
GI-COLLIDE — Collision Detection with Geometry Images

Bedřich Beneš ∗
ITESM CCM

Nestor Goméz Villanueva†

ITESM CCM

Figure 1: 512 bunnies tested for collisions

Abstract

A new collision detection algorithm GI-COLLIDE is presented.
The algorithm works with geometry images and codes bounding
spheres as a perfectly balanced mip-map–like hierarchical data
structure. The largest geometry image in the hierarchy stores the
bounding spheres of the quadruples of the vertices from the input
geometry image. Center of the sphere is calculated as the center of
the corresponding min-max AABB and stored as the pixel’s RGB
value. The alpha value stores the sphere radius. In this way each
level represents bounding spheres of the previous level. The up-
most level of the hierarchy is the bounding sphere of the entire ob-
ject. Collisions between objects are detected by the standard tree
traversing and checking the overlaps among the bounding spheres.
The exact collision is detected by a triangle-triangle test at the low-
est level. The bounding sphere coding is implicit. A sphere at any
level can be found efficiently only by indexing the geometry im-
age. Once objects are represented as geometry images the collision
detection can be performed efficiently using directly this represen-
tation and it is not necessary to use any other. The results show
that this method is efficient and works well even for large objects.
We have compared GI-COLLIDE with the most important collision
detection techniques.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation – Viewing Algorithms— [I.3.7]: Computer Graphics—Three
Dimensional Graphics and Realism – Virtual Reality

Keywords: Geometry Images, Collision Detection, Real-Time
Rendering, Time-Critical Rendering

∗e-mail: bedrich.benes@itesm.mx
†e-mail: ngomez@itesm.mx

1 Introduction

Geometry images were recently introduced to Computer Graph-
ics [Gu et al. 2002]. Their main advantage is the efficient way they
code geometric information. The sampled geometry is stored in a
perfectly regular form – as an image. A geometry image can be
compressed by the compression schemes used for images; it can be
efficiently stored and processed by graphics hardware, efficiently
transmitted over network, etc. Many algorithms exploiting advan-
tages of geometry images have recently been introduced, but we
have not found any approach focusing on collision detection. There
are collision detection algorithms that work very well with another
representations, but we do not know any algorithm that works di-
rectly with geometry images. We present a new algorithm named
GI-COLLIDE. The advantage of our approach is in exploiting the
properties of geometry images. Suppose, we have objects repre-
sented as geometry images. If we want to detect collisions among
them we do not need to use another representation, but we can use
the geometry images directly.

We propose a mip-map–like [Moller and Haines 2002] hierarchical
structure of the geometry images for an efficient collision detection.
The input geometry image is used to calculate the bounding sphere
tree (BS-tree). The deepest level holds in the RGB triplet the center
of the sphere that is calculated as the center of the AABB of the
four vertices from the input data. The alpha value stores the bound-
ing sphere radius. This information is sufficient to create bound-
ing sphere of the four vertices. The upper levels are computed and
stored in the same way. The hierarchy can be either precomputed
and stored together with the image or computed when the geometry
image is read or created.

Geometry images will change if the object rotate and that is why
we use spheres as the bounding volumes, keeping in mind that they,
in general, do not provide a good fit to the objects.

There are two general approaches to detect collisions or interpen-
etrations between two objects: collision detection (also known



as interference detection or contact determination) and proximity
queries (also known as penetration depth computation). The colli-
sion detection techniques automatically report a geometric contact
that occurs or has actually occurred, giving the point of collision.
Proximity queries algorithms report the collision as well, moreover
they also provide extra information such as intersection detection,
tolerance verification, exact or approximate minimum distance, or
disjoint contact determination. GI-COLLIDE is a collision detec-
tion technique i.e., the algorithm report weather a collision between
two objects has occurred or not.

GI-COLLIDE uses the precomputed hierarchical structure and al-
ways starts by comparing the upmost levels of the objects hierar-
chies, i.e., the bounding spheres of the entire objects. In the case of
overlap, there is also potential collision and the structures of both
objects are recursively traversed down. At the deepest level the
exact triangle-to-triangle test is applied [Moller 1997]. Figure 2
shows an example of the bounding spheres hierarchies refinement
as an object gets closer to another one.

Figure 2: Sphere hierarchy refinement during the collision detection

Various stop-conditions can be applied. We can terminate the tra-
versation when one collision is detected. Another choice is to con-
tinue and detect all possible collisions. We also describe a time-
critical version of this collision detection algorithm. The difference
to the non-time-critical version is that the collision test must be fin-
ished within a user-defined time. The test returns the best possible
result that is detected within this time.

Geometry images are normally used to store one object, so we
describe the object-to-object test in this paper. To detect colli-
sions among more objects we have incorporated our test into the
I-COLLIDE [Cohen et al. 1995] algorithm that uses an efficient
space subdivision technique and frame to frame coherence.

2 Previous Work

2.1 Geometry Images

Gu et. al. [Gu et al. 2002] introduced geometry images; data struc-
ture that efficiently codes and stores the object’s geometry. This
representation captures geometry as a two-dimensional array of
quantized discrete points. Other surface signals, like normal vec-
tors and colors, are stored in similar arrays using the same sur-
face parameterization. Texture coordinates information is implicit
in the image. Methods for remeshing geometry images where intro-
duced in [Gu et al. 2002] based on techniques for remeshing with
(semi) regular connectivity [Eck et al. 1995; Lee et al. 1998]. The

most important is the heuristics that cuts a surface into a disk that
maps the surface onto a square.

Praun and Hoppe [Praun and Hoppe 2003] introduced a technique
for direct parameterization of a genus-zero surface onto a spher-
ical domain. This technique provides geometry remeshing, level
of detail, morphing, compression, and smooth surface subdivision.
The main limitation of these techniques is the restriction to a non-
manifold geometry.

Sander et al. [Sander et al. 2003] presented an atlas construction
that maps the surface piece wisely onto charts of arbitrary shape.
Reduced parameterization distortion was achieved and a zippering
algorithm that creates a watertight surface was presented. Up to this
point, geometry images were used only to store geometry informa-
tion, normal vectors, or animated geometry.

Geometry images with simple boundary symmetries were later used
to store spline surface control points [Losasso et al. 2003]. A bi-
cubic surface is evaluated using a subdivision scheme, and the reg-
ular structure of the geometry image makes this computation well
suited for graphics hardware. This scheme also provides a smooth
level of detail transitions from a subsampled base octahedron to
a smooth model.

Various approaches for collision detection, proximity, and interpen-
etration between two objects exist. Next, we present the most im-
portant recently published algorithms and approaches.

2.2 Collision Detection

Collision detection and collision response generation are extremely
important in many Computer Graphics applications, such as video
games, Virtual Reality, interaction with CAD models, etc. Several
techniques for objects collision detection have recently been intro-
duced. Computing a test over all polygons in a model is exact, but
very expensive in terms of computation. The majority of the al-
gorithms exploit hierarchical data structures of bounding volumes
reducing the time complexity of the algorithms.

OBB-trees were used in the fundamental paper of Gottschalk et al.
[Gottschalk et al. 1996] for computing collision detection. A hier-
archical bounding volume data structure uses tight-fitting oriented
bounding box trees. Two such trees are traversed and tested for
overlaps between oriented bounding boxes based on the separating
axis theorem. A test for box overlap that takes about hundred oper-
ations was presented.

Klosowski et al. [Klosowski et al. 1998] introduced hierarchies of
discrete orientation polytopes (k-DOPs) for efficient collision de-
tection. The principal advantage of this method is a better fit of the
k-DOPs compared to the previously used bounding volumes. The
BV-tree traversation is similar to the previously mentioned.

He [He 1999] shows a combination of OBBs and k-DOPs called
QuOSPOs. This approach provides a tight approximation of the
original model at each level, and supports a conservative overlap-
checking algorithm.

Bradshaw and O’Sullivan [Bradshaw and O’Sullivan 2004] pre-
sented a Sphere-Tree construction that approximates both convex
and non-convex objects. Their technique is based on the Dynamic
Medial Axis Approximation and the fit reported is better than the
one reported by Hubbard [Hubbard 1996].

The algorithms mentioned so far work in the geometrical object-
space. Baciu et al. [Baciu and Wong 2003] proposed a method for
collision detection that works in the image space. This algorithm



breaks the object-space collision detection bottleneck by distribut-
ing the computational load onto the graphics pipeline. The image-
space interference test is based on projecting the object geometry
onto the image plane and performing analysis in a dimensionally
reduced space. The hybrid collision detection algorithm first cal-
culates the separating vector to find non-colliding objects. If no
separating vectors are found, the image-based algorithm is invoked
for further testing of interference.

CULLIDE [Govindaraju et al. 2003] is a GPU-based collision de-
tection algorithm that also works in the image space. Objects that
are tested for collision can be deformable and breakable. The col-
lision detection algorithm calculates the potentially colliding sets
that are obtained from visibility queries. This allows performing
the detection only to parts and sub-parts of objects.

2.3 Proximity Queries

Collision detection algorithms report zero–one, or zero-more colli-
sions. Proximity queries detect collisions and also distance of two
objects, penetration depth, spanning distance, etc. Result of a prox-
imity query can be exact, approximate, or Boolean. Moreover, the
majority of the proximity query techniques share one common ap-
proach; they exploit frame-to-frame coherence. Here we present
overview of the most important proximity query algorithms and
techniques recently published.

I-COLLIDE [Cohen et al. 1995] is a two level approach based on
pruning multiple object pairs using bounding boxes and performing
exact collision detection between selected pairs of polyhedral mod-
els. To determine whether a collision has occurred or not, the algo-
rithm uses the closest feature algorithm of [Lin and Canny 1991].
This algorithm reduces the number of required tests that would be
calculated by checking for bounding boxes object overlaps. Once
the collision is detected, the precise collision test is performed for
all involucrate polygons.

An incremental proximity query detection algorithm between two
general B-rep objects was published [Ponamgi et al. 1995]. The
algorithm combines a hierarchical representation of AABBs with
an incremental frame-to-frame computation. Coherence between
successive instances determines the number of interacting object
features. It localizes the interference regions on the convex hulls of
each pair of objects. The features associated with the regions are
stored in a precomputed hierarchy.

The V-Clip [Mirtich 1998] algorithm tracks the closest pair of fea-
tures between convex polyhedra, using the approach similar to the
closest feature algorithm of [Lin and Canny 1991]. It handles pen-
etrating polyhedra, and can also be used to detect collision between
both convex and concave polyhedra. The hierarchy helps to build
concave polyhedra from several convex polyhedra. A convex hull
of these subsets is constructed and, when a collision is detected; the
subsets are tested to find the exact collision.

SWIFT++ shows unified approach to perform queries for checking
objects intersections, tolerance verification, exact and approximate
minimum distance computation, and (disjoint) contact determina-
tion. The methods involve a hierarchical data structure built upon
a surface decomposition of the models. The incremental query al-
gorithm takes advantage of coherence between successive frames.
A minimum distance computation algorithm based on ”Voronoi
marching” to test the proximity of a pair of convex polyhedra was
also described.

The paper continues with the description of the data structure that
codes the BS-tree. We describe the algorithm itself in Section 4.

Results are shown in the next section and Section 6 describes some
opened questions and the future work.

3 Data Structures and the BS-trees

To generate geometry images we use objects that are modeled by
hand in Maya, the Stanford Bunny, and a fractal surface patch. The
objects are converted to sets of triangles and then to geometry im-
ages. This allows us to create a variety of shapes, both convex and
concave. The geometry images can be also sampled with different
precision, allowing images in higher resolution with more details
and vice versa. Our geometry images are represented by 16-bits
per channel and therefore have better precision than the standard
8-bits per channel representation. Example of an object and its cor-
responding geometry image is given in Figure 3.

Figure 3: An object and its geometry image

vertex

level 0level 0

bounding
sphere

bounding
sphere

quad
center
quad
center

input geometry
image

input geometry
image

level 1level 1 level 2level 2

Figure 4: Calculating the hierarchy

From the given geometry image, the additional data structure that
codes the bounding spheres hierarchy is directly generated. Geom-
etry images are in our implementation, by now, limited to sizes of
(2n + 1)× (2n + 1) vertices. Each quadrilateral is encompassed
by a bounding sphere at the deepest level (see in Figure 4). The
sphere center is defined as the center of the corresponding min-max
AABB. Its radius is the half-length of the largest diagonal. The



geometry image stores in the RGB values the center of the sphere
and the alpha stores the sphere radius (see in Figure 6). When the
deepest level is stored the upper levels are calculated recursively
and stored. Neighboring four spheres from the lower level are en-
compassed by a bounding sphere. Its center is stored as the RGB
and the radius as the alpha value. The topmost level is the bound-
ing sphere of the entire object and corresponds to the root of the
tree of BSs.

Mip-mapping cannot be used directly because to store the complete
information four values are required. To save the memory, we store
the hierarchy in the way that is depicted in the Figure 6. The deep-
est level is stored at the position [0,0] and the remaining levels are
rotated by 90o and shifted by the size of the base image. The upper
image shows the geometry and the lower the alpha channel dis-
played as the intensity of gray color. It can be seen that the al-
pha gets greater with the increasing level (displayed as the brighter
color in gray scale), i.e., the spheres located higher in the hierarchy
are bigger. The BS-tree generated in this way is always perfectly
balanced that is one of the biggest advantages of the proposed tech-
nique.

Different levels of refinement corresponding to one object are
shown in Figure 5. The bounding spheres form an object’s shape
approximation that improves with each level of the BS-tree .

Figure 5: Different levels of bounding spheres tight to the object
approximate its shape

The amount of space required to store the hierarchies and the im-
ages can be expressed easily. Suppose the geometry image has res-
olution (2n + 1)× (2n + 1). Each vertex has three coordinates that
are stored as the RGB values. The required size of the geometry
will be denoted by s = 3(2n +1)×(2n +1) and s is expressed in in-
tegers. The normal vectors need the same space as the vertices. The
total size of the geometry image together with the normal vectors
will be 2s.

The lowest level of the hierarchy stores in each bounding sphere
four vertices. The lowest level bounding spheres share vertices so
each inner vertex belongs to four spheres. The deepest level is made
up of n×n spheres. The upper level is always half of the previous
one in the x and in the y direction. So the total size required for

the hierarchy is ∑log2 n
i=0 2i. The geometry image is quadrilateral (see

Figure 6) so the total size required is 25% bigger. The size required
to store the center of the spheres is therefore 1.5s. The alpha values
are scalars and they are stored in the same way. The size required
for the alpha values is 0.5s so the total size of the BS-tree hierarchy
is 2s. The entire size of the geometry image, normal vectors, and
the BSs is 4s, where s is the geometry image itself, one more s is
required for the normal vectors and 2s for the BSs.

4 Collision Detection Algorithm

The collision detection algorithm of two objects is the classical dou-
ble hierarchy traversation. First, the upmost-level spheres from both

Figure 6: The hierarchy of bounding spheres stored as the geome-
try images. The upper image shows the average values, lower one
shows how the bounding sphere sizes are coded. Since the spheres
are small, the gray intensities are enhanced

BS-trees are tested for collision. If there is no collision, the algo-
rithm quits. In the positive case, the algorithm recursively traverses
the hierarchies down. It enters the first level of the first object and
tests the upper level of the second object for collision with all four
spheres. In the case of collision, it goes one level down in the hier-
archy of the second object and tests the colliding sphere or spheres
against all four spheres of the second object. Both hierarchies are
traversed recursively in this zigzag way. At each level, one sphere
from the upper level of one object is tested against four spheres of
the lower level of the second object and vice versa. At the deep-
est level the precise triangle-to-triangle test [Moller 1997] is per-
formed.

As mentioned above the collision detection test can finish with the
first collision detected or it can report a list of all possible colli-
sions. The first collision detection is fast and the algorithm has
logarithmic complexity because of the tree hierarchy. Having two
objects with n1 and n2 vertices the complexity of this kind of test
is O(log(max{n1,n2}).
In the case of detection of the all-possible collisions the complexity
is O(n1 × n2). An example of this situation is two planar meshes
laying one over another.

The collision detection can also be time critical. In this case it stops
the detection when there is no collision or whet the time is up, re-
turning the best possible fit that was found. The non-time-critical
test stops testing either when there is no collision or on the deepest
level i.e., with the triangle-to-triangle test.

In our implementation, and in all non-time-critical tests shown later
in the paper, we have implemented the test that quits when the first
collision is detected. It is possible to run the test completely and
detect all collisions. We also generate the collision response.

As long as an object moves, the corresponding bounding spheres
are translated, and the RGB values of the geometry images must be
recalculated. The alpha that codes the distance remains unchanged.



The distance-offset calculation can be applied to all vertices and
spheres blindly, but many calculations can be wasted without actu-
ally being used. We prefer to perform this step during the hierarchy
traversation, just before it is actually needed.

Spheres do not provide very good fit to the objects in general and
this is very true especially in the case of quadrilaterals. This can
be observed in Figure 7, where the plane is refined by spheres.
We have found that this is not an important limitation, because the
sphere radius in the BS-tree decreases fast so possible false colli-
sion in the first level would be discarded with a high probability in
the next level or levels.

Figure 7: As the object gets closer to the plane the sphere hierar-
chies are refined (the camera is moved closer to demonstrate the
sphere refinement)

The main advantage of our method over the previously published
techniques is the way the tree hierarchies are stored. Instead of
storing the tree in the dynamically allocated memory, it is imple-
mented as indexing of a two-dimensional array. We simply access
the data by dividing/multiplying the actual coordinates by two in
each level of hierarchy. The regular sampling, that is the natural
property of the geometry images, assures that we always construct
a perfectly balanced tree of bounding spheres. Finding coordinates
of a sphere within the hierarchy is done fast and is implemented
only by the bitwise shifts.

5 Results

GI-COLLIDE was tested against I-COLLIDE [Cohen et al. 1995],
the dynamically allocated BS-trees, and the RAPID [Gottschalk
et al. 1996] algorithm. We also show the results of a time-critical
implementation and a real application. In the comparisons the same
conditions were used for all tests. A cube was filled by 2,4,8, . . .,
256 randomly moving Stanford Bunnies that were eventually col-
liding. A collision was detected and the collision response was cal-
culated. To detect the collision the precise triangle-to-triangle test
was used. Each test was executed for 3000 frames and the number
of collisions and the total time in milliseconds spent on collision
detection were reported.

We do not explain the algorithms here and we refer the reader to
Section 2.

5.1 I-COLLIDE vs GI-COLLIDE

To compare GI-COLLIDE with the I-COLLIDE we have taken the
source code of I-COLLIDE and replaced the default Lin-Caney
closest feature test by the GI-COLLIDE algorithm. We tried to
make the test as fair as possible. We have changed only the parts of
source code where the collision is detected. The space subdivision
technique, used by I-COLLIDE to detect active pairs that are later
tested for exact collision determination, was left intact.

0 50 100 150 200 250
0

1

2

3

4

5

6

7
x 10

5

Number of objects

M
ill

is
ec

on
ds

I-COLLIDE
GI-COLLIDE

Figure 8: Time spent for collision detection with I-COLLIDE and
GI-COLLIDE

To compare both tests we used an object having 8444 triangles for
the original I-COLLIDE test and a 65 x 65 pixels geometry image
that corresponds to 8450 triangles.

Results of this test are shown in Figure 8. The x-axis shows the
number of objects colliding against each other and the y-axis the
time in milliseconds spent on collision detection for 3000 frames.
The time spent to detect the collisions grows with the number of ob-
jects in both cases. The graph shows that GI-COLLIDE needs sig-
nificantly less time than the original algorithm used by I-COLLIDE.
The difference is more significant especially for large number of
objects.

0 50 100 150 200 250
0

2

4

6

8

10

12

Number of objects

M
ill

is
ec

on
ds

 p
er

 C
ol

lis
ion

I-COLLIDE
GI-COLLIDE

Figure 9: Average time needed to detect a collision for I-COLLIDE
and GI-COLLIDE

Figure 9 shows the average time in milliseconds spent per collision
detection. I-COLLIDE reported values between 9.5 to 11.5 mil-
liseconds per collision whereas GI-COLLIDE reported times be-
tween 0.29 to 0.94 milliseconds.



5.2 BS-trees vs GI-COLLIDE

The second test does not use any space subdivision and the brute
force one-to-one test is applied to each pair of objects. We compare
the GI-COLLIDE against dynamically allocated (bounding spheres
hierarchy) BS-trees. The BS-trees carry exactly the same informa-
tion and the same hierarchy and structure of bounding spheres as
GI-COLLIDE. Both hierarchies are the same, the objects and the
tests as well, the dynamically allocated tree is perfectly balanced,
and is constructed from the hierarchy stored in the geometry im-
age. Both trees are traversed in the same order and both routines
are implemented in the same way. Our intention is to compare
the differences in performance between these two techniques. The
speed difference comes from the pointer-based scheme used in the
dynamically allocated BS-trees and the indexing scheme used by
GI-COLLIDE.

0 50 100 150 200 250
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of Objects

M
ill

is
ec

od
s 

pe
r 

C
ol

lis
ion

DYNAMIC TREE
GI-COLLIDE

Figure 10: Average time needed for collision detection by BS-tree
and GI-COLLIDE

Results of this test are shown in Figure 10. The average number
of milliseconds spent on collision detection for different numbers
of Stanford Bunnies is displayed. The numbers of milliseconds per
collision are almost constant for both cases. On the other hand,
for majority of the tests, GI-COLLIDE required less time to de-
tect a collision, providing speedup up to a 19%. It shows that the
indexing the geometry image is much more efficient than storing
the spheres dynamically allocated in the memory. Apparently, the
memory requirements for the geometry images are much smaller,
because no pointers are required and the position of each sphere is
calculated implicitly.

The dynamically allocated algorithm of the BS-trees based colli-
sion detection test was strongly improved. In reality it is really
difficult to obtain perfectly balanced trees (something natural to GI-
COLLIDE). Some time is also needed to construct and to balance a
tree. A geometry image has all these properties inherited from the
sampling scheme.

5.3 Rapid vs GI-COLLIDE

Another test we have performed was comparison of the
RAPID [Gottschalk et al. 1996] and GI-COLLIDE. The collision
detection was again performed with one-to-one comparison, and
the time spent on collision detection and numbers of collisions were
reported. The RAPID test can be terminated either when the first

collision is detected or can be run to detect all collisions. We have
used the first contact detection for both algorithms in our test.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Objects

M
ill

is
ec

on
ds

 p
er

 C
ol

is
ion

RAPID
GI-COLLIDE

Figure 11: Average time needed for collision detection by RAPID
and GI-COLLIDE

The results in Figure 11 show that RAPID provides faster collision
detection than GI-COLLIDE. RAPID is a hierarchical representa-
tion using OBB-trees that provides better fit and include less empty
space than BSs. That is why the OBBs report less number of false
detections. We believe this to be the main reason why RAPID de-
tects collisions faster. Comparing the graphics there is not a signif-
icant difference in the times reported. In average, RAPID is 0.148
milliseconds faster than GI-COLLIDE for detecting a single colli-
sion. To create the OBB-tree a significantly large amount of pre-
processing time is required than for GI-COLLIDE.

5.4 A Real Application

To give an example of a real application we have implemented a
test of collisions between a model of a moving helicopter and a
fractal terrain. The helicopter moves in a realistic way, pitching up
and down and rolling left and right, getting close and far from the
terrain surface.

Each test was performed on models in different resolutions. We
used geometry images in resolution 513 × 513, 1025 × 1025,
2049×2049, 4097×4097, and (where possible) 8193×8193 pro-
viding objects with 256k, 1M, 4M, 16M, and 64M vertices. All
possible resolutions were tested against each resolution that gives
maximum of 90.109 possible sphere-to-sphere and 68.109 polygon-
to-polygon tests.

Each test was performed twelve times, both extremities were dis-
carded, and the average values were used.

The geometry images are uncompressed in the main memory.
When stored on the disk, they are saved in the TIFF format with
16-bits per channel. The largest geometry image occupies 512MB
of the disk space.

Figure 12 shows the result of the collision detection and the results
are in tune with the expectations. The number of collision tests
corresponds to a logarithmical function of the number of vertices
of the object. It is important to notice that two objects in the res-
olution 4097× 4097 pixels occupy more than 368MB of memory
(184MB for the geometry and the normal vectors, and 184MB for



Figure 12: Number of collision tests as the function of object res-
olution. Two equal objects in varying resolution are colliding and
the collision detection times are reported. The lines show the tests
performed with geometry images in resolution 5132, 10252, 20492,
and 40972

the bounding spheres). The time for collision detection test was,
for the worst case of 68.106 polygons, under 60ms. Non-extreme
cases, for objects in resolution 1025×1025, were around four mil-
liseconds. The GI-COLLIDE works really efficiently especially for
huge amount of data.

5.5 Time Critical Collision Detection

The next example, in Figure 13, shows results of a time-critical
test. We have tested an object in resolution 20492 against 5132,
10252, . . ., 81932. The framerate was kept constant on 60fps (leav-
ing 15ms per collision test). The figure shows the actual timing of
the performed tests. The number of actual collision follows the log-
arithmical function but up to the certain level. From this level the
amount of tests remains constant.

Figure 13: Time required for the collision test as the function of ob-
ject resolution in the case of time critical collision detection. Object
in resolution 20492 was tested against objects in resolution 5132,
. . ., 81932. The framerate was kept on 60 fps. The x-axis shows
the number of millions of polygons tested, the y-axis the time in
milliseconds required to find the first collision

6 Conclusions and Future Work

We have presented a new approach for efficient collision detec-
tion using geometry images named GI-COLLIDE. The algorithm
is based on an efficient coding of the bounding volume hierarchy
within the geometry image. From the original geometry image a
BS-tree is calculated. The deepest level of the hierarchy stores in
its pixels the RGB values of the centers of the bounding spheres of
the quadrilaterals. The alpha value stores the sphere radius. This
calculation is performed for all possible levels. The highest pixel
from the hierarchy corresponds to the bounding sphere of the entire
object represented in the geometry image. Traversing both BS-trees
performs the collision test and checking the bounding spheres col-
lisions.

Our approach inherits all advantages of the geometry images. The
manipulation is fast, we can store extremely precise and huge data
representations, etc. The main advantage of GI-COLLIDE is the
way the BS-tree is represented in the mip-map-like structure. This
structure is always perfectly balanced, can be computed very fast,
and is accessed just by indexing the 2D array. Compared to the pre-
viously published methods minimum of additional data structures
is needed. This allows us to represent objects up to 8193×8193
vertices in our current implementation. The algorithm is fast and
one of its main advantages is that it is really easy to implement so
it positions itself to computer games, VR applications, and to all
time-critical applications where the memory requirements are lim-
iting and the high speed is required. Since we store the geometry
images on the disk as TIFF images we can use all the advantages
of this representation. We can compress the stored data using LZW
algorithm that helps to reduce the space required for the storage.

Our results show that the algorithm is faster or almost of the same
speed as I-COLLIDE, RAPID, dynamically allocated BS-trees. It
works for real applications even for huge data and can be easily
implemented in a time-critical version.

We are limited to genus zero objects in our implementation.
More topologically complicated objects require more geometry im-
ages [Sander et al. 2003]. Another disadvantage is that geome-
try images are designed to represent objects, so the test is suited
to object-to-object collision detection. A technical disadvantage
is that our actual implementation is limited to 2n + 1, n = 1,2, . . .
geometry images.

There is some future work left. A possible application is a collision
detection together with a level of detail (LOD). When the object
is displayed we would select the corresponding LOD and detect
the collisions up to the certain level by performing the collision
detection on the selected geometry image and not on the original
one. This could significantly reduce the computational time namely
in complex scenes. An important property of the algorithm is that
we do not need necessarily to test a geometry image against another
geometry image. It would be interesting to compare a test of a
geometry image against k-DOPs [Klosowski et al. 1998], against
sphere trees or OBB-trees [Gottschalk et al. 1996], or to apply some
image space techniques [Baciu and Wong 2003; Govindaraju et al.
2003]. Another possible future work is an implementation of the
collision detection using graphics hardware.

References

BACIU, G., AND WONG, W. 2003. Image-based techniques in
a hybrid collision detector. IEEE Transactions on Visualization
and Computer Graphics 9, 2, 254–271.



BRADSHAW, G., AND O’SULLIVAN, C. 2004. Adaptive medial-
axis approximation for sphere-tree construction. ACM Transac-
tion on Graphics 23, 1, 1–26.

COHEN, J. D., LIN, M. C., MANOCHA, D., AND PONAMGI, M.
1995. I-collide: an interactive and exact collision detection sys-
tem for large-scale environments. In Proceedings of the 1995
symposium on Interactive 3D graphics, ACM Press, 189–ff.

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY,
M., AND STUETZLE, W. 1995. Multiresolution analysis of
arbitrary meshes. Computer Graphics 29, Annual Conference
Series, 173–182.

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996. Obb-
tree: a hierarchical structure for rapid interference detection. In
Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, ACM Press, 171–180.

GOVINDARAJU, N. K., REDON, S., LIN, M. C., AND
MANOCHA, D. 2003. Cullide: interactive collision de-
tection between complex models in large environments us-
ing graphics hardware. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
Eurographics Association, 25–32.

GU, X., GORTLER, S. J., AND HOPPE, H. 2002. Geometry im-
ages. In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, ACM Press, 355–361.

HE, T. 1999. Fast collision detection using quospo trees. In
Proceedings of the 1999 symposium on Interactive 3D graphics,
ACM Press, 55–62.

HUBBARD, P. M. 1996. Approximating polyhedra with spheres
for time-critical collision detection. ACM Trans. Graph. 15, 3,
179–210.

KLOSOWSKI, J. T., HELD, M., MITCHELL, J. S. B., SOWIZRAL,
H., AND ZIKAN, K. 1998. Efficient collision detection using
bounding volume hierarchies of k-dops. IEEE Transactions on
Visualization and Computer Graphics 4, 1, 21–36.

LEE, A. W. F., SWELDENS, W., SCHRÖDER, P., COWSAR, L.,
AND DOBKIN, D. 1998. MAPS: Multiresolution adaptive para-
meterization of surfaces. Computer Graphics 32, Annual Con-
ference Series, 95–104.

LIN, M. C., AND CANNY, J. F. 1991. A fast algorithm for incre-
mental distance calculation. In IEEE International Conference
on Robotics and Automation, 1008–1014.

LOSASSO, F., HOPPE, H., SCHAEFER, S., AND WARREN, J.
2003. Smooth geometry images. In Proceedings of the Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing,
Eurographics Association, 138–145.

MIRTICH, B. 1998. V-clip: fast and robust polyhedral collision
detection. ACM Transaction on Graphics 17, 3, 177–208.

MOLLER, T. A., AND HAINES, E. 2002. Real-Time Rendering.
A K Peters.

MOLLER, T. 1997. A fast triangle-triangle intersection test. J.
Graph. Tools 2, 2, 25–30.

PONAMGI, M., MANOCHA, D., AND LIN, M. C. 1995. Incre-
mental algorithms for collision detection between solid models.
In Proceedings of the third ACM symposium on Solid modeling
and applications, ACM Press, 293–304.

PRAUN, E., AND HOPPE, H. 2003. Spherical parametrization and
remeshing. ACM Transaction on Graphics 22, 3, 340–349.

SANDER, P. V., WOOD, Z. J., GORTLER, S. J., SNYDER, J., AND
HOPPE, H. 2003. Multi-chart geometry images. In Proceedings
of the Eurographics/ACM SIGGRAPH symposium on Geometry
processing, Eurographics Association, 146–155.


