
Load Balancing in Parallel Implementation of
Hydraulic Erosion Visual Simulations

Bedřich Beneš

Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Ciudad de México,

Calle del Puente 222, 14380 México D.F
beda@campus.ccm.itesm.mx

http://paginas.ccm.itesm.mx/˜ beda

Abstract. A load balancing in a parallel implementation of an algorithm visu-
ally simulating hydraulic erosion is introduced. Water flowing over the terrain
surface captures particles of material and changes their location that has a great
influence to the terrain morphology. The algorithms attempting to solve this pro-
cesses require a high computational effort. A data parallel approach is used. Data
representing the terrain is divided into strips and the work is assigned to different
computational units. The work is asymmetrical, the parts of the terrain keeping
water require higher computational effort than the dry ones. The chunks of data
are evaluated and assigned to each computational unit in such a way to maintain
equilibrium of the work distribution. At the end of every parallel step the data
is collected, load balancing evaluated, and the work is redistributed again. The
computational units communicate by message passing. The surface of Mars’s
data obtained from NASA Mars Orbital Laser Altimeter is used and we simulate
water running over the terrain. We run the implementation on IBM R6000 with 12
CPUs and the runtime of the computational units with the load balancing differs
approximately 10 %.

1 Introduction

Simulations of natural phenomena take an important place among scientific tasks. There
are dozens of approaches aiming to solve different problems that could be classified
according to many criteria. An interesting way is to simulate the visual appearance
of natural phenomena. There are two basic goals. The first is to visually prove the
underlying theory, the second aims to provide visually plausible models that can be
used in computer graphics, computer animation, film industry, etc.

This paper situates itself to parallel computer graphics. We are primarily interested
in visually plausible results and the physical accuracy does not take the first place for
us. Anyhow, to obtain visually plausible results we must obey physical laws and rules.
The solution of the underlying equations is usually simplified in such a way to provide
visually plausible results fast but without visual degradation. This is mainly achieved
by omitting details that does not influence the resulting models more than is their visual
resolution. The computer graphics community coins the terms physics based or physics
inspired modeling in such cases.



2 Previous Work and Motivation

One of the important objects that the computer graphics aims to simulate is terrain.
The algorithms providing these models can be divided into two important groups, the
fractal-based approaches and the simulations.

The fractal-based techniques use elaborated noise functions, such as the fractional
Brownian motion (fBm) [9, 10] or the Perlin’s function [16], to simulate objects that
have the same fractal dimension as the terrains in reality. Surprisingly, the same fractal
dimension results in visual similarity. The usage of multifractals is based on using more
complicated bases, but the principle is the same as in the case of fractals. Fractal-based
algorithms are out of the scope of this paper. We refer the reader to the tutorial [5] or to
book [16] for more details about these techniques

There are number of physics-based simulations. Musgrave et al [10] have described
one of the first algorithms visually simulating terrain erosions. Two algorithms have
been introduced in this paper – the thermal weathering and the hydraulic erosion. The
first algorithm simulates the sediment runoff caused by thermal shocks of the terrain.
Part of the material is deposited to different locations depending on the terrain’s local
gradient. The later technique is based on the fact that water can dissolve, transport, and
deposit certain amount of soil. The terrain gradient controls this transport as well.

Chiba et al. [4] have introduced another physics-based algorithm that simulates
ridges and valleys by applying forces caused by the running water to the terrain sur-
face. Water is approximated by particles and a simple collision detection algorithm is
used to simulate the erosion.

A similar technique has been described by Nagashima [11]. The main difference is
that the terrain is eroded adaptively. The shape of the river is generated independently
to the surface using two-dimensional fractal interpolation. Then the banks of the river
are generated using physics inspired rules.

Beneš et al. [3] have introduced a hydraulic erosion algorithm simulating erosion
caused by the sources of water saturated by soils and drying splashes. The important
contribution of this paper is the simulation of the motion of material inside the water.

Simulation of natural phenomena is usually a time demanding task, so the need for
the parallel implementation of these algorithms is obvious. Surprisingly, we have not
found many parallel implementations of these algorithms. Some of these techniques
belong, or are similar to, cellular automata (for example [3, 4, 6–8, 10, 11]) so the algo-
rithms for parallel implementation of cellular automata [14] can be applied here.

In the paper [2] a parallel version of the thermal erosion algorithm [10] is described.
Entire surface is divided into regular areas that are assigned to different computational
units. Each computational unit runs the erosion step independently and when the task
is done, the units exchange the amount of material that passes through the boundary.

The next section describes the erosion algorithm itself and its parallel implementa-
tion is given in the Section 4. The Section 5 deals with the results of our work and the
last Section 6 concludes the paper.



3 The Hydraulic Erosion Algorithm Description and Analysis

3.1 Data Structures

The terrains used in computer graphics are usually represented either in regular two-
dimensional elevation grid called a height field or as a three-dimensional matrix called
a voxel space. Both representations can be compressed [1] and the simulation can be
run on the compressed data. These data structures are usually converted to sets of trian-
gles for the purpose of displaying. The sets of triangles can be processed easily using
OpenGL, VRML [15], or ray tracing. Since the subsurface structures are not very in-
teresting for the visualization of the erosion processes, we deal with the regular height
fields here.

The surface is represented as a regular grid, where every cell communicates with its
eight neighbors (see in the Figure 1). A cell contains information about the underlying
area of the terrain, the amount of water, soils dissolved in the water, speed of the water,
etc. It is supposed that these values are constant over the cell and this value usually cor-
responds to the average value. The exception is the elevation. We use data from NASA
Mars Orbital Laser Altimeter (MOLA) [12]. In this case the elevation corresponds to
one sample of this spacecraft. From these parameters, and from the fact that we know
the volume of the water, we can evaluate the forces applied to the terrain.

The sequential version of

Fig. 1. One cell communicates with its neighbors by
exchanging material (left)

the algorithm runs the erosion
steps for every element and, based
on the physical laws and the
inflow and outlet of the grid cell,
determines the material exchange.
Grouping more elements into
one logical group and running
the erosion algorithm on one
computational unit is a straight-
forward idea that leads to good speedup of the algorithm (see in [2]) in the case of a
homogeneous distribution of the material. On the other hand, since the water is not
distributed equally, the runtime of the different computational units can differ a lot.
Some kind of a load balancing should be applied to approach constant runtime of each
computational unit. This is the main aim of this paper.

There are many different erosion algorithms simulating different factors. The factor
that has been considered as the most important to the geomorphology is water [1, 3, 4,
6, 10, 11]

3.2 Hydraulic Erosion

The hydraulic erosion process can be described by the following steps [3, 13]:

1. new water appears,
2. the water moves, erodes the underlying terrain, and captures the material,
3. the material travels into the water,



4. water and the suspended material are transported, and
5. water deposits the material at another locations.

First, water appears at some place or places. This can be due to the presence of rain,
water sources, or because of the water flow. For example in the case of a water source
new water appears in some cells and is then distributed to other locations depending on
the local gradient of the terrain surface.

In the next step, the water absorbs some material. This can have two causes. First,
the water hits the surface. Since the water has certain volume and speed, it acts with cor-
responding force to the surface. The material that cannot resist the force is moved [4].
Second case of the material transport is the material dissolving [3, 10].

In the step 4., water, as well as the captured sediment, is transported according
to inner and outer forces. The most important factor contributing to the water flow is
gravitation, although the internal forces can also play important roles.

The last step, the material deposition, is influenced by the two mayor factors [13].
First, the water slows down so the heavy particles of material cannot be carried any-
more. The second factor contributing to the deposition process is the excess of the water
sediment capacity. This is caused by the evaporation of the water.

Figure 2 from [3] shows results of a simulation of the above described process.
The water appears after heavy rains everywhere. It deposits certain amount of soils
corresponding to the sediment capacity of the water. The water travels on the surface
(in fact [13] this process is under the surface, but this simplification does not bring any
significant visual defect of the model). As the water evaporates the material is deposited
at the bottom of the splash.

a) b) c)

Fig. 2. A simulation of the hydraulic erosion process from [3]. a) The original surface. b) After
a heavy rain the water absorbs some material that travels into the water. The water travels down
and evaporates. c) As the water sediment capacity exceeds the material is deposited

3.3 Why in Parallel?

The number of operations to perform is huge. The sequential algorithm runs 100 ero-
sion steps of an array

�������������
cells on a PC PentiumIII/500MHz for more than two

minutes. This terrain resolution is too small and cannot be used for animations because
the results suffer geometric aliasing a lot. The real data of the Mars surface has reso-
lution

���������	�������
cells and the same number of steps runs for more than three hours



on the same computer. The runtime vary, depending on the input parameters namely on
the amount of water, but the need for some speedup is evident.

A parallel algorithm for the thermal erosion si described in the Section 1. This
algorithm runs almost the same number of CPU instructions for any kind of cell. In this
case the regular data subdivision is a clear and efficient solution for the work distribution
leading to a good speedup. In the case of hydraulic erosion the task is different. We deal
with an algorithm that is sensitive to the input data. More water slows down the runtime
and the irregular distribution of water causes some areas to need higher computational
effort. Apparently, some kind of data analysis and load balancing must be performed.

We do not describe details about the algorithm of the hydraulic erosion supposing
the description given in the Section 3.2 is sufficient for understanding the following
text. We refer the reader to [3] for details.

4 Parallel Algorithm

We use a distributed memory approach allowing us to run the program in heterogeneous
environments. It would not be difficult to implememnt this algorithm on shared memory
computer, but in our implementation every computational unit has its local memory
and the computational units communicate using message passing. We suppose an each-
to-each connection network allowing for an efficient broadcasting but a bi-directional
circular connection could be sufficient.

Let’s make a brief description of the parallel algorithm that is described in depth
in the next section. The first step is to determine the distribution of the cells keeping
the non-zero amount of water. The data is divided into parts requiring the same com-
putational effort. This is done by one processing unit at the beginning. Then the data is
distributed to all processing units. When the computation of one erosion step is done,
every unit exchanges the data describing the amount of material crossing the boundary
with the corresponding neighbors. This is achieved by the message passing. When the
erosion steps for all computational units is evaluated and the data is updated, the data is
redistributed and the new erosion step runs.

The input data of the algorithm are: the number of the computational units � , input
data � in the form of matrix of dimension � ��� , and the parameters of the erosion. The
output data is the matrix � of the same resolution. The algorithm works in the following
way:

Sequential data preprocessing
1. Load the complete data into one computational unit
2. Evaluate the occupancy of the cells by water
3. Load balancing

Split the data into strips maintaining constant amount of work to erode each strip

Run in parallel for each computational unit
4. Run the erosion
5. Synchronization:

a) Send the boundary data to the neighbors



b) Wait for the data from the neighbors

6. Erode the boundary data
7. Rendez vous
8. If this is not the end of simulation continue with step 3.
9. Save �

4.1 The Load Balancing

The key question is the way the data is split. The important thing is to avoid commu-
nication among the computational units, since every communication slows down the
entire computational speed. The simplest division having complete coverage of a two-
dimensional matrix with smallest communication overhead is into strips. Let’s follow
the example in the Figure 3. There is a matrix of

� � � � �
elements and ��� �

. The input
data is divided into three strips, the first and the second keeping

� � � �
cells and the last

one having � � � � .
As mentioned above the

Fig. 3. Terrain surface represented in
� � ��� �

cells is di-
vided for a work on three computational units

computational effort for a
cell containing water is dif-
ferent than for the cells that
are dry. A dry cell requires
eight comparisons to detect
that no neighbor keeps wa-
ter. The computation of a
wet cell needs the same, but
also 16 more comparisons

for the water distribution. The amount of work required for the cell keeping water is
therefore 3

�
higher.

Recall that the input matrix is denoted by � and has resolution � � � . We compute an
additional data structure – one-dimensional array ��� (the histogram) of dimension � .
The ��� keeps the number of the wet cells in every column. It is clear that the number of
the dry cells denoted by ���
	 �� in the ��� th column is a complementary to the wet ones:����	 ���� � ������	 ���� (1)

It is also clear that

� � � � �� � ���
� ����	 �� �!����	 ��#"$� �� � ���
� ����	 �� � � � ������	 ��#"%"&�
To determine the boundary of the strips we should compute the amount of work

required for each strip. Let’s say that the amount of work required for a dry cell is equal
to one. As described above, the wet cell requires approximatelly three times more work
to be tested. To evaluate the amount of work needed to compute erosion of the entire
terrain denoted by ')(*' �,+ we must sum the amount of work required for each column:

')(*' �,+-� �� � ����� ���
	 �� � � ����	 ��#".� �� � ���
� � �!/�����	 ��#"&� (2)



We use � computational units so the work � DC that should be done by each one is

� � ')(*' �,+
� �

Once the number � is determined we just scan the histogram ��� from the left to
the right and, using the equations (1) and (2), determine the boundary of the strips. It is
achieved by the following piece of code

����� � ���
for � � � ��� ��� � � ��� � "�
����� � � � � �!/
	�� � 	 ��#" �
if (acc � s) �

WriteOutBoundaryIndex(i);acc=0; 

An additional counter ����� accumulates the number of DC for the ��� th column. When
the ����� if greater or equal to the limit value � the boundary index is saved, indicating
that here ends the data belonging to one computational unit and starts the data that owns
the another one.

Fig. 4. Graph showing the percentage of the coverage of the terrain by different computational
units during the eight steps of the simulation

It is interesting to see how the area assigned to different computational unit changes
with the water distribution. This is demonstrated in the Figure 5. This image shows an
OpenGL preview of an area of the Martial surface. We have selected the area of Elysium
Mons that is close to the highest volcanoes of Mars and has an interesting diversity. The
area is intentionally quite small, occupying ����� ��� ��� cells. At the beginning the amount
of wet cells was small and as the water was distributed this number has increased signif-
icantly. We have used five computational units so the area is divided into five strips. The
images show the subdivision that corresponds to the water distribution. The percentage
of the are covering by the strips shows the graph in Figure 4. The images in the Figure 9
show the same scene ray-traced.



There is one special case that could cause very intensive communication. It is not
worth to divide the data with very high local concentration of water. This can lead to
the case when every computational unit holds just one column and this increments the
communication among the units. To avoid this case, we do not divide the areas having
less than an ad hoc constant. We use 5% of the total width of the area.

1) 2)

3) 4)

Fig. 5. OpenGL preview of a dynamic loadbalancing. Martial surface is assigned by four springs
of water and the water travels on the surface eroding the terrain. The entire process is computed
by five computational units so the surface is divided into five strips

4.2 Synchronization

When the erosion of one strip is done every communication unit exchanges the data
passing through the boundary and erodes the boundary columns. The strips of data
must be sewed together. This corresponds to the steps 5-8 from the algorithm in the
introduction of the Section 4.

Let’s suppose we have two strips of data assigned to two computational units, the
left one is denoted by + and the other by � . To complete the erosion task we must run
the erosion step for the last column of the strip + using the data from the first column of
the strip � . In the next step we must do similar step for the strip � ; we run the erosion
of the first column of the � using the data from the last column of the strip + . This is
done in parallel by sending the missing data and collecting them when the erosion step
is done.



This technique is implemented by message passing. When the computational unit
is done with its work it sends messages to the left and to the right and waits for the
messages from the same sides as shown in Figure 6.

After this step all the computational

Fig. 6. Computational units synchroniza-
tion at the end of an erosion step

units wait for the slowest one. Then the
erosion step is over and the data is com-
pleted. The next step is the sequential load
balancing, corresponding to the step 8)
from the algorithm in the introduction of
the Section 4, and then the erosion runs
again.

The synchronisation could be also done
in parllel. The units inform their neigh-

bors about the tranferred material so it is possible to evaluate the changes in the bound-
aries. The problem is that this could not be done in one pass, since two units can have
the same requirement. In this case we should broadcast the information to each unit and
they could decide what should be passed to the neighbors.

5 Implementation and Results

The entire system is implemented in C and runs under Windows and UNIX. The load-
balancing part was developed and tested on IBM PC under Windows 2000 and the entire
system runs under IBM AIX version 4.3.on IBM SP80 R6000 equipped with 12 CPUs
RS64-III with 18GB of the operating memory.

The most important for us was the difference of the computational time of different
computational units according to the assigned work. We have tested different areas of
the Martial surface that were differently inundated by water. We have performed 200
erosion steps watching how the computational time required by the physical CPU of
the computer was changing. The test was performed on five and ten CPUs. The entire
test was repeated five times and the runtime average was used. Values of the same
tests differing by more than 10% were discarded. The supercomputer was completely
devoted to these tests.

The graphs in the Figure 7 show the difference of the runtime of the five and ten
CPUs and the following table shows the average of the computational time during the
200 erosion steps per CPU and the difference from the optimal 100%:

CPU 1 2 3 4 5 6 7 8 8 10 total average [%]
5 CPUS average[%] 86 93 96 94 131 100

difference[%] 14 7 4 6 31 12.4

10 CPUs average[%] 139 126 93 79 92 95 96 96 95 89 100
difference[%] 39 26 7 21 8 5 4 4 5 11 13.1

The maximum difference for five CPUs was +31% and -14% and +39% and -21% for
ten CPUs. The average of the difference was 12.4% for five CPUs and 13.1% for ten.
As we can see from the numbers and from the graphs the runtimes do not vary very
much confirming the analysis and the implementation of the load balancing.



1) 2)

3) 4)

5)

Fig. 7. Graphs displaying the percentage difference of the runtime for different erosion steps on
different CPUs. We have performed 200 erosion steps (the axis � ) and the percentage of the
runtime is on the axis �

The question is if it is worth to implement this load balancing. Maybe the static
distribution is sufficient. Answer to this question is in the Figure 4. We have captured
all the data and the process of the data redistribution is quite dynamic. We can see (also
in the Figure 5) that after eight erosion steps the second strip has changed its size to
67% of its originally assigned size and the last one has grown to 130%.

6 Conclusions

A load balancing in parallel implementation of hydraulic erosion visual simulations was
introduced. The principal idea of the algorithm is based on the fact that different cells of
the terrain require different effort to be eroded. A precomputation of the work required
is done for every column of the terrain matrix and new chunks of data are distributed in
such a way to keep the load balanced. When the erosion of each chunk of data is done
the computational units synchronize by message passing. The data is collected and the
load balancing assigns the data to the computational units again.

We have tested the algorithm on different areas of the Martial surface using the data
obtained from the NASA Mars Orbital Laser Altimeter. The program runs on an IBM



R6000 equipped by 12 CPUs. The results depend on the number of CPUs used. With
higher number of CPUs the communication slows down the work and the difference
among the different units was up to 31% but the average of the runtime difference was
just 13.1%. For five CPUs the maximum difference was 14% and the average of the
difference is 12.4%

We believe the results have proven that the dynamic load balancing of the data can
bring a significant improvement of the parallel implementation of this kind of visual
simulations.

This work is supported by the ITESM grant No. 32419.

Fig. 8. Another area of Mars drying after a heavy rain

References

1. B. Beneš and R. Forsbach. Layered Data Structure for Visual Simulation of Terrain Erosion.
In IEEE Proceedings of SCCG’01, volume 25(4) of IEEE Computer Graphics, pages 80–86,
2001.

2. B. Beneš and R. Forsbach. Parallel Implementation of Terrain Erosion Applied to the Surface
of Mars. In Proceedings of the Afrigraph’01, pages 48–55. ACM Siggraph, 2001.

3. B. Beneš and R. Forsbach. Visual Simulation of Hydraulic Erosion. Journal of WSCG,
1(Special Issue):79–86, 2002.

4. N. Chiba, K. Muraoka, and K. Fujita. An Erosion Model Based on Velocity Fields for
the Visual Simulation of Mountain Scenery. The Journal of Visualization and Computer
Animation, 9:185–194, 1997.

5. D.D. Eckbert, F.K. Musgrave, P. Prusinkiewicz, J. Stam, and J. Tessendors. Simulating Na-
ture: From Theory to Applications. Siggraph 2000 Course Notes, pages 1–213, 2000.

6. A.D. Kelley, M.C. Malin, and G.M. Nielson. Terrain Simulation Using a Model of Stream
Erosion. Computer Graphics, 22(4):263–268, 1988.

7. O. Koichi and T. Nishita. A Method for Modeling and Rendering Dunes with Wind-ripples.
In Proceedings of Pacific Graphics’00, pages 427–428, 2000.

8. I. Marák, B. Beneš, and P. Slavı́k. Terrain Erosion Model Based on Rewriting of Matrices. In
N. Magnenat Thalmann and V. Skala, editors, Proceedings of The Fifth International Con-
ference in Central Europe on Computer Graphics and Visualization 97 - WSCG, volume II,
pages 341–351. University of West Bohemia Press, February 1997.

9. F.K. Musgrave. Towards the Synthetic Universe. IEEE Computer Graphics and Applica-
tions, pages 10–13, 1999.

10. F.K. Musgrave, C.E. Kolb, and R.S Mace. The Synthesis and Rendering of Eroded Fractal
Terrains. Computer Graphics, 23(3):11–1–11–9, 1989.



11. K. Nagashima. Computer Generation of Eroded Valley and Mountain Terrains. The Visual
Computer, 13:456–464, 1997.

12. NASA. http://ltpwww.gsfc.nasa.gov/tharsis/mola.html.
13. M. Newson. Land, Water and Development. Routledge, 1997.
14. M.J. Quinn. Parallel computing. McGraw-Hill, Inc., 1994.
15. M. Reedy, Y. Leclerc, L. Iverson, and N. Bletter. TerraVision II: Visualizing Massive Terrain

Databases in VRML. IEEE Computer Graphics and Applications, pages 30–38, 1999.
16. A. Watt and M. Watt. Advanced Animation and Rendering Techniques: Theory and Practice.

Addison-Wesley, Reading, 1992.

Fig. 9. The heavily inundated area of the three highest volcanoes in the Elysium Mons from the
Figure 5 displayed using ray-tracing


