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Abstract 

We present a parallel version of the algorithm that simulates thermal 
erosion [7]. We split the input data into the strips that are assigned 
to different processes and run the erosion in parallel. When this 
task is finished the processes exchange information about the ma- 
terial transported through their boundaries, update their data, and 
run new erosion step. We use message passing for process syn- 
chronization. First, the information about the material transported 
through the boundary is saved into files and then messages are sent 
to the corresponding processes informing that their data is ready. 
Using files for process synchronization makes the implementation 
platform independent. 

The parallel version is stable and runs very well on large data. 
We have achieved speedup 8.4 on ten CPUs. With small data the 
method is devoting high effort to communication and the speedup 
decreases. We have tested this algorithm on the 3D map of martial 
surface obtained from Mars Global Surveyor [8]. 

CR Categories: 1.3.1 [Computing Methodologies]: Computer 
Graphics--Parallel processing 1.3.5 [Computing Methodologies]: 
Computer Graphics--Physically based modeling 
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1 Introduction 

Nowadays, we are receiving data from spacecrafts visiting dis- 
tant parts of the solar system. Processing and analyzing the data 
presents a great problem. Mars Global Surveyor spacecraft (MGS) 
has approached Mars in September 1997 and one of its tasks is to 
measure altitude of the martial surface, providing a 3D topograph- 
ical map of Mars. The MGS uses Mars Orbiter Laser Altimeter 
(MOLA) to achive this (see the MOLA web page [8] for details). 

An important problem is modeling of the geological behavior 
of planets. Visual simulation stresses visual plausibility as a proof 
of correctness of a simulation. That is why many algorithms for 
generating visually plausible models for purposes of 3D graphics 
are getting closer to physical simulations. Unfortunately time and 
space demand of these techniques leaves the majority of them prac- 
tically unusable for modeling. 

We are simulating erosion of the data obtained by the MGS 
spacecraft. Their amount, and the time and space demand of the 
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algorithms, has led us to parallel implementation on a multiproces- 
sor platform. We have implemented the algorithm of thermal ero- 
sion [7]. The purpose was not to implement precise and complex 
algorithm, but to run an existing one in parallel. Our approach can 
be thought as a framework for implementation of similar erosion 
algorithms [3, 5]. 

After the section introducing the previous work, we describe the 
thermal erosion algorithm and make its analysis. The Section 4 
describes the concept of the parallelization of the algorithms and 
in the next section we describe the implementation. The Section 7 
describes results of our simulation and limits of the parallel version 
of  our algorithm. The last section of the paper presents opened 
questions and the future work. 

2 Previous Work 

Musgrave in 1989 [7] has introduced probably one of the first ap- 
proaches to erosion of artificial terrains. The purpose of this erosion 
model is tO improve visual plausibility of fractal surfaces. The al- 
gorithm is described in Section 4. 

The time demand of erosion algorithms has been focused in [2]. 
The authors are using semi-adaptive algorithm that leaves the non- 
important parts and is eroding only the areas with a high impor- 
tance. 

Another physically based model has been introduced by Chiba 
et al. [3]. The running water defines a velocity field that is used for 
terrain erosion. The energy of the running water is evaluated and is 
applied to change the shape of the terrain. 

The latest works of Musgrave [4, 6, 7] do not primarily simulate 
erosion-based models but generate landscapes by blending noise 
functions (Perlin, fBm, etc.). These approaches give visually plau- 
sible results. On the other hand the author is aware that the erosion 
is a much stronger tool but the number of parameters and the time 
required to run the simulation is making these techniques practi- 
cally unusable. The second argument leads to the idea of parallel 
implementation of these algorithms. An analysis of the erosion al- 
gorithms shows that the process has some good properties that help 
us to implement the algorithm in parallel. 

Many soil erosion algorithms have been also published in the 
journals focusing remote sensing (see for example [5]). The al- 
gorithms are mostly based on moving some material in a discrete 
matrix from cell to cell according to more or less elaborated phys- 
ically based model. We can see the same schema here and it could 
be implemented easily using approach presented in this paper. 

3 Erosion Algorithms 
Algorithms for soil erosion simulation use similar data representa- 
tion. The terrain consists of a two-dimensional elevation grid com- 
posed of so called cells (see Fig. 1). 

Each cell of the grid is an approximation of the underlying area, 
i.e., one cell can represent area of n x n meters. The value of the cell 
is a statistical representative (typically the average, or one sampled 
value) of the underlying area. The cell has also a set of properties 
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Figure 1: Example of one cell (in the middle) and its neighbors 

necessary for the erosion, namely amount of water and soils that 
it contains, altitude, average gradient plane that corresponds to the 
slope of the surface, etc. 

The cell communicates with its eight neighbors by exchang- 
ing information about the transferred material. Depending on the 
amount of water and the gradient of the cell, some material is en- 
tering the cell and some is leaving. The material is either dissolved 
in water, or it can be transported in a form of dust or mud etc. de- 
pending on the particular simulation. The flow of one cell can be 
characterized by the differential equation: 

dS  
Q,n - Q o ~  - -  - -  dr' 

where Q~,, is the incoming flow, Qout is the outlet, S is the volume 
of transferable material stored in the cell, and t is the time. 

The algorithm of [7] manipulates the material in the volume di- 
rectly (see next Section) whereas the algorithm of Chiba et al. [3] 
uses water as a medium that transfers the material. Algorithms pub- 
lished in [5] transfer both, water and the material. 

Benes [1] has extended the data representation by a layered data 
structure. Instead of representing the volume as a set of voxels 
the terrain is supposed to be consisting of layers of equal material 
as shows Fig. 1. This representation has the same properties as 
voxels but has smaler demand on the memory. We use this data 
representation in our simulations. 

4 Thermal Erosion Algorithm Analysis 

The algorithm works on a 2D array of cells. Each element of the 
array keeps complete information about the underlying layers. Ex- 
ample of one element and its neighbors is given in Fig. 1. The 
two leftmost elements in the front row keep three underlying lay- 
ers, whereas the rightmost element in the front has just two layers. 

Figure 2: Principle of the thermal erosion. One half of the high- 
est gradient of the mid-element is proportionally distributed to its 
meighbors 

The thermal erosion algorithm [7] distributes portions of mate- 
rial depending on the height of the element (Fig. 2). The material 
is broken-up due to thermal shocks, i.e., due to changes of the tem- 
perature during the day and night. Part of the material from one 

cell simply falls in the direction of the highest gradient i.e., it is dis- 
tributed to the neighbors. To simulate inner friction of the material, 
so called talus angle is introduced. If the gradient is smaller than 
the certain predefined value, the material is not transported. 

The total volume outlet S of a cell is given by the equation: 

S = rha 
2 

where h is the highest difference to the neighbors, 0 < r < 1 is the 
resistance coefficient and a is the surface area of the cell. 

The algorithm processes each cell of the terrain and measures 
highest gradient to its neighbors. Half of this value gives the portion 
of the material that can be moved. This is the maximum that can be 
moved and this corresponds to completely weak material with very 
low inner friction. If the material is harder, this portion is multiplied 
by coefficient r that corresponds to the resistance. The volume to 
be removed is ah/2. The volume that is moved to each neighbor is 
determined by the gradient of the cell i.e., the neighbor with highest 
gradient will receive the greatest portion of the material. 

Physical meaning of the previously mentioned talus angle is fol- 
lowing. If the gradient given by the explored cell and its neighbor 
is smaller than the corresponding talus angle, the material is not 
transported to this position. If the potential energy of the material 
cannot overcome the inner friction, the material is not removed. 

Since the represented terrain consists of different layers, we can 
easily simulate erosion of different materials. Figure 3 from [1] 
shows an example of the terrain erosion. The terrain consists of two 
different materials. One, on the first frame on the top, is very weak 
and is eroded easily. The underlying material cannot be eroded 
and remains fixed. The time demand of the algorithm is very high. 

Figure 3: An example of  layered erosion [1] 

We have to process each cell, evaluate gradients, and move some 
volume of the material. Moreover the terrains are usually huge. 
On the other hand the algorithm itself has some good properties 
for example the computational time needed for evaluation of  one 
cell is almost constant. The two extreme cases that can happen 
are completely flat area, where the algorithm performs no material 
transport, and very noisy terrain, where the material is transported 
from each point to each side. In very unruly terrains, like the ones 
obtained from real data, we can assume that both limiting cases of 
the cells are represented with equal probability. This means that the 
computational time needed for evaluation of certain amout of cells 
is constant. 
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5 Parallel Implementation 

5.1 Data Subdivision 

One important characteristic of the erosion algorithm is that it can 
be also described as a process communication. Cells can be thought 
of independently and can be treated as communicating computa- 
tional units. Figure 4 schematically shows this view. The cell com- 
municates with its neighbors using duplex channel that transfers the 
material for each layer. 

'11, I ~ 
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Figure 4: Material transfer among one cell and its neighbors 

Moving on a higher level, we can divide the underlying surface 
to some smaller areas that communicate with their neighborhood. 
We can group some cells, evaluate their input and output and let 
them communicate. This, together with the above-mentioned facts 
about the almost constant computation time needed for one cell, has 
led us to the following parallel implementation. 

We divide entire extent into equally long and wide strips. Each 
strip is hosted by one process (in the best case also by one CPU) 
and the erosion algorithm is run in parallel. When the erosion of 
each strip is computed, the processes exchange data, recompute the 
boundaries, and then processes continue with the next erosion step. 

5.2 Algorithm 

This parallel implementation can be described as follows: 

1. Split the terrain into n strips. 

2. Evaluate one erosion step for each strip in parallel. 

3. Exchange information about the material passed through the 
boundary areas in parallel. 

4. Update the data in parallel. 

5. Go to step 2. 

The advantage of this algorithm is that each computational unit 
keeps the portion of the data and we exchange just the boundary 
information. We do not need shared memory and each computa- 
tional unit uses independent memory. This allows us to implement 
our algorithm in a heterogeneous environment. Dividing the data 
into the strips is done just once at the beginning. 

Figure 5: Data subdivision 

Second reason for division the data into the strips is the commu- 
nication demand. In this case each process communicates at most 
with the two neighbors. Because there is certain time needed for 
synchronization, i.e., when one process finishes before another one 
it cannot continue without updating the boundary and has to wait 

for data, we want to diminish the communication as much as pos- 
sible. Figure 5 shows the data subdivision, each strip is hosted by 
one process and the arrows show their communication. The first 
and the last process communicate only with one neighbor, whereas 
the processes keeping inner strips have to exchange some data to 
both sides. 

5.3 Process Synchronization 

Each process runs the erosion independently to the neighbors. 
When all the cells processed by one computational unit are eroded, 
the process waits for the data from the neighbors and sends its data 
to them. We are using message passing for this purpose. This is im- 
plemented as a file generation that assures the system to be running 
on any platform (even Windows98). 

After finishing the computation of the strip the process saves the 
boundary data on disk (in our implementation the largest file had 
1M) and sends message to the neighbor. Schematically, for the pro- 
cess keeping the inner strip, this can be written as follows (this is 
detailed description of the steps 2-4 from the previous section.): 

1. Erode the strip. 

2. Save the left boundary. 

3. Send message that the data is ready to the left neighbor. 

4. Save the right boundary. 

5. Send message that the data is ready to the right neighbor. 

6. Wait for message from the left neighbor. 

7. Read the data generated by the left neighbor. 

8. Erode the left boundary. 

9. Wait for message from the right neighbor. 

10. Read the data generated by the right neighbor. 

11. Erode the right boundary 

12. Go to the step 1. 

The leflmost and the rightmost processes do not perform step 2, 
3, 6, 7, 8 and 4, 5, 9, 10, 11 respectively, because the left, resp. 
the right neighbor does not exist. It is important to save the data 
first and then to wait for the message otherwise the processes will 
deadlock. There is no need for a message delivery confirmation. 
The process just saves the data and sends the message that the data 
is ready. 

The processes are identified by the number of the strip that host 
(i.e., 1, 2 , . . . ,  n), where n is the number of the running process. 
After erosion of the entire data every inner process saves two files, 
called i.L and i.R, where i is the number of the process and L 
resp. R signifies the left and the right boundary. This corresponds 
to the steps two and four from the algorithm. Then the messages 
informing the neighbors are sent (steps three and five). 

We have implemented the message passing in the form of files as 
well. We could use IBM POE library, but we want to have system 
that is platform independent and simple. Each file (that has zero 
size) is called ij.msg, where number i describes the sender and j 
the receiver of the message. So for example the seventh strip will 
be expecting data from the left neighbor in the file 6.R and it will 
be waiting for existence of the file 67.msg. At the same time, if this 
is the process hosting the inner strip, it will generate two files 7.L 
and 7.R. Then it sends two messages, 76.msg for the process six 
informing that the data from the left boundary is ready, and 78.msg 
for the process eight. It is important to note that the files with data 
cannot be used as messages, because the waiting process could try 
to read to the file into which the other process is just writing. So 
our message passing can be thought as a form of locking the files. 

The following example with three processes should explain bet- 
ter the synchronization. The image shows the situation when all 
processes have finished their work and have saved the material from 
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their boundaries. The leftmost process (denoted by one) has gen- 
erated file 1./7, the inner process (two) has saved files 2.L and 
2.R and the process three has saved file 3.L. Then, as displayed 
in the next figure, all processes generate messages informing the 
neighbors about the existence of the files with the material from the 
boundaries. 

Here the process one has sent message 12.msg to the process 
two. This process has sent message 21.msg to the first process and 
message 23.rasg to the process three. Finally the last process has 
sent message 3 2 . m s g  to the second process. Sending the messages 

about the availability of  the data causes reading the files with data 
by the corresponding processes as displayed in the last figure. This 
kind of synchronization has an important advantage. Since all pro- 
cesses will finish at finite time no deadlock can occur. 

The synchronization by files is simple to implement and has also 
one important practical advantage. Since the waiting for the mes- 
sage is active, the operating system will probably not dealocate the 
process from the CPU that can occur in the case of the passive wait- 
ing. This means that the process will remain with high probability 
at one CPU and this will not delay the synchronization of the other 
processes and the entire system. 

6 Implementation 

The program was implemented in C under IBM AIX version 4.3. 
We have run it on IBM $80 R6000 with 12 CPUs RS64-III 
equipped by 18GB of the operating memory. 

The entire system is consisting of three groups of algorithms. 
First is the basic set of  routines manipulating the data. We have 
programs for manipulating the strips - one for splitting the original 
data and another one for gluing the strips back for further process- 
ing. We have also implemented set of  routines for converting the 
data from the NASA EGDR data format [8] into our inner repre- 
sentation. We have programs converting this into the data suitable 
for displaying (we use OpenGL for previews and POVRay for ray- 
traced images). The second group of programs includes the UNIX 
scripts running all the processes. The third is the erosion algorithm 

itself. As mentioned above, the program reads the strip just once, 
at the startup, and keeps it in the memory. 

7 Results 

7.1 Speedup 
We have run 100 erosion steps of  the surface of Mars. The graph 
and the table in the Fig. 6 show the results. All values are expressed 

speedup 

9,000 --e-- 24M 

7,~8'~ ~ ~ . . . . . . . . .  2o~ 
..... ~. 15M 

6,000 . . . ~ ' ¢ .~  o~'~..- IOM 

~ J  ....... *"- 1M 

0 , 0 1 ~  I 
# of CPUs 

1 2 3 4 5 6 7 8 9 10 

671 6,82 656 655 598 510 276 
7,15 7,43 7,25 7,20 6,22 4 28 2 85 

!, : ~ I ~ . ~  8,40 7,74 7,47 7,66 S 57 4 02 2 72 

Figure 6: The speedup as a function of the number of  CPUs and 
size of tha data. The last row of the table shows runtimes of the 
sequential version and the other values are expressed relatively to 
this value 

relatively to the speed of the sequential version and the last row 
shows the real runtimes of the sequential version in minutes. The 
measured tests were done on 24 million cells (denoted by MC). 
Corresponding size of the file is 98MB and the sequential version 
of the erosion runs 2.7 hours. We have also tested the system on 
20MC, 15MC, 10MC, 5MC, 2MC and 1MC. All measurements 
were done three times, values differing more than 20% were ex- 
cluded, and the average value is displayed. The total runtime of 
the tests was 8 days. During these tests the computer was totally 
devoted to the project and no other computations have been done 
there. This helped clarify the results, because the amount of  swap- 
ping, cache misses, etc. caused by other running processes was not 
influencing the computations. 

The speedup depends on the communication and it shows that the 
idea of decreasing the amount of  communication with dividing the 
data into strips is correct. The small amount of  data means a little 
computation and high communication overhead needed for the syn- 
chronization of the processes. This is apparent from the graph. For 
small data, like 1MC, it makes no sense to run the program on more 
than four or five CPUs. The speedup goes down very fast because 
of the communication overhead. On the other hand, the speedup 
is almost linear for huge data. Of  course this is true as far as we 
can measure. Certainly with higher number of  CPUs the speedup 

56  



will go down as well, because it will drown in communication. For 
24MC the speedup was 8.4 on 10 CPUs. 

7.2 Number of the erosion steps 

We were also interested on how the speedup depends on the number 
of iterations. We have measured the speedup after 20, 50, 100 and 
150 iterations for two till ten CPUs. We ran the test on all data we 
have, i.e., 1MC, 2MC, 5MC, 10MC, 15MC, 20MC and 24MC. We 
have performed the test three times and computed average of the 
obtained values. The graph and table in the Fig. 7 show the result. 

9 , ~  ................. ................ ~ ................ ...... ~ ...... ~ ............ 

$ , o o  

7,00 . . . . . . . . .  

i ! 
z® , ' ~- ; z i 

1,00 . . . . . . . . . . . . . . . . . . . . . .  * . . . . . . . . . . . . . . . . .  

2O 50 ~ 150 # af ste~ 

1 1 1 1 
1,g5 2,00 1,91 1,95 
2,74 2,77 2,79 2,92 
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4,97 5,50 5,15 5,67 
5.66 5,84 5,88 6,47 
6,45 6,38 6,71 7,50 
6,07 7,07 7,15 8,31 
7,52 7,65 7,90 8,53 

Figure 7: The speedup as a function of the number of erosion steps 
and used CPUs. The speedup increase as the surface flattens. 

As mentioned above, the communication is higher for higher 
number of processors as well as for wild terrains. The erosion 
smoothes the terrain, that leads to the equalization of the runtime 
of each processing unit. This is clearly visible from the graph. For 
low number of CPUs (2-4) the speedup is almost constant, regard- 
less to the number of iterations. With higher number of CPUs, the 
speedup goes up with the number of iterations. 

8 Conclus ions and Future Work 

We have shown that the recently published erosion algorithms sim- 
ulating soil erosion can be implemented in parallel. We have im- 
plemented thermal erosion algorithm as a representative of these 
techniques, We divide the terrain data into blocks that are run in 
parallel. After each erosion step the host processes synchronize the 
data by exchanging the material transported through their bound- 
aries and sending messages informing neighbors that the data is 
ready. 

The speedup of this algorithm is higher for larger data, because 
for the small one the communication delays the entire computation. 
For the huge data the communication is not so frequent. 

One of the ways to improve the speedup of the algorithm is by 
elaborating the assumption that the computational time for each cell 

is constant. This is certainly not true and this could be taken into 
account. We could make some statistics of the data distribution and 
run adaptive splitting of the data. More wild terrains would be split 
into small parts, because here the transport of the material is more 
intensive. 

Another option is to incorporate some kind of dynamical load 
balancing. The structure of the terrain will change over time, but 
this should be easy to keep track about the transported material. 
This information can serve as an input of some critical function. If 
the value of this function exceeds predefined threshold the load of 
the host CPU is too high and portion of the data should be moved to 
the neighbor. The question is how high would be the overhead for 
measuring the amount of transferred material, evaluating the critical 
function, and redistributing the data again. 

This work is supported by the CONACyT grant No.36172-A. 

Figure 8: Raytraced images of Valles Marineris before (left) and 
after 150 erosion steps. The image captures area 1000xl000km. 
One cell corresponds to 14kin 2. 
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