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ABSTRACT
An algorithm for simulating wind-ripples and moving sand isextended by the detection of fixed objects. This
permits us simulation and animation of sand interacting with objects like houses, highways, cactuses, etc. Sand is
accumulated on the windward side of an obstacle and the sand relocation and wind-ripples formation is diminished
on the leeward side. The wind shadow depends on the object’s geometry and the wind speed and direction. Sand
tongues are formed as the result of the sand motion.
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1. Introduction
Physically based simulation and procedural modeling
of sand and desert sceneries have a significant impor-
tance in computer graphics. Desert scenes that could
be possibly modeled by hand for quite a long time with
problematic results depending on the human experi-
ence, can be obtained fast and elegantly by defining
scene geometry, physical properties, and running cor-
responding algorithms that simulate the sand reloca-
tion. The results of the simulations are geometric mod-
els of three-dimensional virtual scenes that resembles
reality.

Deserts are areas with a total rainfall less than
25 cm/year. Deserts are usually surrounded by areas
having rainfall between 25–50 cm/year. Surprisingly,
deserts usually do not contain much sand. The ma-
jority of deserts are rocky. The biggest desert in the
world, the Sahara, has only about 10% sand.

Deserts are mostly located about 30o latitude on the
North and South, mainly due to the direction and in-
tensities of winds that do not bring water to these ar-
eas. Wind, in this indirect way, presents the most im-
portant factor forming deserts.

The principal cause of desert erosion is water. Short
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and intensive rainfalls cause important changes in the
face of the surface. At the same time the thermal
shocks, high changes of temperature in the day and
the night, cause dissolution of the rocks and stones that
continuously change into sand.

The main factor forming the shape of sandy deserts is
wind [Pye90]. Wind tends to move sand in its direction
and this dynamic process is slowed down by the inner
sand friction.

In this paper, we describe a procedural algorithm that
significantly improves the previously described algo-
rithm of Onoue and Nishita [Onoue00] by a simula-
tion of sand interacting with objects. Sand grains are
accumulated on windward sides of the obstacles and
the sand motion and wind-ripples formation is dimin-
ished on the leeward side. The presence of obstacles
causes formation of a wind shadow that depends on
the object’s geometry, the wind speed, and direction.
This influences the wind-ripples formation.

2. Previous Work
The computer graphics community has focused on ar-
tificial terrains for more that twenty years.

In the fundamental book [Mande82] Mandelbrot de-
scribes algorithms for generating fractal terrains using
the random midpoint displacement method and ran-
dom faults. So-called noise functions, such as frac-
tional Brownian motion, the Perlin function, etc., are
suitable for texture, as well as for terrain generation.
Since this paper deals with terrain erosions, we refer
the reader to the tutorial [Deuss03] for an overview of
the fractal techniques.

One difficulty with fractals techniques is that they



are not able to simulate eroded terrains that are nat-
urally presented in our environment. Two approaches
whose goal is to provide visual models of eroded ter-
rains exist. The first class generates the eroded ter-
rains directly [Kelle88, Nagas97, Prusi93, Sumne99],
whereas the others [Beneš02, Chiba97, Gaill97, Li93,
Musgr89] simulate an erosion process that can be ap-
plied either to real data or to a generated one.

Musgraveet al [Musgr89] introduces twoad-hocero-
sion algorithms. The first works a low-pass filter sim-
ulating material deposition caused by thermal shocks.
A part of the material melts and falls down. This forms
typical slopes and smoothes the shape of a terrain.
More complicated terrains can be obtained by the sec-
ond algorithm - from the same paper - that simulates
hydraulic erosion. Water running on the surface cap-
tures some part of the material that is moved to another
place and deposited.

Beneš and Forsbach [Beneš01] show a Run Length
Encoding-like layered data structure that is designed
for erosion simulation algorithms and allows for sig-
nificant data compression without slowing down the
efficiency of the erosion algorithms.

The same authors describe an hydraulic erosion algo-
rithm in [Beneš02]. The material that is captured by
running water also travels inside the water. As the wa-
ter evaporates the material settles down that allows a
simulation of such phenomena as drying pools of wa-
ter.

Chibaet al [Chiba97] use a physically inspired model
to simulate river channels forming terrains. The algo-
rithm is user-assisted. The user first defines the river
channels interactively and the algorithm simulates the
corresponding eroded terrain.

Simulation of sand and deserts was the focus of the
paper of Onoue and Nishita [Onoue00]; in it they de-
scribe the formation of wind-ripples and dunes caused
by wind. We extend this algorithm in this paper and
its detailed description follows in the Section 3.

A technique simulating interaction of sand and snow
with virtual objects is described in [Sumne99]. The
amount of material that is moved when a terrain sur-
face is penetrated by an object is determined. The ma-
terial is deposited in the near position and eroded using
a relaxation algorithm. This gives us visually plausible
results of footprints in the sand, mud, and snow.

Li and Moshell [Li93] show a physically based volume
preserving an algorithm that attempts to simulate vir-
tual objects digging holes in virtual terrains. A some-
what complicated algorithm provides fast and realistic
results of bulldozers and scoop loaders. The main con-
tribution of this paper is the part of the algorithm that
describes slippage of a part of terrain that is applied to
interactive manipulations.

This paper continues with the description of the al-
gorithm of Onoue and Nishita [Onoue00]. Extension
of the algorithm by wind obstacles and the interaction
with wind is described in Section 4. Implementation
and results are then shown and Section 6 concludes the
paper.

Recently Onoue and Nishita [Onoue03] presented a
virtual sandbox; an interactive technique for an inter-
active manipulation of sand.

3. Wind-Ripples Simulation Algorithm
The algorithm of Onoue and Nishita [Onoue00] de-
scribes the formation of wind-ripples and dunes
caused by wind. The justification of this technique is
based on the fact that light and subtle sand grains can
be easily captured by wind, and moved to another lo-
cation. When deposited, they fall down the hill, until
the so-called talus angle is reached. An example of a
simulation of the wind-ripples formation is shown in
Figure 1

Figure 1: Wind-ripples formation

3.1. Data Structures
The algorithm works on a regular height field that can
be represented as a two dimensional matrix where each
element represents the height of the material. This
is a very common representation and it is frequently
used for erosion simulation. There are also algorithms
working with compressed layered data [Beneš01], or
with sets of triangles, typically used in Geographic In-
formation Systems.

Regular height fields are not very well suited for real-
time rendering. Planar areas are as equally tessellated
as wrinkled ones, and no level of detail technique is na-
tive to them. There are many algorithms solving these
rendering flaws, but from the viewpoint of the simu-
lation, the algorithm must run for each element of the
height field.

3.2. Basic Algorithm
Letp = (i, j) and0 ≤ i, j ≤ n − 1 denote the 2D dis-
crete vector - a position in a height field. The regular
height field is represented as a two-dimensional matrix
denoted byhf of dimensionn × n. Elements of ahf



are denoted byhf(p). If this is clear from the context,
we will omit the position vectorp and we will write
hf .

The simulation runs in discrete time steps∆t. Let hf

denote the height filed in the current timet andhf ′ the
same height field in the next stept + ∆t.

Each particle of sand – the smallest amount of sand
that can be captured by wind – can be the subject of
three processes,saltation, suspension,andcreep.

Saltation occurs when the wind captures particles of
sand, moves them in the air, and relocates to a different
position (see in Figure 2).

Suspension is capturing dust particles and moving
them indefinitely.

Creep means rolling the suspended particles down the
hill reaching the energetically best position. This pro-
cess can be thought of as a low-pass filter smoothing
the terrain.

3.3. Saltation
We describe the process of saltation as shown in Fig-
ure 2.

Figure 2: Schematic description of the process
of saltation

An amount of sand at the positionp, denoted byqs(p),
is captured by wind as described by the following
equation

hf ′(p) = hf(p) − qs(p) (1)

This amount is deposited in the position

hf ′(p + l) = hf(p + l) + qs(p) (2)

Wherel = (li, lj) is so-called horizontal displacement
vector (the ”hop” vector) with components:

li(p) = (l0i + wihf)(1 − tanh ∂hf
∂i

) (3)

lj(p) = (l0j + wjhf)(1 − tanh ∂hf
∂j

) (4)

The vectorw(p) = (wi, wj) represents the wind. Its
size corresponds to the wind intensity and its direction
to the wind direction. The vector(l0i, l0j) is the user
defined value that corresponds to the average hop.

The functionqs(p), from the equations (1) and (2), re-
flects the amount of transferred material. This depends
on the average amount of material, denoted byq0, and
the height of the terrain element, reflected by the gra-
dient. This is given by:

qs(p) = q0(1 + tanh(∇hf)) (5)

There are many parameters that might seem strange.
Theq0 is the average amount of the transferred sand.
We work with values in the span[0.1, 1.0]. Values
higher that one cause the system to become unstable
and no wind-ripples are formed. Values close to one
cause wilder terrain appearance, values close to zero
make the terrain smoother as can be seen in Figure 3.

a) b)

c) d)

Figure 3: Higher coefficientq0 causes wilder
wind-ripples formation. a)q0=0.1 b) q0=0.5
c) q0=0.7 d)q0=0.9

The parametersl0 andw influence the frequency of
the wind-ripples. Values out of the range[0, 1] cause
system instability and no wind-ripples formation.

3.4. Creep
The last material transport process -creep- smoothes
the artificial surface. Particle of sand can be located
on an unstable position and will fall down. The sim-
ulation of the process of creep takes each element of
thehf and compares it with its neighbors. If it is too
high it is smoothed. This is done as weighted average
of the heights of the closest neighbors of a cell that is
subtracted from the cell height. Special care must be
taken not to add or subtract the total volume of mate-
rial in this process.

Physically, this concept corresponds to rolling the
grains of sand down the hill. This is also known as the
particle deposition process and it is commonly used
for artificial terrain generation.



4. Wind Obstacles
The above described algorithm works for terrains that
are homogeneous, without obstacles, and the wind
blows in the same direction and with the same inten-
sity all the time. It is easy to assume that the wind
depends on the time, so thew(p) = w(t)(p). It is
more difficult to put some obstacles there.

We have extended the previously described algorithm
by interaction with obstacles that cause two fundamen-
tal effects. The first is theaccumulationof the material
on the windward side of the object. The second fac-
tor caused by the wind obstacles is the windintensity
decreasebehind the object on the leeward side. This
diminishes or stops the wind-ripples formation in the
wind shadow.

4.1. Material Accumulation
The material accumulation is simulated in the follow-
ing way: in the saltation step (see equations (1) and
(2)) the material is moved from its positionp and put
onto the new positionp + l. If the new heighthf ′ is
located inside an object, we move it outside, to the bor-
der as depicted in Figure 4. Here thew is the wind di-
rection,hf is the actual position, andhf ′

updt is the up-
dated new position. The material that should be trans-
ferred into the object (left) is deposited outside (right).

Figure 4: Material cannot be transferred inside
an object (left) and is deposited outside

4.2. Creep
The change of material location causes accumulation
of high volumes of material on the object boundaries.
In the original algorithm, the creep is appliedn× over
the surface which assures visual plausibility of the re-
sults.

It would be possible to implement an adaptive algo-
rithm that would search for the obstacles and smooth
the peaks located close to them. This is not conceptu-
ally correct nor even necessary. We modified the algo-
rithm of the thermal erosion [Musgr89].

To achieve fast and efficient smoothing of the terrain,
we store the local gradient of each element. This
is calculated once with theO(m) time complexity
(m = n × n is the number of the elements of thehf ).
The algorithm tests the gradient of each element and

if the gradient is greater than the corresponding crit-
ical angle, calledthe talus angle, we move the max-
imum possible amount of material to the neighbors.
The amount is distributed proportionally to the size of
the gradient. This step is applied few times, until there
is no material to move. Apparently, no material can be
moved inside the obstacle. The example in Figure 5
shows the result of a simulation.

Figure 5: Material is accumulated on the wind-
ward side of cactuses

4.3. Wind Shadows
Another aspect that we simulate is the wind shadows
caused by the presence of obstacles. Behind an ob-
stacle the intensity of the wind is diminished and in-
creases with the increasing distance. The distance de-
pends on the size of the obstacle.

We present a purelyad hoctechnique attempting to
produce visually plausible results at interactive fram-
erates. A physically correct approach would involve
a study of the wind-obstacle interaction, obstacle sur-
face viscosity, wind vortex, etc. We present a geomet-
ric solution that gives visually plausible results fast.

Figure 6: The wind intensity behind an obstacle
depends on the distance from the obstacle and
from the medial axis defined by the obstacle and
the wind direction



A wind shadow depends on the height of the object and
on its projected width. We suppose the wind intensity
to be zero exactly behind an obstacle, and increase lin-
early.

What plays an important role is the shape of the wind
shadow. We do not modify the wind direction in the
wind shadow (see equation (4)); what is modified is
only its intensity. This can be justified by the wind-
ripple formation algorithm described in Section 3.
Small wind intensity does not cause the wind-ripple
formation that produces the shadow area correctly.

The intensity of the wind inside the wind shadow de-
pends on the distance from the object (denoted byv),
its heighth, and the distance from the medial axis.
This is defined by the projected center of the obsta-
cle to the plane perpendicular to the direction of wind
passing through the middle of the object (denoted by
dv). The external boundary of the shadows is parabola
and the corresponding equation is

s =
w

2
(1 − d2).

To define the wind shadow, we first project the en-
tire object onto the plane that is perpendicular to the
wind direction and passes throught the object’s center.
The object’s center and the wind direction also define
the main axis of the shadow. Each point ofhf , that
should be the subject of saltation, is tested whether or
not it lies inside the shadow. In the positive case the
wind intensity is decreased linearly as a function of
the distancev and the object heighth. Points outside
the shadow boundary are not influenced by the object
shadow. The length of the wind shadow depends on
the wind intensity and the height of the object. The
width of the shadow depends on the projected area
only.

Figure 7: A wind shadow formed by aSteno-
cactus coptonogonus

Figure 7 shows the wind shadow formed behind a cac-
tus in a desert scene and the accumulated material. The

cactus was created in MAYA and exported to OpenGL.

5. Implementation and Results
The algorithm is simple, works fast, and we were
able to run our scenes interactively on an IBM PC
running on 1.5GHz up to the height field resolution
1000 × 1000. The entire implementation is done in
C++ and uses OpenGL for displaying. All examples
shown in this paper run interactively with the frame-
rate between 4-10 fps.

Figure 9 shows an example of the sand accumulation
due to the wind and obstacle interaction. The wind-
ripples are formed correctly. As clearly visible there is
a layer of accumulated sand in the front of them.

Another example in Figure 8 shows sand tongues that
are formed on the highway due to blowing wind. This
is the natural result of the wind and obstacle interac-
tions.

Figure 8: Sand tongues formed on a highway

6. Conclusions and Future Work
An extension of the algorithm of Onoue and
Nishita [Onoue00] is presented. The original algo-
rithm simulates wind-ripples formed by blowing wind
on sandy deserts. The main contribution of our ex-
tension is the simulation of wind obstacles interacting
with sand. The intensity of the wind is modified in the
wind shadows according to the simplified geometry of
the obstacle. The intensity of the wind is decreased
which diminishes the wind-ripples formation. Another
contribution is the accumulation of material in front of
an obstacle.

The algorithm is fast, simple, and runs efficiently on
an average IBM PC without any special requirements
to hardware acceleration.

Future work should definitively focus on the physics-
based wind and material transport simulation. There
are many recently published algorithms in the area of
computer graphics that could be applied here.

On the other hand, we believe that these simple pro-
cedural algorithm providing visually plausible results,
can be used in computer games, the movie industry,
etc.
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Figure 9: Down to Los Cabos


