
Build-by-Number: Rearranging the Real World to Visualize Novel
Architectural Spaces

Daniel Bekins* Daniel G. Aliaga†
Department of Computer Science at Purdue University

ABSTRACT
We present Build-by-Number, a technique for quickly designing
architectural structures that can be rendered photorealistically at
interactive rates. We combine image-based capturing and
rendering with procedural modeling techniques to allow the
creation of novel structures in the style of real-world structures.
Starting with a simple model recovered from a sparse image set,
the model is divided into feature regions, such as doorways,
windows, and brick. These feature regions essentially comprise a
mapping from model space to image space, and can be
recombined to texture a novel model. Procedural rules for the
growth and reorganization of the model are automatically derived
to allow for very fast editing and design. Further, the redundancies
marked by the feature labeling can be used to perform automatic
occlusion replacement and color equalization in the finished
scene, which is rendered using view-dependent texture mapping
on standard graphics hardware. Results using four captured scenes
show that a great variety of novel structures can be created very
quickly once a captured scene is available, and rendered with a
degree of realism comparable to the original scene.

CR Categories and Subject Descriptors: I.3 Computer
Graphics, I.3.2 Graphics Systems, I.3.5 Computational Geometry
and Object Modeling, I.3.6 Methodology and Techniques, I.3.7
Three-Dimensional Graphics and Realism, I.4.8 Scene Analysis.

1 INTRODUCTION
Researchers have achieved impressive results in creating realistic
3D environments as well as reconstructing real-world
environments. Computer-aided design (CAD) programs allow
precise design and high-quality rendering of three dimensional
virtual scenes. More recently, image-based capturing and

rendering techniques have made the rendering of real-world 3D
environments possible in a more automated fashion. In the case of
architecture, procedural modeling approaches have been
developed that allow buildings to be quickly generated and
rendered based on a set of simple design principles. We seek to
merge these paradigms to allow for the fast design of architectural
structures that can be rendered realistically at interactive rates.

Each scene creation paradigm mentioned above offers specific
advantages, but fails to offer a complete solution to our goal when
taken alone. Using only a traditional modeling approach lends
great control and flexibility to the designer but requires a high
level of expertise and great amount of effort to achieve high-
quality renderings. A real-world capture approach offers
immediate realism and often requires less expertise on the part of
the user, but typically does not offer a convenient way to create
novel scene content. Procedural modeling enables very fast design
time, but requires the availability of a pre-existing database of
scene rules and features. We propose a system that offers the
flexibility of traditional modeling, the immediate realism of real-
world capture, and the automation of procedural modeling without
requiring a high degree of expertise on the part of the user. Such a
system can ultimately be employed to quickly generate diverse,
high quality content for large urban models based on only a few
captured buildings. The urban visualization can then be used for
city planning purposes, simulation and training exercises, or
interactive entertainment.

Our approach is to use building features taken from real-world
capture scenes to create novel architectural scenes (Figure 1). A
model recovered from a sparse set of images is subdivided and
grouped into feature regions that can be rearranged to texture a
novel model in the style of the original. The redundancy found in
architecture is used to derive procedural rules describing the
organization of the original building, which can then be used to
automate the subdivision and texturing of a novel building. This
redundancy can also be used to automatically fill occluded and
poorly sampled areas of the image set, as well as to equalize the
color and lighting between images and surfaces of the model. The
novel scene is rendered using view-dependent texture mapping,
with a degree of realism comparable to that of the original scene.
The complete system is implemented using a standard PC and
digital camera, and requires only a moderate degree of modeling
knowledge on the part of the user.

Figure 1. Build-by-Number. A user can reconstruct existing architectural scenes and reuse the acquired data to design and render novel
scenes. (a) A rendering of a real-world capture building. (b) The building subdivided into features. (c) A novel model subdivided according
to the scheme in b. (d) A rendering of the novel building based on the image data from a.

a) b) c) d)

* danielbekins@alumni.purdue.edu
† aliaga@cs.purdue.edu

The Build-by-Number system offers the following main
contributions:
• A method for quickly designing and editing novel

architectural structures based upon image and model data
from a captured scene.

• A method of grammar induction from a captured model
that can then be used to automatically apply texture to a
novel model in the style of the original.

• A method for automatically filling regions of unsampled
and occluded data in the image set of an architectural
scene.

The remainder of this paper is divided into five sections.
Section 2 discusses related work. Section 3 describes the
modeling specification used by the Build-by-Number system and
the way in which procedural rules for growth and reorganization
can be derived. Section 4 discusses the techniques that are used to
render a finished model, including the removal of occlusions and
a color equalization method. Section 5 covers implementation
details of the system. Section 6 discusses results from four
captured scenes. Finally, section 7 offers conclusions and ideas
for future work.

2 RELATED WORK
The by-number concept originates in the 1950’s with Paint-by-
Number, which allowed unskilled hobbyists to create attractive
paintings by filling in numbered regions of a pre-made canvas.
Hertzmann, et. al., extended the concept to digital imaging with
Texture-by-Number [1], in which a source image and color coding
were combined with a target color coding to produce a high
quality image analogous to the source. Build-by-Number extends
this concept into three dimensions.

Procedural modeling refers to the specification of a model
using a set of principles as defined by a grammar. Procedural
modeling is most useful for creating models of objects or systems
that have a high degree of redundancy or self-similarity. Most
notably, L-systems have been successful in the modeling of plants
[2], and have been used for automatic city and building generation
[3]. Shape grammars [4], which define rules for the specification
and transformation of 2D and 3D shapes, have also been used to
model architecture. Wonka, et. al. [5] employ a variation on the
shape grammar called a split grammar in order to automatically
generate architecture from a database of rules and attributes.
While these methods provide a means for quickly creating
architecture, they do not address the problem of populating the
database of building features available for rendering. Parish and
Muller [3] define procedural rules for creating basic building
features (e.g., brick patterns), but complex decorative features and
textures still require manual modeling or painting. While Wonka
et al. specifically point out that real-world capture techniques are
inherently limited to reconstruction tasks, we propose that a
system such as Build-by-Number is well suited for use in
generating novel buildings, and requires less expertise than
manual modeling or hand texturing to yield good results.

Photogrammetric modeling refers to the process of recovering
the dimensions of a 3D model from a set of photographs. While it
is a goal in the field of computer vision to recover this information
automatically, currently the most robust systems require user
input in the form of correspondence data and proxy models.
Facade [6] has served as the prototype for several commercial
packages [7], [8], [9] and is a good starting point for the Build-by-
Number system. In the currently available systems, however, the
flexibility made available by the modeling approach does not
translate into flexibility in novel design because there is no

convenient way to map the image data of a real-world scene to the
geometry of a novel scene. Build-by-Number adds the concept of
subdivision and labeling to the modeling approach in order to
provide such a mapping. This in turn allows a procedural
approach to be taken when modifying or creating novel buildings.

Image-based rendering (IBR) is a partner of capture techniques
like photogrammetric modeling. Using photographs as data for
coloring the objects in a rendered scene is advantageous because a
high level of detail and realism is instantly available that would
otherwise be difficult to reproduce. View-dependent texture
mapping (VDTM) [6],[10] is particularly well suited for modern
graphics hardware, but there is a major limitation to this method
when applied directly to the source images. In many cases, there
is an object in the scene covering another object in one or more
images. A solution to this occlusion problem must somehow
approximate the color data for the occluded object in a visually
acceptable way.

Current image-based rendering systems use a variety of
methods to solve the occlusion problem. For example, occluded
pixels can simply be discarded and replaced with unoccluded data
from another view. This will fail, however, if the occluding object
is close to the surface and therefore occludes it in several views.
Unsampled pixels could be filled by interpolating between the
surrounding pixels [11], but this is successful only for small
regions. Entire faces from one part of the model can be repeated
or mirrored onto occluded faces [9], but this assumes an
unreasonable degree of redundancy in the scene. Finally, the
image can be manually edited to remove occluding objects using
3D image editing tools [12], but skilled manual editing is clearly
undesirable. Build-by-Number takes advantage of the subdivision
scheme from the modeling phase and the redundant structure
inherent in architecture to provide a method for filling in regions
of unsampled data. This leads to a much more robust capture and
visualization system.

Finally, several commercial packages [13],[14],[15] are
currently in use that semi-automatically generate 3D city models
using aerial photographs, available geographical information
systems (GIS) data, generic texture libraries, and
photogrammetrically captured buildings. Since it is too costly to
perform a detailed capture for every building in a given area, the
majority of buildings must be generated automatically. This leads
to a noticeable visual difference between fully captured and
generically textured buildings. Our approach offers a sophisticated
way to quickly generate novel buildings based on the styles of the
surrounding buildings, thus yielding richer visualization.

3 BUILD-BY-NUMBER MODELING
The Build-by-Number modeling system provides a graphical user
interface to guide the user through the one-time task of capturing

Figure 2. Model Specification. A Build-by-Number model is
composed of a collection of geometric solids. (a) One image
from a captured image set. (b) A model approximating the
geometry of the pictured building.

a) b)

a new building and then providing the tools to allow very fast
creation and editing of novel buildings in the style of the original.
Similarly to other photogrammetric modeling packages, the user
must take photographs of the desired building, create a coarse
geometric model, mark edge correspondences between the model
and photos, and mark occluded faces in each image. In addition to
these standard tasks, the user must also subdivide the model and
place similar features into groups. The system will then
automatically recover the model dimensions and camera poses,
fill regions of unsampled and occluded data, equalize color and
shading between images, derive rules describing building
structure, and apply the design of one model onto newly created
models.

This section describes the underlying framework of the Build-
by-Number modeling system and how it is used to achieve the
goals of automation. First, the modeling specification is discussed,
including the primitives used and operations that can be applied.
This is followed by a description of the automatic grammar
induction system and how it is applied to texture the surface of a
novel model.

3.1 Model Specification
A Build-by-Number model is a collection of three dimensional
geometric solids called building blocks (Figure 2). The blocks are
organized into a scene graph describing the spatial relationships
between them. Each node of the graph contains a block, and each
edge of the graph represents a transform specifying the position
and orientation of a block relative to its parent or child. Each
block is composed of a small set of vertices and a simple
geometrical structure (e.g., box, cylinder, pyramid, etc.).

Each property of the scene graph, i.e. the block dimensions and
transforms, is composed of algebraic expressions. These
expressions can be simple constants or can combine several free
parameters. For example, if the user knows that the building being
captured is twice as wide as it is deep, the user can specify the
width and depth using only a single free parameter instead of two.
This helps to ensure the robustness of the model recovery as well
as ensure its accuracy. The model will be recovered by
minimizing an error function over the free parameters of the scene
(see Implementation Details).

A Build-by-Number model supports two types of operations.
An attachment operation between two blocks constrains their
relative positions such that a specified face from each remains
coplanar with the other. Attachment provides the system with
block and surface connectivity information that would otherwise
be difficult to determine. In addition to attachments, the system
supports subdivision operations. A block subdivision is the
decomposition of a block by a set of planes, resulting in a new
collection of smaller blocks called sub-blocks. A surface
subdivision is the decomposition of a block face by a set of edges
into rows and columns, resulting in a grid of smaller faces called
subfaces.

Figure 3 shows a subdivision and labeling scheme for an
example building. Block subdivision is performed to divide the
building into floors. Surface subdivision is used to divide the
building facade into labeled feature groups representing brick,
trim, windows, and entries. In addition, it is necessary to indicate
whether each feature group is of a fixed size. For example,
windows, door, and trim are of fixed sized, while brick regions are
not fixed in size. This tells the system that the brick should be
tiled or cropped on a novel face, while the windows and doors
should remain the same size.

3.2 Design Schemas
A properly subdivided model provides information that can be
used to automatically detect patterns in the structure of the
captured building. Build-by-Number detects these structural
features on several levels of abstraction - the face, the floor, and
the entire model - in order to replicate the style of the captured
building onto a novel model. Each schema comprises a set of
symbolic rules describing the basic ways in which an element can
grow or be replicated, along with geometric rules of application.

3.2.1 Face Schema
A face schema is a procedural description of a face F, including
its symbolic growth rule and its geometric properties. A novel
face F' of arbitrary size can be textured with the image data from
F by applying this schema. The symbolic rule determines the
manner in which features will be replicated, while the geometric
information is used to determine precisely how many repetitions
of each feature to add to the novel face.

A rewrite rule R for a face F is a grammar production
containing symbols that represent individual column subdivisions
of F. Identical columns can be combined and marked as
repeatable elements with the Kleene star. For example, the face in
Figure 4a-b is subdivided into nine columns and can be
represented by the string F = C1C2...C9, where Cj is the jth colum.
The string can then be inspected for identical columns based on its
feature labeling. As indicated by color, the pictured face has only
three unique types of columns and can be written F =
ABCBCBCBA. A possible rewrite rule for this face is R →
A(BC)*BA.

In order to detect identical columns within a face, we define an
equality relation between two columns based on the feature labels
of their respective subfaces. Let Lij represent the label for the
subface Fij at row i and column j of F. If Fij is a terminal face (one
with no further subdivisions), then Lij is the user-marked feature
label. If Fij is further subdivided, then Lij represents the rewrite
rule for Fij. Two rewrite rules are considered equivalent if their
respective strings are equivalent. We therefore take two columns
Ca = L1aL2a...Lma and Cb = L1bL2b...Lmb to be identical if Lia = Lib
for all i, 1 ≤ i ≤ m.

The column equality relation can be used to derive a rewrite
rule for any face. Although there are several ways to combine
repeating elements, our method is based on the observation that
repetitions of the form AB are typically more visually interesting
than those of the form AA. We have also found that combining
more than two symbols into a repeating element imposes
unnecessary restrictions on the structure of the face. Based on
these observations, we devise the following recursive algorithm to
determine the rewrite rule for face F:

Figure 3. Model Subdivision. The model is subdivided into
features. (a) 3D subdivision into floors. (b) 2D subdivision into
doors, windows, trim, and brick.

a) b)

Some typical derivations are listed below:

The first example represents a very common and
straightforward situation. In derivation 2, the repeated pattern AA
is not merged based on our observation. Otherwise this would
have resulted in the rule (AA)*B(AA)*B(AA)*, which is likely to
be much less visually interesting when stretched. While it is
certainly possible to detect higher-level patterns in derivations 1
and 2, we have found this to be counterproductive to correctly
texturing a novel face. Suppose we derived the rule
(ABA)*B(ABA)* for the first example. This actually goes against
the alternating AB pattern and would also make the rule less
flexible by requiring elements of greater width to be squeezed into
a face of arbitrary size. Also, consider facades of two floors where
pattern 3 is directly below pattern 1 (C might represent a door,
while B represents a window). Using a higher-level rule for
pattern 1 would ruin the vertical coherence between the two floors
by adding extra instances of column A to the associated floor of a
novel building. Higher-level structure should therefore be
imposed by the user through multiple levels of face subdivision.

We now consider applying a growth rule R of F = C1C2...Cm to
a novel face F' of arbitrary size. We must determine the number of
repetitions k1, k2, ..., km of each column, as well as a scale factor s
for those columns of variable width. We desire the scale factor to
be as close to one as possible. For each non-repeating column Ci,
we have ki = 1. We then determine a common multiplier k for all
repeating columns such that the remaining width is filled as much
as possible without overflowing. By using this common
multiplier, we preserve the symmetry and balance of the face
structure as much as possible. The remaining width of F' is filled
by adding at most one more repetition of each repeating column.

The inclusion or exclusion of each column is determined by
searching through the combinations of repeating columns. The
combination that yields the scale factor closest to one is chosen.

Once the column multipliers and scale factor are chosen, the
texture from F can be tiled onto F' to render the novel face. Note
that for subfaces of multiple depth, the texture will be applied
recursively to each face. Figure 4c shows the results of the
application of a face schema onto a novel face. It can be seen that
the novel face rendering remains true to the original and is free of
artifacts. This is true in most cases as long as there are no severe
shading gradients, cast shadows, or irregular material such as ivy
on the surface being replicated. See Section 4 on rendering for
more details on how the rendering of novel faces is accomplished.

3.2.2 Floor Schema
 A floor schema is a description of all of the faces in a single floor
wrapping around an entire model from block to block (Figure 5).
This continuous floor surface can be extracted from a model based
on the attachment relations between blocks. Each floor of a model
is represented as an undirected cyclic graph containing faces as
nodes, with each node having a left side and right side edge
connecting it to its adjacent faces. The angle between adjacent
faces is recorded at the edge connecting them to provide context
for the schema application.

Suppose we have a floor schema comprising the face schemas S
= {F1, F2, ..., Fm}. We would like to apply this schema to a floor
of a novel model comprising the faces S' = {F'1, F'2, ..., F'n}. To
do this, the system must select a schema Fi for each novel face F'j,
then apply the selected schema to the face as described in the
previous section.

The system uses three criteria when determining the fitness of a
candidate schema for a given novel face. First, the orientation of
the face and schema in relation to its adjacent faces is considered.
It is frequently the case that the style of a given face is determined
by this relationship. For example, an outer corner is likely to have
trim or decoration, while an inner corner is less likely to. There
are three types of adjacency – inner corner, outer corner, and flat
or continuous. Since each face has two adjacencies, this results in
nine categories of faces. The best candidate schema will match the
novel face in this respect. Second, the difference between the size
of a face and the candidate schema are considered. The schema
that is closer in size is more likely to be appropriate. Third, if two
or more schemas are appropriate in terms of orientation and size,
the schema with the least amount of occluded subfaces in the
source image set is selected. This will minimize the number of
visual artifacts when the schema is applied to the novel face.

1. For each subface Fij of F, compute Lij ← rewrite-rule(Fij).
2. Apply labels to each column Cj = L1jL2j…Lmj of F based on

the equality relation.
3. Scan the string and mark each reoccuring pair of the form

AB (but not AA).
4. Replace adjacent repeated instances of a marked pair

with a single instance.
5. Add the Kleene star to all marked pairs.

1. ABABABA ⇒ (AB)(AB)(AB)A ⇒ (AB)*A
2. AABAABAA ⇒ A(AB)A(AB)AA ⇒ A(AB)*A(AB)*AA
3. ACABABA ⇒ AC(AB)(AB)A ⇒ AC(AB)*A

Figure 4. Face Schema. Patterns detected in a face’s
subdivision scheme can be used to texture a novel face of
different size. (a) A face from a captured building. (b) A
subdivision scheme for a. (c) The face schema of the original
face applied to a larger face.

a) b)

c)

Figure 5. Floor Schemas. A model is composed of several
floor surfaces that wrap around the building exterior. (a) The
original model. (b) The four floor surfaces of the model. Each
floor is composed of horizontally connected faces.

a) b)

In our sample models, these three criteria were enough to
correctly apply texture to each face of a novel floor (see Section
6).

3.2.3 Model Schema
A model schema is a complete description of all the floors in a
model and the connectivity between them. A model schema can
be employed to texture an entire model in the style of a captured
model in a single cut-and-paste operation. A directed graph
contains nodes representing each floor in a model, and edges
representing the connectivity between floors. In special cases such
as a breezeway or towers, multiple edges can flow into or out of a
given floor. Proper floors are separated from base and roof trim by
determining the elements of roughly equivalent height that occupy
the middle nodes of the graph. The base, bottom floor, top floor,
and roof trim are not considered repeating elements, while the
middle floors are. Figure 5 shows a model with one base floor and
three proper floors connected vertically.

To apply a model schema to a collection of connected blocks,
the blocks are first sorted in order of height. The tallest block will
be used as the basis block for determining the number of floor
repetitions. This is computed by determining the multipliers for
each repeating floor that result in the closest match to the basis
block height. The block and all its connected blocks are then
resized and subdivided according to the portions of the model
schema that matches their vertical positions most closely. After
subdivision, the floor surface connectivity is updated, and the
appropriate floor schemas are applied to each floor of the novel
model. All blocks that are attached to the basis block are marked,
and the algorithm continues with the remaining blocks, if any.

Figure 6 shows an immediate application of the model and
floors schemas. A captured model can be stretched in arbitrary
directions (compare with Figure 2). In the pictured model, only
the middle floor is taken as a repeating element.

4 BUILD-BY-NUMBER RENDERING
The Build-by-Number system uses view-dependent projective
texture mapping to render both captured and novel structures. This
section first discusses the general concept of view-dependent
texture mapping. We then discuss how Build-by-Number uses the
concept to texture a novel structure from a captured image set, and
how this same technique can be used to replace occluded regions
of the surface in a captured structure. Finally, we discuss some
simple but effective color processing techniques to remove
shading from the images before they are used for texture.

4.1 Rendering Novel Models
View-dependent texture mapping (VDTM) [10] can be used to
render a novel model based on the image data and geometry of a
captured model. Standard VDTM can be implemented efficiently
by creating a view-map data structure for each polygon P of a
model. Each source view position is transformed into a coordinate
space local to P and projected onto the unit sphere or cylinder in
this space. A lookup function determines the three source views
closest to the current view during each frame of rendering. These
views are weighted according to their proximity to the current
view and can then be blended according to this weighting in order
to give smooth transitions during animations.

A polygon P’ in a novel model can be rendered using data from
polygon P. Suppose P’ receives its texture from P (as set by a
design schema or the user). P' can be rendered from the current
view C by using model data from P' and texture data from P
(Figure 7). In practice, all of the polygons for a single texture will
be rendered before binding a new texture.

4.2 Occlusion-Free Rendering
The view-map of each polygon can be augmented in order to
accomodate occlusion-free rendering. Instead of containing only a
view position, each entry in the view-map of polygon P will
contain a pair (Vi, Pj), where Pj is a polygon belonging to the
feature group G of P that is visible in view Vi. This way, all of the
texture data in a group can be considered for inclusion in the
view-map of any member of the group. Of course it is unwise to
add every texture to every view-map in the group. We therefore
define a fitness function view-fitness(P, (Vi, Pj)) to determine the
similarity between P and its possible replacements. The criteria of
the function, in order of importance, are as follows:
• Equality - If P equals Pj, there is a perfect match.
• Model size - P and Pj should be as close in size as possible

(as determined by their areas of intersection).
• Orientation - P and Pj should have the same surface

orientation (inner corner, outer corner, coninuous).

Figure 7. Novel Polygon Rendering Algorithm. A novel
polygon P’ is rendered using image data from polygon P.

1. Transform C into local view space of P’ as C’
2. Lookup views and weights {(w1, V1), (w2, V2), (w3, V3)}

appropriate to C’ in view-map of P
3. Set the model transform based on C
4. For each source view Vi

a. Set texture transform based on Vi
b. Bind texture image from Vi
c. Set blending weight wi
d. Render texture coordinates from P
e. Render model coordinates from P’

Figure 6. Model Schema. An immediate application of the
floor and model schemas is to stretch a captured model
arbitrarily in any direction (compare with Figure 2).

Figure 8. View-Map Creation Algorithm. The view-map of
polygon P can be constructed by considering each member of
the feature group.

1. Let r be the desired sampling density of the view-map
2. Create a list LP of pairs (Vi, Pj), where Pj ∈ G, and Pj is

visible in Vi
3. Sort LP according to fitness for replacement of P
4. While LP is not empty

a. insert the first (best) pair (Vi, Pj) in LP to MP
b. remove all pairs within a radius r of Vi from LP, except

those containing P

• Image size - A larger image footprint of Pj in Vi is
preferred to eliminate resampling artifacts.

• Normal - P and Pj ideally share the same normal in order
to match lighting conditions (lighting problems will be
mitigated through color equalization).

Based on this fitness function, the view-map MP of polygon P
can be constructed by considering each member of the group in
order of fitness. The best available pair is added to the view-map
until an adequate sampling is reached. Ideally, adding only those
pairs that actually contain P will provide adequate coverage
(Figure 8).

Even if no single member of the group is sampled from all
desired angles, it is often possible to obtain a complete rendering
when the whole group is considered. The quality of the final
rendering will depend on the similarity between the faces of the
group.

4.3 Color and Shading Equalization
It is far more likely that all faces in a group will be similar if some
form of color and lighting equalization is performed between
them. Given a subdivided model, image equalization is possible
by comparing the color data from faces of the same group in
different locations on the model. During subdivision, the user
marks subfaces that are considered diffuse (usually the surface
material of the building, such as brick). The user also marks one
or more of the images as color keys that serve as the target for the
other images to match. Given this information, the system can
perform color equalization between different images, as well as
between different surfaces within each image.

We have found that a very simple equalization based on color
channel shifting is effective for our image sets. Since we have a
subdivided model that is registered with each image, we know the
feature group membership and surface normal of each pixel in
each image. Using this information, we first determine the
average color of each diffuse group from the color key images.
For each image, the average color of each diffuse group for each
surface normal is then computed. By averaging the colors for
different surface normals, we can equalize shading between
surfaces as well as colors between images. The shift amount for
each surface in each image is computed as the difference in the
surface average color and the key average color.

Figure 9a shows a rendering of a captured building without
occlusion correction. The trees and bushes obstructing the
building are textured onto the model surface along with the valid
data. In Figure 9b, the occluding objects have been removed from
the surface by using image data from other faces. It is possible to
see where faces have been taken from surfaces of various shading

intensity. Figure 9c shows the same rendering with colors and
shading equalized. It is now more difficult to tell which faces have
been replaced.

5 IMPLEMENTATION DETAILS
Our Build-by-Number system is implemented in C++ on a 3.0
GHz Dell PC equipped with 1GB memory. The user interface is
implemented in Windows Forms using Managed C++. All
graphics functionality is implemented in OpenGL. We use an
NVidia GeForce FX 5200 graphics card with 128 MB of texture
memory. High-resolution images from the digital camera are
typically resampled into 1024x1024x24-bit textures and mip-
mapped to yield high quality rendering from variable distance.
The user can select alternate texture sizes based on the
application. Each view also requires a 256x256x16-bit depth map
for use in projective texture/shadow mapping. We have had no
problem rendering scenes with up to 20 source images using this
system.

Model recovery is performed by minimizing an error function
between the edges of the model and user-marked edges as in [6].
This method has proven very robust and we have implemented it
exactly as described in the original paper. We perform the
minimization using an implementation of a nonlinear least squares
method obtained from the Numerical Recipes in C library [16].
While the literature makes note of singularities present when
performing minimizations involving 3D rotations [17], we found
no such problems in practice and therefore do not modify the
minimization algorithm.

View-dependent texture mapping is implemented using
OpenGL's projective texture mapping functionality. Alpha
blending is used to weight each texture's contribution
appropriately. We use shadow mapping to prevent the image from
being projected onto back-facing and occluded polygons. Modern
graphics cards implement this feature very efficiently, though
extra texture memory is needed to hold the shadow depth map. By
using shadow mapping, there is a risk of leaving certain areas of
the model untextured. To prevent this, we precompute face
visibility and render a third pass using faces we know to be fully
visible. This pass will not be very expensive as only partially
occluded faces need be rendered. We ensure only untextured
fragments are updated by basing the blend function on the
destination alpha value.

6 RESULTS
We have used the Build-by-Number system to create novel
buildings based on image data from four real-world buildings.
Statistics regarding the image sets and model composition for
each building are listed in Table 1. Each capture takes on the

Figure 9. Occlusion-Free Rendering. The redundancies marked during the subdivision phase can be used to automatically fill areas of
unsampled and occluded data. (a) An initial rendering of a captured building, occluded by trees, shrubs, and other objects. (b) The same
building with occlusions removed. (c) Now rendered with color and shading equalization.

a) b) c)

order of one to three hours to create the model, mark edge
correspondences, subdivide the model, and mark occluded faces.
It should be noted that model recovery is still the largest
bottleneck in the capture process – the addition of a subdivision
scheme does not add a significant time penalty. Also, it might be
possible to significantly improve the capture task, but we consider
this to be a separate problem from our method of novel building
creation. Once a captured building is available, a novel model can
in many cases be created in minutes and textured instantly with
the cut-and-paste operation via the model schema. In other cases,
the user may want to post-edit the textured model manually. In the
case of a pre-existing urban model, Build-by-Number could be
used to completely automate the texturing of each building in the
model.

The models in Figures 10-13 demonstrate the Build-by-Number
process from start to finish. Each figure displays part of an
original image set, the reconstructed model with occlusions
removed and colors equalized, and an example novel model. All
finished models can be viewed in real-time and navigated through
interactively. In Figures 10 and 11, the novel models were created
in about 5 to 10 minutes each and textured automatically with a
single cut-and-paste operation. These models can be further
stretched or modified by interactively resizing the blocks, with the
texture being automatically updated in a fraction of a second.

Figure 11 demonstrates the use of close-up images to fill in
texture data that can not be obtained from wide angle images. This
is made possible by the extra edge correspondences made
available by the subdivision edges on each block face. The camera
pose for close-up images can be quickly obtained with only a few
edge correspondences, and take up very little texture memory.
Adding many close-ups is therefore not very expensive and can
greatly improve the rendering quality of the final model.

The novel model in Figure 12 contained floor configurations
that were not present in the original model (such as a double inner
corner). The user can still operate quickly and at a suitably high
level of abstraction by applying face schemas instead of
individually subdividing and applying labels to each face.

7 CONCLUSIONS AND FUTURE WORK
We have presented Build-by-Number, a technique for quickly

designing and visualizing realistic architectural structures based
on real-world image data. Our results using four captured models
show that novel structures can be designed very quickly and are
rendered with realism comparable to the original images. It was
also demonstrated that procedural growth rules can in many cases
be used to automatically texture each novel building in a fraction
of a second. Further, our occlusion removal and color equalization
algorithms make it possible to capture even highly occluded
buildings in varying lighting conditions. All of these are possible

without a high degree of modeling knowledge or an understanding
of the underlying mechanisms of the system. These results suggest
that the Build-by-Number system is a powerful environment
visualization tool for both non-expert and advanced users.

The results also make apparent a few limitations to the system.
First, the texture tiling mechanism may lead to noticeable seams
on the model when viewed closely. Related to this is a limitation
on texture memory when very high resolution images are used.
We therefore conclude that Build-by-Number is probably not
appropriate for producing a single high-resolution structure.
Instead, it is more suited for quickly populating a large urban area
with buildings that are meant to be viewed from a medium
distance during a fly-through or walk-through. This is in line with
the intended application of urban visualization, and the realism of
the models in this context is very high in our sample captures.

We are already exploring the possible uses of Build-by-Number
within a larger GIS-based urban visualization system. We are also
interested in applications of the by-number paradigm to the
generation and visualization of other types of data such as terrain
and city features. These could be used to automatically fill
unavailable regions of real-world GIS data, or to create virtual
scene data in the style of some existing dataset. As urban datasets
increase in detail and availability, the demand for complex and
rich visualizations of this data will also increase. We feel that
Build-by-Number is a significant contribution toward satisfying
this demand.

REFERENCE
[1] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless,

David H. Salesin. “Image Analogies.” ACM SIGGRAPH, pp. 327-
340, August 2001.

[2] Prusinkiewicz, P., and Lindenmayer, A. “The Algorithmic Beauty of
Plants.” Springer-Verlag, 1991.

[3] Parish, Y. I. H., and Muller, P. “Procedural modeling of cities.” In
Proceedings of ACM SIGGRAPH 2001, ACM Press, E. Fiume, Ed.,
301.308, 2001.

[4] Stiny, G. “Pictorial and Formal Aspects of Shape and Shape
Grammars.” Birkhauser Verlag, Basel, 1975.

[5] Peter Wonka, Michael Wimmer, Francois Sillion, William Ribarsky.
“Instant Architecture.” ACM SIGGRAPH, pp. 669-677, July, 2003.

[6] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. “Modeling
and Rendering Architecture from Photographs.” ACM SIGGRAPH,
pp. 11-20, August, 1996.

[7] MetaCreations, Inc. Canoma. www.canoma.com, 2002.
[8] Eos Systems, Inc. PhotoModeler. www.photomodeler.com, 2005.
[9] RealViz, S.A. ImageModeler. www.realviz.com, 2005.
[10] Paul E. Debevec, George Borshukov, and Yizhou Yu. “Efficient

View-Dependent Image-Based Rendering with Projective Texture-
Mapping.” 9th Eurographics Rendering Workshop, Vienna, Austria,
June 1998.

[11] William R. Mark, Leonard McMillan, and Gary Bishop. “Post-
Rendering 3D Warping.” Symposium on Interactive 3D Graphics,
pp. 7-16, 1997.

[12] Byong Mok Oh, Max Chen, Julie Dorsey, Fredo Durand. “Image-
based Modeling and Photo Editing.” ACM SIGGRAPH, pp. 433-442,
August 2001.

[13] Terrain Experts, Inc. Terra Vista. www.terrex.com, 2005.
[14] TerraSim, Inc. TerraTools. www.terrasim.com, 2005.
[15] CyberCity, A.G. CyberCity Modeler. www.cybercity.tv, 2005.
[16] W. Press, S. Teukolsky, W. Vetterling, B. Flannery. “Numerical

Recipes in C.” Cambridge University Press, 2nd edition, 1999.
[17] Camillo J. Taylor and David J. Kriegman. “Minimization on the Lie

Group SO(3) and Related Manifolds.” Yale University, 1994.

 Image Set Model
Building Wide Close-up Blocks Subfaces

University 12 4 51 1531
Engineering 7 8 19 1038
Music 4 14 15 1006
Admin 6 4 50 2477

Table 1. Captured Model Statistics. Each model is made of
several blocks divided into subfaces. The model is recovered
using wide angle images, while unsampled data can be filled by
close-up images.

Figure 10. Music Building. The proximity of the trees and other occluding objects to the pictured
building makes a straightforward capture impossible. The visible features must be rendered in
place of the occluded ones. (a-b) Two images from the original image set. (c) An occlusion-free,
color equalized rendering of the captured model. (d) A novel model textured automatically using
design schemas.

Figure 11. Engineering Building. This building required close-up images to circumvent the trees
occluding the first floor. The extra edge correspondence data due to the subdivision scheme
makes this possible. (a) Reconstructed model. (b) Automatically textured novel model. (c) Wide
angle image. (d) Close-up image.

Figure 12. Administration Building. (a-b) Original images. (c) Occlusion-free, color equalized
rendering of the captured building. (d) Full rendering of a novel building based on the image
data.

b)

a)

a)

b)

a)

b)

c)
d)

d)

c)

Figure 13. Novel Buildings.
(a-b) Novel buildings created
based on University building.
(c) Full rendering based on the
Engineering building.

c)
d)

a) b) c)

