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Abstract

In mainstream geometric modeling, cultivating virtual
plant ecosystems is a difficult task. Algorithms for realis-
tic scene generation are rooted in procedural models with
no explicit or poor external control. We propose that virtual
ecosystems modeling may be boosted using software agents
as behavioral tools. An ecosystem grows and is driven by
its internal rules of development. If it is left to its own fate,
it will reach stability on the edge of chaos. Agents interact
with ecosystems by adding plants, cutting or killing them,
watering, stepping-over, or favoring some plant species.
An agent is a characterization artifact that shows proac-
tive conduct and is described by its set of sensors, effectors,
internal states, and habits. Habits are defined as continu-
ous functions and allow for characterizing a wide variety of
behaviors.

1. Introduction and Previous Work

This paper shows that a set of virtual agents interacting
in and with a virtual environment can be used as tools for
geometric modeling. In mainstream graphics technology,
cultivating plants as a geometrical model is a difficult, but
an important task in realistic scene development. Without it,
artificiality shows up in graphical depictions of these mod-
els. In our case, behavior exhibited by growing, dying, plus
shape and size, must be realistically modeled by computer-
ized models. For this purpose, we introduce a concept of a
virtual (software) agent that can sense an environment and
react to it by providing high-level behavioral states. Such
reaction is a result of external stimuli, internal states, and
habits of the agent. The external stimuli are perceived by
sensors, transformed into signals and processed. Habits are
described as multivariate continuous functions and are di-
verse in a random fashion as an agent is created and ex-
hibits personality. The internal states are set in a feedback
loop based on the stimuli, habits, and the previous values of
the internal states.

The combination of agent-based conduct automation

plus graphical modeling of an ecosystem development ac-
cording to its own internal rules, yields in innovative ap-
proach to virtual realism. This makes up for the key rel-
evance in our work. Similar work has been proposed by
researchers on artificial life using genetic models as their
behavior framework, but their simulations lack the realism
of virtual models. For this reason, we believe that our mixed
approach is unique.

1.1 Agents in Virtual Ecosystems

Plant ecosystem modeling has been introduced into com-
puter graphics within last few years. Probably the first paper
dealing with ecosystem modeling and rendering was intro-
duced by Deussen et al [3]. The later works include plant
competition for space and resources [1, 7].

Agents interacting with plants were first described in the
context of L-systems in [10]. Another paper dealing with
more elaborated models of insects attacking plants has been
recently published [4]. The paper presents examples of a
formal specification by means of L-systems of insects inter-
acting with plant or plants in different ways, ranging from
a single insect foraging on a plant to insects flying in an
ecosystem. The paper also discusses plant response to a
damage, behavior modeling, insect perception, etc.

1.2 Agents in Another Context

Agents have been around for a number of years. It is
hard to establish a clear definition for a software agent be-
cause of its diverse mainstream characteristics: proactivity,
independence, capacity for reasoning under uncertainty, ne-
gotiation, collaboration, and mobility, can all be placed on
other types of software machinery.

Most efforts in agent technology have dealt with infor-
mation systems. For example, Maes and Moukas developed
the Firefly project as an early purchasing broker proto-
type [8] using a number of ontologies such as probabilistic
reasoning, neural networks or reasoning under uncertainty
as a software engineering approach [5].

Virtual agents were mentioned and used many times in
computer graphics. One of the pioneer’s work was the paper
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of Reynolds [11] who introduced a simulation of polarized
behavior of flocks of birds and fishes. These agents called
boids have a wide usage and assisted for example in the
making of the Batman Return and The Lion King movies.
Laws in these domains are more on the side of physical and
natural phenomena. They are, to some extent, more certain,
and can be described functionally. Two levels of realism
are thus confronted: behavioral, and virtual. The following
discussion deepens into the latter. At the end of the paper,
we will go back to the former.

Sims has introduced evolved artificial creatures [12].
These amazing virtual animals are generated by genetic al-
gorithms where the fitness function is evaluated by compe-
tition. The winners are crossed so the best features are in-
herited to the future generations. The emergent phenomena
are the strategy of behavior and the creature’s shape.

Terzopulos et al [14] have introduced a virtual aquarium
with artificial fish. The model of a fish is based on physics
and is described as a set of springs. The motion occurs
when the springs act and the water generates correspond-
ing response moving the fish forward or up and down. The
fish has three mental stages (hunger, libido, and fear), sense
the environment, and the intention generator generates re-
sponses that drive the motion.

Thalmann and his collaboratives have an impressive on-
going work on artificial agents in VR [6, 9, 13] used ex-
tended physics-based modeling to introduce a wide vari-
ety of virtual humans with feelings, emotions, etc. They
communicate, visit the supermarket, feel and sense envi-
ronment, travels in metro, ride skateboard, and so on.

Badler and his collaboratives developed the EMOTE
project [2] that focuses emotions expression and gestures
of virtual agents.

For this paper, we will establish that an agent is a char-
acterization artifact capable of delivering proaction guid-
ance for a graphical character that must exhibit some sort
of high level behavior inside a virtual environment. Infor-
mation processing is still part of the job, of course. What
we propose as an innovative use for agents is their meld-
ing into a virtual modeling engine where an ecosystem will
be generated. This novel approach to generating artificial
life builds on top of work such as the boids described in the
middle of this section.

In the next section, the ecosystem modeling is briefly
described. The Section 3 describes completely the agents
and their behavior. The next section deals with the agent
description and the next section 5 shows some results of the
simulations and the last Section 6 concludes the paper.

2. Ecosystems

A virtual ecosystem is a planar continuous area where
different virtual plant species exist. It is supposed the con-

ditions are equal in all directions and all places. Plants
have the same amount of soils, nutrients, light, water, etc.
i.e., they have the same initial chance to survive.

There are two basic approaches used for the ecosystem
modeling [7], the global-to-local where the plant distribu-
tion is given once by user interaction, for example as a
gray-scale image. We use the second approach, the local-to-
global. Here a scene is described and the plants are planted.
Plants ”know” their rules of behavior and grow according to
them. Since this is a typical artificial life approach we focus
on the emergent phenomenon that is the spatial plant distri-
bution. Figure 6 (top) shows a result of such a simulation.

In the local-to-global approach, the plants develop ac-
cording to the local rules of behavior and compete with the
other plants for space and resources. The competition is de-
tected as a collision of ecological neighborhoods that are
circles corresponding to the area of influence of a plant.
As the plant grows, the neighborhood is changing. If two
neighborhoods interpenetrate there is a collision, the winner
is determined and the looser is either diminished or elimi-
nated from the simulation. The aim of this paper is not to
describe the plant ecosystems, so we refer reader to [1, 7]
for precise description of the techniques used here.

3. Agents

Figure 1. Internal structure of an agent

We consider an agent as a characterization artifact capa-
ble of delivering proaction guidance for a graphical charac-
ter that is situated and acts in a virtual environment. It has
its position defined by the two coordinates [x, y] and orien-
tation defined by its viewing direction.

The agents work in the following way (see in the Fig-
ure 1). They sense their environment with the sets of sen-
sors that generates stimuli signals that are transported into
the intention generator. The intention generated is also fed
by internal states that are a set of variables corresponding
to certain feelings (laziness, tiredness, hunger, etc). Habits
are the last input of the intention generator. They are rep-
resented a set of functions describing a probability that a
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certain action will be performed. There are also global vari-
ables like time, rain, and so on.

The intention generator sends a signal to the response
generator. The response feeds back the internal states, for
example a signal for walking very far will increase tired-
ness. At the same time the effectors perform the corre-
sponding actions.

3.1 Sensing

An agent senses its environment by a set of sensors. We
have implemented agents based on the visibility sensor, but
the concept introduced here allows for arbitrary extension.

The area that each agent sees

Figure 2. The
visibility
range

is called the visibility range and is
defined by the viewing direction,
the viewing angle α, and the dis-
tance of visibility d. The visibi-
lity angle is fixed and the distance
d can vary according to the real
conditions (day/night, fog/clear air,
tiredness, etc.).

3.2 Motion

An agent performs a goal-oriented walk. The agent
moves to the closest plant or plants and performs actions
generated by the response generator. If there is no action
to do the agent performs ”idle” task, i.e., continues in the
viewing direction and, after some time, it stops for a while,
continues in a random direction, etc.

The typical motion of gardeners is from plant to plant as
well as farmers eliminating weed. Farmers in the time of
harvest walk in the direction of the high plant density.

3.3 Internal States

Internal states are variables defined by user. These vari-
ables depend on response generators that can change them
immediately but they also depend on time and other vari-
ables, like the distance passed, day/night etc.

function Figure

fa(x) = 2x3 − x2 4a)
fb(x) = 2x3 − 5x2 + 4x 4b)
fc(x) = 6.75x3 − 13.5x2 + 6.75x 4c)
fd(x) = −6.75x3 + 6.75x2 4d)
fe(x) = −64x2 + 64x − 15 4e)
ff (x) = −64x2 + 48x − 8 4f)
fg(x) = −0.2x + 0.9 4g)
fh(x) = −2x + 1 4h)
fi(x) = −2x3 + 3x2 4i)
fj(x) = 6.75x3 − 6.75x2 + 1 4j)

An example of an immediate change of the internal sta-
tus is an agent eating grass. At the moment the grass is
consumed, the value of the ”hunger” variable is decreased.
This variable is increased by time. The Figure 4 and the
table show the functions we use in our implementation ei-
ther to change internal states or to define habits. These
functions allow agents to select their own internal state in
an autonomous manner, and thus characterize the before-
mentioned proactive guidance provided by software agents.
For simplicity we will refer to these functions as the func-
tion Figure 4 x), instead of fx(x), because the graph of the
function can be read more easily.

3.4 Actions and the Intention Generator

Most important are the actions that can be performed by
agents. All the functions that we use are polynomial be-
cause they can be promptly evaluated. All the functions are
normalized. The following example explains a generated
action.

Let’s say the function in Figure 4a) describes the proba-
bility that the agent-animal will eat a plant. Here the vari-
able x corresponds to the internal state - the hunger of the
animal. When the agent encounters a plant this function is
evaluated and a random number is generated, if the random
number is smaller than the f(x) the plant is eaten.

Figure 3. The action generator

Figure 3 shows the entire process how the actions are
generated. Each action can depend on internal states, global
states, and habits. The states are inputs of the above-
described functions and all meets in the ”cross” operator.
Here the probability of the action is calculated and scaled
according to the internal states of the agent. The output
of the operator is compared with a random number. If the
random number is smaller the action is performed. Let’s
demonstrate it on another, more precise, example.
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Figure 4. A set of functions describing needs,
feelings, habits, and changes of the internal
states of virtual agents

A farmer-agent works for four hours. Its tiredness de-
pends on the normalized time it works and is described by
the function Figure 4 g). The probability that the agent will
kill the weed is described by the function Figure 4 d) that
depends on the plant normalized age. In other words, the
young weed cannot be seen very well and the probability to
be eliminated is small. If the weed is too old, it can be left
on the field, because it will die anyway. Suppose the agent
is in the middle of its work (normalized time t = 1/2) and
encounters a weed that has its normalized age equal to 3/4.
The tiredness function will give value 4/5. The probabil-
ity function of the plant will return 0.95. Multiplying these
values gives the probability that the plants will be killed by
this agent equal to 0.76.

4. Habits and States Definition

The above-described concept is not difficult to imple-
ment. A coding problem is the way a specific agent is pro-
grammatically described. We use a XML scene definition
file that is processed when the program starts. An example
follows.

< global >
t=0 ∆t=0.5
rain=0 ∆rain=20+rand(5)
p1=daisy p2=grass p3=bush p4=wheat p5=corn

< /global >
< agent1 >#farmer
states: hunger=fa(time) hunger=1− fa(food)

tiredness=1 − fb(time)
kill: p1 = fd(age(p1)) p2 = fd(age(p2))

p3 = fh(age(p3)) p4 = 0 p5 = 0
water:p1 = 0 p2 = 0 p3 = 0

p4 = fe(dry) p5 = fe(dry)
< /agent1 >
< agent2 >#lawnmaker
states: hunger=fa(time) hunger=1− fa(food)

tiredness=1 − fb(time)
kill: p1 = 0 p2 = 0 p3 = 0

p4 = fd(age(p4)) p5 = fd(age(p5))
cut: p1 = 0 p2 = fb(age(p2)) p3 = fh(age(p3))

p4 = 0 p5 = 0
water:p1 = fb(dry) p2 = fb(dry) p3 = fb(dry)

p4 = 0 p5 = 0
< /agent2 >

This is an incomplete description and demonstrates just
the essential actions. The global section defines the time
step of the simulation ∆t = 0.5 day. Rain will occur every
20 ± 5 days. It also defines a set of plants called pi, i =
1, 2, . . . , 5.

Each agent’s description starts with definition of the in-
ternal states (hunger increases with time and decreases with
food) and continues with the action description.

The first agent has two actions defined for each plant:
killing and watering. The agent will kill daisies and grass
that are considered as a weed if they are in the middle of
their productive age. Small plants can be skipped and old
ones are omitted. The bushes are treated in a different way.
If they are small they are eliminated but grown bushes are
left in the field.

The second agent, the lawnmaker, is interested in daisies
and grass and the other plants are considered as weed. The
grass can sometimes be cut. The same applies to bushes.

The agent’s description is easy to understand. The prob-
lem we have detected is checking the consistency of the
rules. It is very difficult to guess from the behavior that
some rule is wrong or does not apply.

5. Implementation and Results

The entire system is written in C++ and runs under Win-
dows and UNIX. We use OpenGL for preview and Persis-
tence of Vision raytracer (www.povray.org) for photorealis-
tic images. The runtime of a simulation of ten years growth
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of one scene with average 80 thousands plants with the half
day time step takes on 1GHz IBM PC less than ten minutes.
Ray tracing of the resulting scene (80 thousands plants and
one million geometric objects) requires more than 500MB
of memory and takes less than 20 minutes. The simulation
area was 20m2.

The ecosystem grows respecting the biological rules and
agents enter every week for four hours. They perform their
tasks and leave the ecosystem that continues growing. Since
the time step of the ecosystem development is half day we
suppose the plants not to be growing while the agents are
working. The average number of agents was ten.

The following example demonstrates an application of
agents to a virtual ecosystem. An ecosystem that includes
wheat, three different kinds of grass, some bush-like plant,
and campanula (blue bell) is influenced by different agents.
Figure 6 (top) shows a close-up of the ecosystem after ten
years if it is left without influence of any agent. The grass
dominates the area and the other plants are occasionally pre-
sented there. The average number of plants of one species is
constant but can vary during the time. It is very rare if some
plant specie excints without an external influence. The sys-
tem is stable.

The next figure shows the same area after half year of
treatment by agents-farmers that eliminate everything else
than wheat (grass, bushes, and flowers). The area is domi-
nated by wheat but at some places some other plant species
appear. The others plants cover at most 2% of the area of
the ecosystem. This kind of ecosystem is very unstable be-
cause the other plant species have very high probability to
survive.

The example in Figure 6 (down) shows the same area
after an intensive influence of a set of ten agents lawnmak-
ers. The area is mostly covered by grasses but some other
plants at some places appear (mostly campanulas). The
area consists of 80 thousands grass blades, the other plants
cover 1%.

Figure 5 shows similar ecosystem that was plundered by
walking herd of virtual cows.

6. Conclusions

A new approach to modeling using virtual agents is pre-
sented. The aim is to provide to user a tool that permits to
model phenomena that are very difficult to model by hand
or by other techniques. User decides which plant species
will be presented and the ecosystem is randomly seeded.
Then the user ”programs” the virtual agents that enter the
ecosystem and perform their work. At the same time the
ecosystem develops according to the governing biological
rules. The result is a model of a 3D scene.

The agent description presented here is a quite low-level
since the user must specify functions that influence the

agent’s behavior. We believe that the agent description in-
troduced here is easy to understand and can be applied very
fast. It is possible to write libraries of agents that could be
used later.

The majority of the work in the system implementation
was devoted to the modeling the plants and calibrating the
ecosystem. The agent-based modeling in this paper is lin-
ear and is not very complex in its programming. We believe
that the memoryless agents that react to external stimuli can
be used efficiently to model some difficult tasks, especially
when social or cognitive factors are taken into considera-
tion. This is currently being undertaken as future work in
reasoning on uncertain domains that may deliver additional
realism to virtual environments like the ones presented in
this paper.

Future work also includes agents that are able to learn.
For example an agent can evaluate some area, enter it,
and perform certain actions. Consequently, it can compare
the results with the estimation and assign corresponding
weights to the actions. In this way the agent can modify
its internal functions. Diverse machine learning techniques
may be applied in conjunction with the behavioral ontolo-
gies discussed throughout this paper.

As a result, future and improved algorithms and heuris-
tics may prove to effectively aid in boosting virtual model-
ing where artificiality is diminished.

References
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Figure 5. An ecosystem after a visit of a herd
of cows

Figure 6. Ecosystem that is grown without in-
fluence of any agent (top) cultivated by lawn-
makers (middle) and by farmers (down)
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