial distribution of the
plants and a record of their evolution over time. The ecosystem it-
self tends to reach equilibrium but it can be disturbed by external in-
fluences such as gardeners presented as autonomous agents [Benes
and Espinosa 2003]. Even though these approaches are based on
simulation, they share a common problem with procedural meth-
ods, namely they suffer from low controllability. In our work, we
introduce a new algorithm that exploits the information of an urban
layout and provides varying levels of controllability over the spa-
tial plant distribution. Some areas, such as shores, or borders of the
city, are kept entirely wild and controlled by the plant competition.
Other areas, such as parcels and downtown, are controlled by a set
of procedural rules. The continuous mixture of both techniques to-
gether with the values derived from the urban model enable a high
level of control and provide a fast design tool for the spatial plant
distribution of an urban ecosystem.

The paper continues with the description of urban ecosystems. Af-
terwards, Section 4 describes implementation and the next section
discusses example applications and results. The last section 6 con-
cludes the paper with thoughts about limitations and future work.

3 Urban Ecosystems

3.1 System Overview

Figure 2: Spatial plant distribution is generated for a given urban

layout that is provided by the system on the left. Plant management
computes a manageability value for each city block and procedural
planting uses this value to seed plants. An ecosystem simulation is
then used to develop managed and unmanaged (wild) plants in the
city by simulation of plant space colonization and competition for
resources.

Our method for the interactive design of urban ecosystem consists
of two main processes, as shown in Figure 2. Although any system
which enables quickly producing 3D urban models is suitable, our
urban model creation process is largely based on the work of [Vane-
gas et al. 2009b] and we include its brief summary for complete-
ness. The input data to this process includes an initial spatial dis-
tribution of jobs and population as well as the terrain and the main
highways. The process executes a socio-economical and geometri-
cal simulation in order to quickly generate a city model: road net-
work, city blocks, parcels, building envelopes (i.e., just the exterior

of buildings), a new distribution of population and jobs, and land
value estimates. The created geometry of the 3D urban model is
passed to the second main process.

The plant model creation process provides a way to generate a dis-
tribution of plants in the city. The process can be used to re-create
an urban plant distribution after any change to the urban model or
to simulate the growth of the plants over time for a given (fixed)
urban model. In both cases, the computed distribution specifies the
locations and ages for plants of several species. With the creation
process, an ecosystem simulation is run for many iterations that cor-
respond to tens or hundreds of years of the ecosystem in order to
reach a ”stable” configuration. The plant creation process is subdi-
vided into the following three components.

1. A plant management algorithm infers from building, city
block, and street geometry the level of manageability of each
city block. On one extreme of the continuously-valued man-
ageability level are areas with no control at all, such as areas
near the border of the city, that obey the rules of an entirely
wild ecosystem [Deussen et al. 1998]. On the other extreme
of the spectrum are areas deep within the city limits, such as
green zones around skyscrapers in the downtown area, which
have a highly controlled ecosystem. The areas in between
these two extremes provide ecosystems, such as parks, back-
yards, or areas around roads, which have some amount of
plant manageability.

2. A procedural planting algorithm uses the manageability lev-
els, the city geometry, and an expandable set of procedural
rules to spread plant seeds. Highly managed areas are seeded
(i.e., virtual plants are grown from their seeds) in a very con-
trolled fashion [Sukopp et al. 1990]. Areas with low or no
manageability over the plant distribution are seeded with ran-
dom plants.

3. An ecosystem simulation based on competition for resources
is executed. In each step of this simulation, the algorithm
checks plants for seeding, eliminates old plants, determines
the winners of plant competition and calculates the fate of the
losers. This algorithm is extended beyond its basic formula-
tion by also taking into account managed plants that are not
significantly modified. For example, if a managed plant is
old and should be eliminated, then it is replaced by the same
species but younger. Competition between managed and un-
managed plants is also considered.

The user can optionally control all steps of the plant creation pro-
cess. Further, the resulting plant distribution is converted to a large
set of 3D tree models which are added to the urban model and ren-
dered interactively using level of detail techniques.

3.2 Plant Management

The plant management algorithm determines for each city block
(i.e., a collection of parcels and lots closed by streets into a log-
ical urban entities) a manageability level of the contained plants.
The block manageability level 0 ≤ mi ≤ 1 is a normalized value
describing how well the owners of the city block take care of the
contained plants - often, it is related to the value of the land. For
city blocks containing very high buildings, such as skyscrapers, we
set m = 1. We define such city blocks as those containing build-
ings whose height is within the top 10% of the range of building
heights in the city. For all other city blocks, the manageability level
is computed as a function of city block size and of the size of build-
ings/houses within the block. More precisely, a block’s manage-
ability level is defined as

mi = wbb
′

i + we(1− ei) (1)
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where wb and we are user-specified weights (e.g., wb = we = 0.5
in our experiments) and 0 ≤ wb, we ≤ 1 and wb + we = 1, b′i
is the normalized height of the buildings in the block, and ei is the
effective area of the block

ei =
1

a

(

a−

∑

j

bj

)

, (2)

where a is the area of the block and
∑

bj is the area of all the
buildings in the block.

Intuitively, plant manageability is high in areas with high values
of m. Areas with m = 1 are not allowed to contain any wild
plants whereas areas with m = 0 do not contain any plants that are
managed. The manageability level value for other areas determines
the percentage of wild plants allowed in each such area and that will
be used in the later described ecosystem simulation. For nonzero
values of m, the ecosystem simulation will ensure a proper number
of wild plants are maintained in the city block (e.g., simulating plant
growth and dispersion as well as the management task of removing
unwanted plants). By default, urban areas that do not belong to any
city block are seeded by the wild ecosystem.

Figure 3 shows an example of an urban layout, where the man-
ageability is changed from a small number of blocks on the left, to
high manageability on the right. As the result, with increasing man-
ageability the number of wild ecosystem zones decreases. Over-
controlled ecosystem leaves few spots for parks and recreational
areas. The area of 3×3 km includes about 250, 000 plants and was
simulated in 30 seconds.

a) b) c)

Figure 3: To show the effect of the level of manageability, blocks
with high manageability have blue borders with decreasing man-
ageability turning red. Fully managed blocks with m = 1 are cov-
ered with plants entirely. a) Low level of manageability leaves many
areas dominated by wild ecosystems. b) A balanced urban ecosys-
tem. c) An over-controlled urban ecosystem with few parks in the
middle and most of the zones fully controlled.

3.3 Procedural Planting

Figure 4: All plant species used in our system.

Theoretically, each individual plant could have manual manage-
ability. However, controlling thousands of plants would be over-
whelming. Instead we control groups of plants inside individual
city blocks. Once the manageability level of each city block is
determined, plants must be seeded (i.e., planted) prior to execut-
ing the (controlled) ecosystem simulation. There are two primary

approaches for seeding a plant. The plant can be seeded i) by an-
other plant or ii) by a set of procedural rules which imitate managed
planting by the city’s inhabitants. Seeded plants that are not man-
aged straightforwardly lead to wild ecosystems, whereas managed
plants are seeded once using our procedural rules and then managed
during the ecosystem simulation. In the following, we describe our
initial set of procedural roads that algorithmically implement plant
management tasks that result from observing urban spaces [Sukopp
et al. 1990]. Our proposed rules can be applied to a variety of urban
configurations but the rule set is clearly extensible.

a) b)

Figure 5: Alleys formed around roads and arterial streets in
a) aerial photograph of a neighborhood in Chicago, and b) our
simulated neighborhood.

Roads and arterial roads are often accompanied by trees on their
sides as can be seen in Figure 5. The road classification is provided
by the urban simulation module, but could be also calculated from
the road geometry using algorithm from [Aliaga et al. 2008b]. Our
system plants trees procedurally around a user-controlled percent-
age of the main roads. The plants are fully controlled, no wild trees
are allowed, and trees are distributed in jittered distances around the
main axis of the road.

Blocks are classified and planted according to the number of build-
ings. For residential blocks with a single building, the side of the
building closest to the road is assumed to be the front side of the
building. Several trees are planted between the road and the front
side as people like privacy in their residences. Similarly, the oppo-
site side of the block is seeded with a jittered row of plants since
people also prefer to have privacy in their backyard. The area be-
tween the house and the end of the backyard is left empty as a lawn.

In blocks with multiple houses, our method automatically calcu-
lates the main axis of the block and seeds several plants along the
main axis. This is a common pattern of typical US cities where
people tend to separate their backyards from their neighbors. The
rest of the area is occupied per building in the manner analogous to
the case of a single house. Figure 6 compares a real neighborhood
to a simulated neighborhood produced by our system.

High-value blocks usually correspond to the zones with the highest
buildings in the city. These buildings usually occupy a significant
part of the block. Further, as can be seen in Figure 7, the non-
occupied areas are typically filled with dense plants. We detect
these zones as blocks with m = 1. In these areas we apply regular
plant distribution over the available zones using random jittering.

Finally, parks are simulated as nearly wild ecosystems with several
managed plants that define their overall appearance and cannot be
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a) b)

Figure 6: Blocks with multiple houses usually have row of trees
that separate the buildings. Each house can have some trees in
front to hide the house from the street as shown in a) which is an
aerial photograph of West Lafayette, IN and b) is our simulated
neighborhood.

changed. The dominant trees are situated near streets in order to
protect the park visitors and the park interior. Further, a large open
area inside the park is protected from plants.

a) b)

Figure 7: a) Blocks with the highest land value, such as this part
of Manhattan, are efficiently filled with green areas. The image in
b) shows our simulated neighborhood.

3.4 Ecosystem Simulation

The rules controlling development of plants are inspired from those
of a wild ecosystem and are based on symmetric and asymmet-
ric plant competition, similar to that described in [Alsweis and
Deussen 2005] and [Deussen et al. 1998; Lane and Prusinkiewicz
2002]. However, in our system we extend the standard ecosystem
simulation to consider managed plants. In particular, the simula-
tor attempts to erase in regular intervals excessive amount of wild
plants in controlled blocks, similarly to a housekeeper or to city-
wide plant management. The amount of eliminated plants depends
on the desired plant density. We have determined experimentally
the spatial density of plants in the wild ecosystem as d̄ = 0.65
plant/m2. In each iteration we calculate the number of plants pi in
the i−th block and calculate its the plant density as di = pi/ei,
where ei is the effective area of the block (2). The normalized plant
density in the block is d′i = di/d̄. The simulator compares the nor-
malized plant density with the desired level of manageability mi. If
the density is higher, it randomly eliminates the excess of plants. It
is important to note that if the density of a block is lower than this
desired value, we do not add new plants.

The ecosystem simulation represents each plant by its field-of-
neighborhood (FON) and computes the interactions between FON’s
over time, as well as random and controlled seeding. The FON is a
circular zone of influence with the plant in its center. The FON’s ra-
dius depends primarily on the plant size; further, as the plant devel-
ops its FON grows as well. When two FONs collide, the viability of
each plant involved in this collision is evaluated to determine their
survival. The viability function vx(t) of the plant x at age t deter-
mines the fate of each plant in the collision. The smaller, weaker,
and more frequent plants have a higher chance of elimination than
the larger, stronger, and less frequent plant species. We simplify the
viability function to:

vx(t) =

{

pat if t < 0.5
pa otherwise

where the t is the normalized plant age and pa is the inverse statis-
tical distribution of the plant in the ecosystem. Further, we define

pa = 1−
ηa
∑

i
ηi

where ηi is the number of occurrences of plant species i. In other
words, pa increases when the plant is not present in the ecosystem
and therefore increases the plant’s chances for survival in a col-
lision. This is a simple global control that protects plant species
against extinction.

Each plant seeds in the fall of each year. Seeds are planted around
the plant’s FON in a random circular area of approximately 2-3×
the FON’s radius. Seeding leads to clusters of similar plants as can
be seen in Figure 8 that provides visual plausibility that could not be
achieved only with random seeding. The example shows 2D spatial
distribution of the plant ecosystem after 25, 75, 100, and 125 years
and the number of plants was around 2,000. The overall time of the
calculation was 35 seconds with ∆t = 100 days.

a) b) c) d)

Figure 8: Four frames of the spatial plant distribution generated
by the wild ecosystem competition for resources. The area of
250 × 250 m is occupied by seven different plants with a cluster
of dark plants seeded in the lower left corner. The figures show the
development of the plant ecosystem after a) 25, b) 75, c) 100 and d)
125 years. Plants tend to exhibit emergent clustering phenomena
that would be difficult to achieve by random seeding.

In our method, a special case is a collision between managed and
unmanaged plants. If an unmanaged plant and managed plant col-
lide, the unmanaged plant is always killed. If two managed plants or
two unmanaged plants collide, the previously-described algorithm
calculates their viability. This competition provides a smooth tran-
sition between the boundary of a managed and an unmanaged areas.

4 Implementation

Our system is implemented in C++ with support of OpenGL for
rendering and CUDA for ecosystem simulation. We have tested all
examples on an Intel i7 920 CPU at 2.67 GHz. The computer was
equipped with NVidia GeForce 480 with 1.5GB of memory.
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Figure 9: An example of an urban ecosystem development over time, starting with image a) until image c). The insets (from left to right)
show young and small trees becoming larger trees that eventually get removed by the plant management. The cluttered areas in the back are
parks.

As we aim to model thousands of plants where no significant detail
will be displayed, we have decided to use a fixed number of pre-
generated plant models in different stages of development and with
seven levels of detail. Our trees were generated in the XFrog sys-
tem [Lintermann and Deusen 1996; Lintermann and Deussen 1999]
and the level of detail were generated using XFrog Xtune. We use
seven different plants that are shown in figure 4 each in three dif-
ferent stages of development. In order to provide a ”continuous”
transition of the plant development, we quantize its life span into
three intervals. We start with the smallest model which we contin-
uously age until it is replaced by a next existing stage.

The most time-demanding operation is the collision detection of
plant’s FON together with the viability evaluation. As this task is
evaluated for hundreds of thousands of plants and is essentially the
same procedure called repeatedly, it was a great candidate for paral-
lelization in CUDA. The CUDA kernel loads the plant locations as
a 1D array, the city footprint as a 2D texture, and outputs a flag for
each plant if it survived the test. The kernel first checks all plants
that are seeded or procedurally initialized at incorrect locations such
as roads, or buildings. This is achieved by a texture lookup into the
city footprint and is provided very quickly. In this way, we make
sure the plants do not collide with urban geometry. The plants are
sorted into overlapping bins and we check for the collision and vi-
ability of each plan in the bin. As each plant is checked against
each plant in the bin, it has a theoretical complexity O(n2). How-
ever the high plant density and the subdivision into bins helps to
speed this test significantly, it allows to keep the GPU busy, and it
avoids OS time-out problems with the graphics driver. As each ker-
nel runs evaluation only for a single plant it writes only once at the
end into the main memory, so the memory writes are without bank
collisions. We have achieved a performance of 50M-70M collision
tests per second allowing for 250,000 plants being tested at 5-6 fps.

The visualization engine implements kd-tree subdivision of the
space with view frustum culling and automatic level of detail
(LOD) selection. Each plant has seven LOD levels generated with
XFrog Xtune. The plants are preloaded and instantiated on the
GPU.

5 Results

Figure 1 justifies the need for managed plant design. The first fig-
ure shows a wild ecosystem. In the second figure an urban lay-
out has plants distributed naı̈vely using just the plant competition
algorithm. This results in all available areas being invaded with
all kinds of plants wildly competing for resources with no consid-
eration of other urban layout aspects. The last image shows the
same urban layout but with plant management. Expensive areas
have their plants managed better than parks and areas with low land
value. The city border is still controlled by the wild ecosystem sim-
ulation as well as some areas close to the shore.

The example in Figure 9 shows an urban area of 3×3 km populated
with 250, 000 plants that shows the plant distribution development
over time. The left image shows mostly new trees that quickly oc-
cupy the allowed areas. The trees grow as can be seen in the im-
age insets from the ground perspective. The sequence of images
demonstrates the changes in urban ecosystem as a city evolves.

The second sequence in Figure 10 shows a case for altering city
geometry. Starting from the same urban area and the same plant
distribution of Figure 9a), the city geometry has been slightly mod-
ified and the urban ecosystem has been recalculated correspond-
ingly. The simulation time of each examples from Figures 9 and 10
was about 90 seconds for the urban layout and 120 seconds for the
urban ecosystem. The ecosystem in the latest stages shows plants
with an age of up to 70 years. The simulation step ∆t = 1 month.

Figure 11 shows changes of the plant spatial distribution due to
changes in procedural planting. The procedural parameters have
been modified to produce an alternate spatial distribution under
user-control.

6 Conclusions and Future Work

We have presented an interactive simulation and procedural sys-
tem for integrating plants into the design process of 3D urban mod-
els. Our approach uses as input 3D geometry of an urban layout.
It infers initial conditions and parameters of procedural rules and
calculates the level of manageability for different areas. This pa-
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Figure 10: The city from Figure 9a) where geometry has been
changed to that in (top) and then (down) and the plants adapted
to the new city.

rameter defines the amount of influence between the wild ecosys-
tem simulation, where the plants compete for resources and seed
freely, and the managed ecosystem, where nearly no seeding is al-
lowed and the plants grow only at strictly defined locations. The
wild ecosystems are handled by a simulation of plant competition
for resources, whereas the procedural generation is based on an ini-
tial set of behavioral rules of owners and on plant management of
typical US cities. Our system enables designing, distributing, and
outputting a 3D model contains plants and urban structures in an
average area of 10 square kilometers in less than a few minutes,
offering a high-level of controllability, and working tightly with an
urban simulation system. We have shown various examples, such
as plant development over time in managed and unmanaged areas,
the effect of procedural rules on different areas, and the effect of
changing the level of manageability.

Our approach is not without limitations. First, there is a set of rules
that must be defined by the system designer. We use a fixed set
of embedded procedural rules in our implementation. In order to
address this limitation, an open system which would allow user-
defined rules should be implemented. Second, our choice of rules
is based on our personal preference. We sought to demonstrate the
concept of merging urban design and plant design. In practice, dif-
ferent rules are probably appropriate for different cities. Thus, the
way to select rules needs to be improved.

Several avenues exist for specific future work. The plant manage-

ment is based on the derived land value. Nonetheless, the urban
simulation provides job distribution, land value, and accessibility
that could be use for a more sophisticated derivation of plant distri-
bution. Another work would include the development of an inter-
active design system, where all the above described rules would be
implemented as procedural brushes or interactive design tools. Our
system works on the level of entire plant models. However, real
plants interact with each other on a much finer level, so future work
should focus on simulation of collision of tree branches, interaction
with buildings, illumination and other environmental aspects.
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B., MĚCH, R., AND PRUSINKIEWICZ, P. 2009. Self-organizing
tree models for image synthesis. ACM Trans. Graph. 28, 3, 1–10.
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