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Abstract

Cultivated virtual plant ecosystems modeling by means
of simple memoryless procedural agents is presented. The
ecosystem growth is a dynamic process with a tendency to
chaos. An agent can move in the ecosystem and perform
certain actions defined by users in the agent description file.
Agents can seed new plants, pull out weeds, water plants,
and communicate by message passing to distribute their
tasks. An example of a successive garden cultivation in a
wild ecosystem is presented. Agents first eliminate weeds,
prepare space for and lay sidewalks, plant garden flowers,
and protect their development.

The main contribution of this paper is to show that au-
tonomous agents can be used as a tool for user assisted pro-
cedural modeling of highly complex scenes.

1. Introduction and Previous Work

Visual simulation and procedural modeling of plants
have a long history and an impressive progress in computer
graphics. Early models were based on fractals such as [14]
and later developed through formal specification to result in
Lindenmayer systems (L-systems). L-systems were intro-
duced in [12], first used for modeling of geometrical plant-
like structures (called graftals) in computer graphics in [19],
and later were extensively improved by Prusinkiewicz and
his collaborators (see the book [17] and the tutorial [10] for
an overview).

An important factor influencing plant development, and
therefore its structure, is illumination as mentioned for ex-
ample in [1, 13, 15].

Greene [7] simulated climbing plants and used ap-
proaches similar to those described by Arvo and Kirk [1].
The plant growth is simulated as a random walk and the
best-illuminated position on the surface of a supporting tool
is calculated. The plants tend to grow on the surface of an-
other object resulting in a ”virtual ivy” or similar climbing
plant species. These techniques were recently reused in [4].

In these works the plant structure itself is modeled as a re-
sult of a work of a set of virtual automata. In this paper, we
use external agents to perform tasks that influence the plant
development.

Attempts to simulate interaction with an environment
have resulted in an extension of L-systems to so called Open
L-systems [13]. The Open L-systems allows a formal speci-
fication of an interaction of a plant with its environment and
the plant itself.

Visual simulations of plant ecosystems were attempted
by Deussen et al. [6] who use a two level simulation. On the
low-level plants interact just by simple competition of their
ecological neighborhoods represented as circles. If two cir-
cles interpenetrate there is a collision and the weaker plant
is eliminated. On the higher level the plants are represented
as 3D models that are rendered using some simplifications
but resulting in high quality photorealistic images.

Lane and Prusinkiewicz introduce two approaches
in [11], the local-to-global and the global-to-local. In the
first one the entities are planted, grow, and interact in a way
that leads to a certain plant distribution. If the rules for
competition and the implementation are correct the result-
ing model is visually plausible and therefore realistic. The
other approach, the global-to-local, could be also called a
computer assisted ecosystem simulation. The user speci-
fies a plant distribution as a gray-scale image and the sys-
tem generates the corresponding 3D model. The theoretical
framework introduced in this paper is another extension of
the concept of L-systems - multiset L-systems.

Probably the first approach to simulation of plants inter-
acting with another biological objects was a simulation of a
bug eating some parts of plants in [16]. The phenomenon
of a traumatic reiteration (a change in leadership) was used
here. The buds that are eliminated by a bug cease produc-
tion of a hormone that inhibits the other buds from grow-
ing. The lack of this hormone is propagated down the plant
structure and causes the nearest bud to wake from its dor-
mant state. The newly growing bud starts producing the
hormone that stops the other buds. This is simulated by
sending signals by the just eliminated bud down through
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the plant structure. The closest bud captures the signal and
stops its propagation.

Another paper dealing with more elaborated models of
insects attacking plants has been recently published [8]. The
paper presents examples of a formal specification by means
of L-systems of insects interacting with a plant or plants
in different ways. This ranges from a single insect forag-
ing on an individual plant to insects flying in an ecosystem.
The paper also discusses plant response to damage, behav-
ior modeling, insect perception modeling.

Agents operating on virtual ecosystems were recently
studied in [3, 5]. The previous work shows that agents can
be used as efficient tools for modeling phenomena that are
difficult to achieve without them, for example agent-farmers
that protect a predefined area (garden) against weeds [5].
The process of ecosystem development simulation itself is
slow and complicated and sophisticated agents slow down
these calculations even more. The main contribution of this
paper is an efficient interaction calculation and simple in-
teraction between agents and plants allowing for fast simu-
lation with a high number of agents.

This paper has the following structure. In the next sec-
tion individual plant models and growth simulations are de-
scribed. Section 3 deals with ecosystems description and
the next section describes in depth agents and their func-
tionality. A brief note about rendering is given in Section 5
and the last two sections describe results and conclusions.

2. Plant Modeling and Growth Simulation

An ecosystem is a set of individual plants in different
stages of development. Our model deals with several plant
species – we have models of english daisy (bellis peren-
nis), wheat, three different kinds of grass, some bush-like
plant, campanula (blue bell), yellow tulip, and different pro-
cedurally generated trees obtained by the strands model of
Holton [9]. Examples of the plants are illustrated in Fig-
ure 1. Some of the plants were generated by the Plant Studio
software (www.kurtz-fernhout.com).

Geometrical models are represented on two logical lev-
els. At the low level the model of a plant is represented as a
set of basic geometric primitives; Bézier surfaces are used
to model flowers petals and grass blades, generalized cylin-
ders are models of stems, line segments model tiny leaves,
a spherical cap is used as a model of the head of the english
daisy, and so on.

At the higher level the plant is represented by its position
and the ecological neighborhood [6] that is a radius within
which the plant resides with no other plant allowed inside.
This functional representation is used for plant-plant and
plan-agent interactions.

When a plant is initialized the day of its possible death is
also determined. It corresponds to a perfect, non-influenced

Figure 1. Examples of plants used in the
ecosystem model

development in ideal conditions. In classical ecosystem
simulations the real fate of a plant depends on competi-
tion with other plants and external resources, the new ap-
proach introduced in this paper is the influence of procedu-
ral agents. Both aspects will be described later in the paper.

3. Ecosystems

An ecosystem is a virtual environment represented as a
2D continuous area inhabited by virtual plants.

The local-to-global approach to model ecosystem devel-
opment is used [11]. An ecosystem is described, plants are
seeded, grow by competing for resources and space, and re-
produce. The emergent phenomenon of this artificial life
simulation is the spatial plant distribution.

The ecosystem initialization can be done in several ways.
We can do it interactively using some drawing program,
where the color corresponds to the spatial distribution of
the plants [11], or we can plant some seeds at random and
let the system grow to a stable state, or we can program the
agents to run over the ecosystem and plant seeds.

The system is controlled by discrete time-steps that ap-
proximate continuous time. We use the time-step ∆t = 1/2
day, determined by the fastest growing plant in the ecosys-
tem, in this case the wheat. During one time-step the fol-
lowing actions are performed:

1. plants that should go to seed give birth to new seeds,

2. plants out of the ecosystem are eliminated,

Proceedings of the Theory and Practice of Computer Graphics (TPCG’03) 
0-7695-1942-3/03 $17.00 © 2003 IEEE 



3. colliding plants are detected,

4. old plants, as well as the plants that have lost in com-
petitions, are eliminated,

5. agents perform their scheduled actions,

6. all plants grow, and

7. the time-step is increased t = t + ∆t.

The time-step of the ecosystem growth simulation, a
half-day, is relatively long for the agents that usually work
in a few hours, in other words plants do not grow faster than
agents work. We suppose the ecosystem does not develop
during the agents’ work so we run it as an independent pro-
cess after the ecosystem simulation step.

The description of the ecosystem development simu-
lation, as presented in this section, is sufficient for un-
derstanding of the following sections. We refer readers
to [2, 6, 11] for more details of virtual ecosystems.

4. Agents

4.1. Visibility

An agent is represented as a point at the given position
[x, y], and the visibility range that is defined by the viewing
direction, the visibility angle α, and the distance of visibil-
ity d (see Figure 2).

Figure 2. Agent’s visibility range

We do not evaluate real objects an agent can see i.e., we
do not calculate occlusions that would be very complicated.
We suppose that everything within the agent’s visibility re-
gion can be perceived.

Each agent can be in one of two modes of seeing, the
qualitative mode and the quantitative one. In the first an
important closest individual plant is detected. This mode is
used for example in pulling out weeds, searching for food,
picking fruits, and so on.

The second mode is used for quantitative operations, like
cutting grass, or seeding new plants in empty areas. An
agent calculates the direction of maximal and minimal plant
coverage in the following way. The visibility range is sub-
divided into n strips in polar coordinates corresponding to
the angle α/n (we use n = 7). For each subarea the number

of plants whose centers lie inside is counted. The minimum
and maximum numbers are found and the corresponding di-
rections are determined.

The most time demanding task is the determination of
plant proximity. To perform it efficiently we use regular
subdivision to squares of the ecosystem area. Each square
has two lists of plant indices, those whose centers lie inside
and those that interpenetrate the square. To determine the
closest plants we evaluate the squares occupied by the agent
and calculate the proximity of plants from these squares
only. In the previous versions we have used k-d trees, but
there are two important facts permitting us to use the regular
subdivision; the area is completely covered by plants and no
two ecological neighborhoods interpenetrate. A simulation
of ten years development of a plant ecosystem of an average
number of 20k plants with a time-step of 1/2 day on a 2GHz
PC runs for less than one minute.

4.2. Actions

As mentioned in Section 4.1 an agent can be in one of
two modes, qualitative - where an individual plant is de-
tected, or quantitative - where the occupying number of
plants is detected. One can easily imagine an extension of
this concept to one logical level up – an agent could detect
part of plants, for example old branches of trees could be
eliminated, fruits could be harvested, and so on.

Unlike plants an agent can move over the ecosystem and
can perform certain actions that include:

• planting a new plant (individual or multitudes),

• killing a plant (pulling out weeds or mowing, depend-
ing on the agent’s operating mode),

• watering plants,

• placing insecticides, and

• communicating with other agents.

Virtual farmers are not presented in the ecosystem all the
time. They can be run on a user’s demand interactively or
can be scheduled. For example in the spring or late summer
they mow in predefined directions. Eliminating weeds is
planned once every month. Watering is done every time the
ground is drying, and so on.

4.3. Motion

An agent can walk in an ecosystem in one of two differ-
ent modes – random walk or moving in a certain direction.

The random walk is used for such kind of tasks as
pulling out weeds or picking up some plants and the agent is
switched to the mode of seeing individual plants. As soon as
a plant or plants appear in its visibility range it moves to the
closest one and perform the necessary action, then it moves
to another one. This can cause overcrowding by agents in
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some areas so agent movements need to be synchronized.
This is further explained in Section 4.4.

The directional walk is performed for quantitative tasks.
An agent walks in a predefined direction that is not changed
very much and is less chaotic than a random walk. The
walking direction can vary depending on the amount of
plants in each subangle of the visibility range (see Sec-
tion 4.1). Synchronization is easier in this case. A typical
example is agents walking in rows and seeding plants.

4.4. Message Passing

Agents communicate by message passing to share their
work efficiently. We have noticed in our simulations that
in some case agents tend to accumulate in certain areas of
an ecosystem. To avoid this we have adopted the approach
of boids introduced by Reynolds [18]. He used collision
avoidance for visual simulation of flying flock of birds. Two
moving elements attempt to keep away from each other in
at least a predefined distance. We use the method in such a
way that each agent before performing its motion searches
the neighborhood for another agent. If its step causes vio-
lation of the minimal proximity rule, the agent updates its
motion to move just the distance not to interpenetrate the
working area of the another one.

The above-described step is performed only when an
agent has some work to do. If the agent has no plants in
its neighborhood it works differently. In this case agents try
to share their work and enter into their working areas. It
is important to notice that when an agent enters the work-
ing area of another agent and finds a plant the mode will
be switched back so the agent in the next step will try to
leave this area. As a result this approach shares the work
efficiently but keeps agents away from each other. This ap-
proach has a logical justification. Imagine a group of people
picking strawberries. At the moment you do not have any
fruit close to you, you will possibly try to move close to
someone else who still has some fruits but not too close to
invade his or her space.

These two above described approaches help to keep the
area efficiently covered by agents.

4.5. Constraints

Every agent has a set of constraints that are applied dur-
ing the work. These constraints are a set of rules that can
be thought of as a program of an agent. One of the rules
already described in the Section 4.1 is the mode of work,
qualitative or quantitative. The other rules are as follows:

• which plants will be affected,

• which actions will be performed, and

• constraints, determining the working area.

Constraints are described in an external XML configu-
ration file that is parsed and processed by the system and
delivered to agents when the simulation starts. This is a
simplified version of the description file introduced in [3].
An example follows

< global >
t=0;
∆t=0.5;
p1=daisy;
p2=grass;
p3=bush;
p4=wheat;
p5=corn;

< /global >
< agent1 >#farmer
kill: p1, p2;
water: p4, p5;
constraints: 10<x<20;

20<y<30;
kill: p3;
water: p4, p5;
constraints: 20<x<30;

20<y<30;
< /agent1 >
< agent2 >#lawnmaker
kill: p4, p5;
cut: p2, p3;
seed: p1;

< position >
circle[10,10],2;circle[10,15],2;
circle[15,10],2;circle[15,15],2;
< /position >

water:p1, p2, p3;
constraints: 0<x<100;
< /agent2 >

There are important new parts introduced. First, com-
pared with the agents from [3], the file is simplified. Func-
tions are not used and internal states are missing to allow a
significant speedup of the program.

There are new sections of constraints that determine
working areas for each agent. It is also important to notice
that one agent can do different things in different areas. For
example the first agent has two different sections described
by its constraints.

Positions for seeding some plant species can be deter-
mined by the attribute position, as shown in the case of
lawnmaker that seeds the daisies only in four circles.
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5. Rendering

The simulation algorithm itself works in a 2D area
whereas the results are displayed in 3D. A scene de-
scription file for the Persistence of Vision raytracer
(www.povray.org) is generated during the simulation in the
desired time intervals. We also display an OpenGL pre-
view to keep track of the what is happening. This allows
the user to stop the process, change some parameters, or
run the agents.

Figure 3. Example of an ecosystem ren-
dered using instancing. There are more than
100 000 plants but only 42 originals

The apparent problem is the amount of saved data. The
ecosystems are huge and it was difficult or impossible to
render these scenes without some additional simplification.
We have decided to use instancing to save memory.

Each plant specie is represented by n = 7 discrete sam-
ples of its lifetime. These samples are models saved in
an external file and are used during rendering. When the
raytracer description file is to be saved the program makes
quantization of the age of each plant and saves the reference
to the corresponding instance, so the growth is not continu-
ous but step-wise. To provide an impression of growth, we
scale the sample in x, y, and z coordinates between two dif-
ferent samples correspondingly. The plant grows by scal-
ing and every 1/7-th of its lifetime the model switches to
another instance. We are aware that we use few different
objects in the scene, but the final rendering process is effec-
tive and the scene looks realistic. We do not aim to generate
animations.

Figure 3 shows a scene with an ecosystem displayed by
instancing. The size of the ray-tracer description file is
17MB, the scene consists of 103k plants and only 622k of
geometric objects, and 42 different objects. Peak memory
used for raytracing was 1.1GB and the total time of ren-

dering in resolution 800×600 pixels with antialiasing on a
2GHz IBM PC was 24 minutes.

An interesting question is if any memory is saved, and
if so, how much. Suppose we have a scene that includes
daisies, trees, grass, and wheat. Let’s denote the number of
objects by d, t, g, and w respectively. Let’s suppose the size
of the object in the memory is s(x), where x ∈ {d, t, g, w}.
Let’s also suppose the size of one instance (i.e., the trans-
formation) is inst. Using a non-instanced approach, where
each object is completely represented in a memory, gives
the total size

su = d s(d) + t s(t) + g s(g) + w s(w)

the size of the instanced representation is

si = inst(d + t + g + w) + s(d) + s(t) + s(g) + s(w).

The compression factor is then c = si/su. For one scene
we got:

object size (kB) number of objects
daisy 105 72
grass 1 3092
trees 733 8

wheat 160 460

The su = 90 116kB, the si = 9 228kB and the compres-
sion factor is 90%. For other scenes the compression ranges
from 80% to 90% and in general is better for large scenes.

6. Results

Figure 4. Creation of a virtual garden starts
with a wild ecosystem

Two examples of a virtual garden are presented. Gardens
occupy area of 16×16 meters and are inhabited by approxi-
mately 256k plants. All images were rendered in resolution
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800×600 pixels with antialiasing and the rendering time on
a 2GHz IBM PC was 35 minutes.

The following example shows the way a virtual garden is
cultivated. First, as shown in the close-up in Figure 4, a wild
ecosystem with 200k blades of grass, 80 plants of wheat,
2000 plants of gilia, 2000 clusters of grass, and 20k of blue
bells is cultivated. Seven agents repeatedly pull out weeds
and areas that are supposed to be a sidewalk are cleaned
from plants. This cultivation is done in three visits during
one week and the agents work approximately two hours.
The entire time of simulation was less than two minutes.
The result is shown in Figure 5.

Figure 5. Weeds are pulled and a space for
sidewalks is prepared

In the next step (Figure 6) the sidewalks are laid and
tulips are planted. This was done during one visit of seven
agents in a duration of two hours.

Later, the garden is repeatedly cleared of weeds and
tulips are protected and kept in their areas. It means that
any tulip that is found outside its predefined space is con-
sidered as a weed and eliminated.

In the second example in Figure 7 the same strategy was
used but tulips were planted in lines along the sidewalk.

7. Conclusions and Future Work

Modeling of garden creation by virtual autonomous
agents is presented. Agents are continuous automata with-
out memory and can perform predefined actions; they can
walk and pull out weeds, seed new plants, water them, and
undertake other tasks. Agents communicate to deal with
the work efficiently. Each agent has its own set of tasks
and treats to perform them efficiently in cooperation with
the other agents. An external file with a simple description
language defines the tasks to be performed and when the
program runs these tasks are delivered to the agents.

Figure 6. In the last step tulips are planted
and protected

The simulation algorithm runs efficiently on a mid-class
PC with up to million plants. Instancing allows for reason-
able rendering saving up to 90% of space using the Per-
sistence of Vision ray tracer on scenes having hundreds of
thousands of plants.

From the user’s point of view the usage of agents is sim-
ple. Users defines the tasks that should be performed by
agents by writing them to the agent description file, then
they define the number of agents, and run the ecosystem de-
velopment. Agents repeatedly (scheduled or run by users)
visit the ecosystem and perform their tasks. Users can save
intermediate steps and run different agents to perform dif-
ferent tasks. In this interactive way the ecosystem can be
transformed into, for example, a field or a garden.

There are many possible extensions. One of them is the
way the constraints are defined. It is not really handy to
define the constraints by functions, so some kind of visual
input could help to simplify this process, we could use a
binary image defining the areas. Another important future
work is the speed of the simulation. The process is effi-
cient, but for large scenes we easily loose interactivity. One
of the frequent criticisms is the predictability of these ap-
proaches. How can we know what will be the result, if it
depends on interactions of some agents? One solution is to
divide the task into distinct steps and save the intermediate
works. User could possibly make undo steps and continue
with different rules.

We believe this algorithm is sufficiently clear and easy
to implement and can be used to prepare realistic scenes
that are impossible or hard to create by hand or by other
techniques. This approach gives results that are visually in-
tune with our expectations and we think that this could be
possibly used as a tool for observing what could happen
with real ecosystems.
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Figure 7. Virtual garden as a result of the work of virtual agents
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