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Adaptive Refinement of the Flow Map Using Sparse Samples
Samer S. Barakat and Xavier Tricoche, Member, IEEE

Abstract— We present a new efficient and scalable method for the high quality reconstruction of the flow map from sparse samples.
The flow map is a fundamental concept in the analysis of flow phenomena and all so-called Lagrangian flow visualization techniques
require its approximation. Specifically, the flow map is generally obtained by integrating a dense 2D or 3D set of particles across the
domain of definition of the flow. Despite its embarrassingly parallel nature, this computation creates a performance bottleneck that
existing adaptive techniques alleviate only partially. Our iterative approximation method significantly improves upon the state of the
art by precisely modeling the flow behavior around automatically detected geometric structures embedded in the flow, thus effectively
restricting the sampling effort to interesting regions. Our data reconstruction is based on a modified version of Sibson’s scattered data
interpolation, which allows us at each step to offer an intermediate dense approximation of the flow map and to seamlessly integrate
regions that will be further refined in subsequent steps. We present quantitative and qualitative results for our method on different
types of flow data sets and provide a comparison with existing techniques.

1 INTRODUCTION

Fluid flows are part of countless physical and biological phenomena.
Their precise understanding is therefore important to many endeavors
in science, engineering, and medicine. Computational fluid dynamics
(CFD) simulations have become an essential means to investigate and
predict a broad range of flow behaviors. They produce increasingly
large datasets that require massive storage resources and, yet more
significantly, computational resources for the analysis of this data.

Scientific visualization has contributed a wide range of powerful
techniques to depict the salient properties of fluid flows datasets [19,
26]. In particular, the characterization and extraction of remarkable
structures has been the focus of an intense research effort in topolog-
ical [20] and feature-based [27] methods. In recent years, the notion
of Lagrangian coherent structure (LCS) has emerged as a compelling
alternative to study the qualitative behavior of transient flows. At the
core of the LCS definition lies the concept of flow map, which is key to
the Lagrangian analysis of any fluid flow and its associated transport
properties. Unfortunately, the estimation of the flow map poses a fun-
damental computational challenge, namely it requires to integrate the
trajectories of massless particles from a dense set of spatial locations.
In unsteady flows, this advection implies that multiple time steps be
fetched into memory thus increasing the I/O transfer time. In addition,
due to the nature of the flow structures, this computation needs to be
carried on along different spatial and temporal scales.

Several adaptive refinement techniques have been proposed to ap-
proximate the flow map or quantities derived from it. Yet, despite
these contributions, characterizing and extracting structural features
from large-scale CFD datasets remains very difficult. In particular, ex-
isting approximation schemes yield poor results when applied to the
nonlinear and multi-scale characterization of salient structures from
the flow map.

In this work, we propose a massively parallel and adaptive tech-
nique for the sampling and reconstruction of the flow map from a
sparse set of trajectories. Specifically, this work makes two main
contributions. First, we propose a new model to explicitly detect and
describe sharp features in the flow map, and we introduce a recon-
struction technique based on an extension of Sibson’s interpolation to
account for the steep changes associated with these features. Existing
methods for signal approximation are highly dependent on the struc-
ture of the sample points and they typically lead to poor approximation
quality in the vicinity of sharp features. As a consequence, flow struc-
tures extracted from an approximated flow map signal (e.g. LCS) ex-
hibit significant errors and artifacts due to their correlation with sharp
boundaries in the flow map. Our second contribution corresponds to
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a new adaptive sampling strategy that consistently reduces reconstruc-
tion errors to deliver an approximation quality that clearly outperforms
existing refinement techniques using the same number of samples.

2 RELATED WORK

Different topological and geometrical approaches for flow visualiza-
tion have been explored by the visualization community [21]. While
the Eulerian perspective underlying topology is primarily relevant
to the characterization of instantaneous flow features [38, 39], La-
grangian techniques advect particles along the flow to identify tran-
sient patterns. One category of these techniques requires the advection
of a spatially limited set of particles (seeding set) and the computation
of intermediate locations across time such as stream lines/surfaces [?]
and path surfaces [?, ?]. If only a sparse set of the particles is advected
and used to approximate the flow map at the intermediate time steps,
this can cut on the overall cost of the advection and the associated
velocity data transfers.

Another category of Lagrangian techniques include LCS based
methods which require particle advections covering the entire spatial
domain of the analysis. Lagrangian coherent structures have attracted
significant attention in both fluid dynamics [10, 35], and visualization
communities [31, 8, 32, 18]. Haller has shown in his pioneering work
in 2001 [13] that LCS can be obtained as the ridges of the Finite-
Time Lyapunov Exponent (FTLE), a scalar field that characterizes the
amount of stretching about the trajectory of a point over a finite time
interval. This research was followed by Haller’s work on the varia-
tional characterization of LCS [14] which provides a more sound and
accurate definition of flow separation structures. Both definitions rely
on the computation of the flow map.

Garth et al. [9] proposed a method for the acceleration of FTLE
computation for 2D flows by mapping the particle advections to the
GPU. The approximation of the flow map was addressed by Garth
et al. [8] using an adaptive regular refinement technique. They used
two discretization sequences at consecutive resolution levels to assess
the quality of the approximation. New samples are acquired at se-
quence locations of unsatisfactory approximation quality. Agranovsky
et al. [1] proposed a method to compute the FTLE field from scat-
tered flow map samples using Moving Least Squares (MLS). They
suggested using staggered sampling to eliminate the possibility of a
skewed MLS neighborhood. Both regular refinement and MLS fit-
ting neighborhood requirements poses a lower bound on the number
of samples that could be used. Brunton et al. [5] proposed a technique
that exploits the similarities between trajectories of a sequence of flow
maps over time to speed up the computation. A germane idea was
applied by Hlawatsch et al. [15] who introduced a new hierarchical
computation scheme for integral curves and described a GPU imple-
mentation. A sequence of regular grids is used to approximate the flow
map over small time intervals. Both approaches trade computational
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complexity for increased memory footprint, which is tied to the spa-
tial and temporal resolution. Investigating fine scales can become an
expensive task especially for time-dependent data sets.

For FTLE approximation, Sadlo and Peikert [30] proposed a
method to adaptively refine grid cells based on the presence of FTLE
height ridges. Least squares is used to approximate the gradient and
Hessian at the sample points. Continuous changes in points neigh-
borhoods due to consecutive small refinements at the boundary of the
ridges forces excessive re-evaluation of the ridge criteria. This intro-
duces an inter-point dependency that limits efficiency on parallel archi-
tectures. Barakat et al. [4] discussed a view-dependent method for the
interactive refinement of FTLE. The visual feedback drives a dynamic
hierarchical refinement strategy that optimizes the use of memory and
computational resources. Also, Chen et al. [7] attempted to reduce the
computation time of the flow map by identifying appropriate minimal
integration durations.

The flow map contains a complex set of edge structures making
its approximation difficult. Unfortunately, it is at these sharp features
that the accurate reconstruction of the flow map is needed most. This
is expected since sharp boundaries highlight significant differences in
the behavior of the trajectories of neighboring particles. The detection
of jump discontinuities has been discussed before in the literature of
signal approximation. A variety of approaches based on radial basis
functions [17], variations cubic splines [37], wavelets [29] and explicit
representation of the value transition structures [3] [2] have been pro-
posed. A reconstruction of the flow map from data obtained through
a coarse sampling strategy must avoid introducing approximation arti-
facts or distorting the continuity of these boundaries as they reflect on
the quality of structures extracted using the flow map in a later stage.
In this paper, we introduce a new method that could be considered
as an extension of explicit techniques. Our method however models
discontinuities differently to ensure smoothness for both 2D and 3D
signals.

3 FLOW MAP COMPUTATION AND INTERPOLATION

In this section, we briefly introduce the basic concepts that are neces-
sary to understand the steps involved in the computation of the flow
map and its Jacobian. We also introduce the smooth C1 interpolant
used by our method for the approximation of the flow map.

3.1 Flow Map

Let v : (I ⇢ IR)⇥ (D ⇢ IR3)! IR3 be a smooth time-dependent three-
dimensional vector field defined over a spatial domain D and a time
interval I describing the velocity of a fluid flow. The corresponding
dynamical system describes the motion of massless particles along the
flow:

⇢
ẋ(t, t0, x0) = v(t, x(t, t0, x0))

x(t0, t0, x0) = x0.
(1)

The map x(·, t0, x0) : t 7! x(t, t0, x0) describes a particle trajectory.
The map xt := x(t, t0, ·) is called flow map xt(x0): it indicates the
position reached at time t by a particle released at x0 at time t0.

With previous notations, one considers the spatial variations of the
flow map xt , whereby t = t0 + t and t is finite. The variations of
this flow map around a given position x0 are locally determined by
its spatial derivative, the matrix Jx(t, t0,x0) := —x0 x(t, t0,x0) at x0.
However, it is also possible to compute the flow map Jacobian using a
single advection trajectory [34]. Since

∂xt(x0)

∂ t
= v(t,xt(x0))

the derivative with respect to the initial start position x0 can be formu-
lated as

∂

∂x0

∂xt(x0)

∂ t
=

∂

∂x0
v(t,xt(x0))

by applying the chain rule and changing the order of the derivation on
the left hand side we get

∂

∂ t
∂xt(x0)

∂x0
=

∂

∂xt(x0)
v(t,xt(x0))

∂xt(x0)

∂x0

= —xt(x0)v(t,xt(x0))
∂xt(x0)

∂x0
.

where —xt(x0)v(t,xt(x0)) is the spatial derivative of the vector field.
Hence,

∂

∂ t
Jx(t, t0,x0) = —xt(x0)v(t,xt(x0))Jx(t, t0,x0) (2)

The ordinary differential equation (ODE) in equation 2 can be solved
alongside the ODE in equation 1 by integrating a higher-dimensional
ODE of both the location and the Jacobian entries for each particle
advection.

3.2 Sibson’s C1 Continuous Interpolant
The natural neighbor interpolation was first discussed by Sibson [36]
to provide a C1 interpolation of multivariate scattered samples. The
method has the advantage of creating a smooth approximation that
can reproduce spherical quadrics using a Voronoi tessellation of the
scattered sites. The natural neighbor coordinates of a point are defined
from the Voronoi diagram of the data sites. The natural coordinate of
a point x with respect to a data site pi corresponds to the volume taken
by the Voronoi cell of the point x from the volume of the Voronoi cell
of the data site pi if the point x is to be inserted in the Voronoi diagram.
This volume is referred to as the natural coordinate li(x).

Sibson [36] proposed a C1 continuous interpolation method that re-
lies on both the function value and its gradient for all sample points
pi 2 P. The method can exactly reproduce spherical quadrics of the
form F(x) = a+btx+ gxtx. The proof assumes that the gradient of F
at the data points is known or can be approximated from the function
values.

Sibson’s Z1 interpolant is a combination of the linear interpolant
Z0 = Âi li(x)zi, where zi are the input values, and an interpolant x

which is the weighted sum of the first degree functions:

xi(x) = zi +gi
t(x�pi), x (x) =

Âi
li(x)

||x�pi||xi(x)

Âi
li(x)

||x�pi||

(3)

where gi is the input gradient at pi. Sibson observed that the combi-
nation of Z0 and x reconstructs exactly a spherical quadric if they are
mixed as follows:

Z1(x) =
a(x)Z0(x)+b (x)x (x)

a(x)+b (x)

where

a(x) =
Âi li(x)

||x�pi||2
f (||x�pi||)

Âi
li(x)

f (||x�pi||)

and b (x) = Â
i

li(x)||x�pi||2

and f (||x � pi||) = ||x � pi||2. This first order interpolant can take
advantage of both values and derivatives of the flow map defined based
on sparse samples. The method can also take advantage of parallel
architectures as will be discussed in section 6.

4 ADAPTIVE REFINEMENT

In this section we discuss a new refinement strategy designed based
on the C1 continuous Sibson’s interpolation method discussed in sec-
tion 3.2. The authors of this paper are not aware of any previous work
that attempts to refine the sampling of fields constructed through Sib-
son’s interpolation. There are no constraints on the locations of the
samples and no need to compute additional samples only to preserve
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a certain organization. The refinement strategy we propose consists of
two steps. In the first step, we compute an indicator of the local error
everywhere in the domain. In the second step, we add a fixed number
of new samples guided by the error measure. This number is user se-
lected based on the computational and memory resources available for
the flow map computation.

4.1 Estimating the Approximation Error
In this section we discuss how an error indicator can be computed us-
ing the formula defining the Sibson’s interpolation. As described in
section 3.2, the C1 Sibson’s interpolation is a weighted combination
of the linear interpolation Z0 and a weighted sum of the first degree
function defined in equation (3). The C1 continuity of the Sibson’s
interpolation is due to the Z1 term x (x). This term can be viewed as
the weighted sum of different value suggestions made by the natural
neighbors of the reconstruction site x. The weight of each suggestion
is directly proportional to the natural coordinate and inversely propor-
tional to the distance between the natural neighbor and the reconstruc-
tion site in consideration. The first order suggestion made by each of
the data sites xi(x) assumes a constant gradient in the neighborhood of
the data sites. Obviously, this assumption is particularly invalid close
to regions of high frequency details where the higher order terms are
significant. Therefore, it is expected to see that value suggestions made
by the different first order approximations have larger discrepancies
close to these regions where details are present.

In order to evaluate the discrepancies between the first order sug-
gestions, we use their weighted variance. Hence our indicator can be
formulated as:

e(x) = log(S
Âi

li(x)
||x�pi|| (xi(x)�x (x))2

Âi
li(x)

||x�pi||

)

We use the factor S to scale the weighted variance values to the range
between zero and one. The weights ensure that the effect of a certain
data site on the variance is equivalent to its effect on the value of x (x).
Hence, a data site that is further away from the reconstruction point x
compared to other data sites will have a smaller effect on the variance.
A consequence of this weighting is to create a tendency for e(x) to
increase away from any of the data sites since if the distance between
x and any of the sites is particularly small this will reduce the variance
as well. This in turn implies that using the described weighted variance
as an oracle for the refinement will automatically avoid oversampling
since e(x) has a local minimum at each existing site. The weighted
variance can be computed alongside with the Sibson’s interpolation.
The strong skewness of the weighted variance can be rectified through
logarithmic damping. Finally, the function e(x) computed for different
components of the flow map can be aggregated to a single function
using a max operator.

4.2 Sampling Distribution
The locations of the new samples are identified by mapping the value
e(x) at each reconstruction point x to a probability distribution P(x)
that indicates the possibility of selecting it as a new sampling location.
P(x) is computed as the probability density function of an exponential
distribution with the random variable (�e(x)):

P(x) = le�l .K.(�e(x))

The term K is simply a constant scaling factor. The mean of the ex-
ponential distribution l is a user controlled parameter that indicates
how the new samples are distributed in the domain between regions
of different approximation errors. A low value for l allows for more
samples to be allocated to regions of relatively low approximation er-
ror. This permits the discovery of any missing details that were not
captured by existing samples so far. A relatively high value for l at-
tempts to restrict the sampling to regions of high approximation errors.
It might be useful to use a low value for l during the first few itera-
tions. In figure 1(e) and 1(f), we show the effect of different values
for l on the distribution of the new samples.

For efficiency, binning is used with the inverse transform sampling
from the exponential distribution. A bin is first selected then a point
from the bin is selected assuming all points in the each bin have equal
probabilities. We impose an additional constraint on the addition of
new samples to avoid the selection of several nearby points with high
approximation errors simultaneously. This is done by limiting the
number of new samples added to each Voronoi cell. If a new sample is
to be added to a cell that already contains k new samples than the ad-
ditional sample will be retained with a probability 1/(k+1) otherwise
it will be discarded. Hence, we add a new point at a time in each cell
to avoid computing samples that might only have a small effect on the
approximation error given other surrounding points have been added
already.

5 FLOW MAP RECONSTRUCTION

Sibson’s interpolant can be used for the reconstruction of the flow map
fields from the scattered data sites and can also be used to compute the
field e(x) needed for the refinement. Each of the scattered data sam-
ples correspond to a single particle trajectory, and is associated with
the flow map value and its Jacobian computed as discussed in sec-
tion 3.1. However, the regular Sibson’s interpolation suffers from a
critical drawback. The interpolation is sensitive to the distribution of
the data sites especially close to regions of sharp gradients. This sen-
sitivity takes the form of artifacts that distorts the shape of the edge
features. Also, the first order functions when combined with the high
gradient magnitude often found at the surrounding data sites will cre-
ate a set of min and max critical points not originally present in the
scalar topology of the flow map fields. These points will in turn lead
to artifacts in the FTLE field computed from the flow map. In this sec-
tion, we demonstrate how both the approximation error and the struc-
tures’ artifacts can be reduced through a modified version of Sibson’s
interpolation that takes advantage of an explicit model of the edge fea-
tures in the data. In this paper, we model these features as smooth
open or closed manifolds.

Our solution for the adaptive refinement and reconstruction consists
of multiple phases as shown in figure 3. Initially, we use a coarse
set of regular samples for the reconstruction of the flow map using
Sibson’s method. Edge detection can then take place preceding our
edge-based reconstruction that will be described in this section. The
reconstruction method passes feedback to the refinement through the
indicator of the approximation error e as discussed in section 4. After
the new samples are added through refinement, the process can be
repeated again. It is also possible to use our edge-based reconstruction
in an exploration scenario to give the user an intermediate visualization
free of artifacts before more samples are computed. Above all, this
reconstruction can save on the total number of samples needed in order
to achieve a certain approximation quality. We begin our explanation
by pointing out how the sharp features are detected from the sparse
samples and how the corresponding surfaces are modeled. We move
next to explaining our modified Sibson’s method that takes advantage
of the discovered edge features.

Refinement Regular Sibson’s 
reconstruction

Edge detection and 
representation

Our edge-based 
reconstruction

Initial sampling

Approximation error indicator

Fig. 3. Diagram showing the different components of our solution.

5.1 Sharp Features Detection and Modeling
The edge features can be found by applying a standard edge detection
technique to the flow map fields constructed using the regular Sibson’s
interpolant. We have chosen to apply Canny’s edge detection filter [6]
for its simplicity in addition to its good localization and robustness.
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(a) (b) (c) (d) (e) (f)

Fig. 1. 2D flow map: (a) Original high resolution flow map fields, (b) Regular Sibson’s reconstruction (MSE is 2.2⇥10�5 and 0.8⇥10�5), (c) Our
feature based reconstruction (MSE is 1.2⇥10�5 and 0.3⇥10�5), (d) Edge features, (e) Refinement new samples with l = 2.0, and (f) Refinement
new samples with l = 4.0.

(a) (b) (c) (d) (e)

Fig. 2. The approximation errors for different interpolation techniques: (a) Moving least-squares fit, (b) Multiquadircs radial basis function, (c)
Thinplate spline radial basis function, (d) Regular Sibson’s interpolation, and (e) Our edge based reconstruction.

The localization property means that identified edges are the closest
possible to the real edges in the 3D image. Canny’s edge detection
filter applies hysteresis thresholding to the gradient magnitude in order
to prevent the 3D image noise from creating false edges. We estimate
the values of the upper and lower thresholds through a heuristic that
maps each to a percentage of the voxels in the data. These percentages
are user specified and should reflect the density of edge structures in
the data. Binning, based on the gradient magnitude, is used to match
the percentages to the threshold values.

The steep changes in the flow map have the shape of smooth sur-
faces that capture the separation of neighboring particles due to their
advection. However, the edges discovered are likely to be non-smooth
and noisy due to undersampling as seen in figures 1(d) for a magni-
fied region selected from a 2D turbulent flow. Our goal is to build a
smooth surface representation of the edge features through fitting. It is
not computationally efficient to use all the edge points for the fitting.
It is also not desirable because a smooth reconstruction of the feature
surface will become a much harder task in the presence of possibly a
large number of noisy edge points. We therefore identify the subset
of edge points where each fall closest to at least one site compared to
all other edge points. We pair each of these edge points to its closest
data site. For each connected edge, this subset of edge points are used
for the fitting of a single surface that topologically approximates the
feature.

To create a surface representation of the edge features while pre-
serving the smoothness property, we use a variation of the mov-
ing least-squares (MLS) method. Specifically, we use the Algebraic
Point Set Surfaces (APSS) method described by Guennebaud and
Gross [12]. Our main motivation here is to use a normal constrained
smooth fitting of the sharp features in the data. The normals are com-
puted as the normalized gradients at the fitting edge points. The value
transition itself is tangent to the level sets in its infinitesimal close
neighborhood. These level sets are by definition orthogonal to the gra-
dient of the field. By constraining the shape of the value transition
to be orthogonal to the gradient, we basically increase its consistency
with the known values and gradients at the samples in its neighbor-
hood.

The APSS fitting defines a potential function corresponding to the

signed distance to the surface. The domain of this function is bounded
to the surface neighborhood defined through a set of spheres centered
at the fitted edge points. Hence, each edge point is equipped with a fit-
ting radius. To find the potential at a certain query point all edge points
with spheres containing the point in question will be used for the fit-
ting. This radius needs to be large enough to ensure the smoothness
of the surface but not large to the point where the topology is affected
by the excessive smoothing. Therefore, we set the radius to twice the
distance between the edge point and its furthest natural neighbor as
computed from the preceding regular Sibson’s reconstruction. Thus,
the radius is directly dependent on the density of the samples in its
neighborhood. One problem arises however when computing the po-
tential function at the boundaries of an open surface. An additional
check is needed to ensure that a point is projected orthogonal to the
surface and within its boundaries before the potential function is as-
sumed valid. In figure 4, we show the surface fitting at a point x that
is located within the radius of three surface edge points. The distance
from the point to the surface can be computed as the distance to its
projection on the fitting circle. The Eigen algebraic sphere fitting used
by the APSS method can be efficiently computed for a large number
of points while maintaining a fitting quality close to that achieved by
geometric sphere fitting.

5.2 Modified Discrete Sibson’s Interpolation
In this section, we explain the two steps of the modified Sibson’s in-
terpolation we propose. The first step is the computation of the natural
neighbors in the presence of the feature surfaces. The second step
consists of adapting the Sibson’s interpolant to integrate information
derived from the surfaces for the reconstruction.

5.2.1 Natural Neighbors
The Voronoi diagrams of continuous data such as lines and curves in
the 2D plane or surfaces in the 3D space have been discussed before
in the context of transfinite Sibson’s interpolation [11]. It was shown
that a continuous Voronoi diagram can be computed for a set of line
and/or curve segments in the plane. The natural coordinates of a query
point x remains defined as the volume the potential Voronoi cell of x
steals from existing cells when inserted in the diagram (see figure 5).
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pi

pj

point not in surface 
neighborhood

pk

Point projection 
to the surface

Fig. 4. Sphere fitting of the surface at x using three edge points.

The only difference is that an existing Voronoi cell might belong to a
surface instead of a point. The computation of the continuous Voronoi
cells is a challenging task however especially with the presence of
complex surfaces. We therefore propose an easy extension to the dis-
crete Sibson’s interpolation discussed by Park et al. [23] to compute
the natural neighbors of the reconstruction points in the presence of
surfaces.

p

Sample sites
Discontinuity 
surface

Fig. 5. The Voronoi tessellation in the presence of both curves and
data sites. A simulated insertion of a new sample at p will create a new
Voronoi cell taking from the area of the surrounding cells. The area
of the pixel i in the discrete sense will belong to the Voronoi cell of p
because the position p is inside a circle of radius r around i. Where r is
the distance between the point i and the curve of its cell.

The main idea behind the efficient computation of the natural neigh-
bors as described by Park et al. [23] is to scatter the value Vc(i) at point
i to all output raster positions p that are inside the sphere centered at
i and having a radius of d(i,Vc(i)). The value Vc(i) is the closest data
site to the point i. The radius d(i,Vc(i)) is the distance between the
point i and the data site Vc(i)). In the presence of surfaces, Vc(i) can
be either a data site or a surface. When Vc(i) is a surface the func-
tion d(i,Vc(i)) is the distance between the point i and the surface (the
absolute potential function). For the regular discrete Sibson’s interpo-
lation, the closest site Vc(i) can be found using a kd-tree containing all
the sites. In our case, we also need to find the distance between i and
each surface. Computing the potential function with the associated
MLS fitting at each raster position i for all surfaces would be a time
consuming task especially for large volumes. We can instead use the
natural neighbors from the regular Sibson’s interpolation to identify if
the point i is close to any surface. If none of the natural neighbors of
the point from the regular Sibson’s method is contributing to a partic-
ular surface (not paired with any fitting edge point) then the potential
function does not need to be evaluated. This is true because the surface
can’t be a natural neighbor of the point if none of its original natural
neighbors is among the surface sites. The computation of the natural
neighbors is summarized in algorithm 1.

Algorithm 1: The computation of the natural neighbors
Input: The natural neighbors from the regular Sibson’s

interpolation method oc
Input: Map from sites to surfaces Q
Output: The normalized natural neighbors coordinates c
Construct a kd-tree form m sites.
foreach output raster position p do

Initialize c(p) = f .
end
Execute loop in parallel for different values of i
foreach raster position i do

Find the closest site pn in the kd-tree.
F := f .
foreach site s in oc(i) do

F := F [Q(s).
end
foreach surface f in F do

if d(i,pn)> d(i, f) then
pn := f.

end
end
Calculate r = d(i,pn).
foreach raster position p inside a d-dimensional sphere of
radius r around i do

if Vc(i) not in c(p) then
Acquire the lock for p
if Vc(i) not in c(p) then

Add Vc(i) to c(p).
end
Release the lock for p

end
Next statement is atomic
Increment c(p,Vc(i)) by one.

end
end
Execute loop in parallel for different values of p
foreach output raster position p do

Sum all natural coordinates weights to compute n(p).
Set c(p) = c(p)/n(p).

end

5.2.2 Modified Interpolant
Unlike the natural neighbors that correspond to sample sites, a surface
natural neighbor does not have a flow map value and gradient assigned
to it. However, we still need to compute both zi(x) and xi(x) for a sur-
face natural neighbor i with natural coordinate li in order to perform
the Sibson’s interpolation described in section 3.2. The computation
of zi for a query point x can be done using the data sites surrounding
the surface and discussed in section 5.1. These sites provide informa-
tion about the field in the neighborhood of the surface. We assume that
the field dynamics in that neighborhood can be expressed in term of
the distance to the surface. Recall that the surface itself is orthogonal
to the gradient and hence to the level sets in its infinitesimal neighbor-
hood.

In order to compute the value of zi, we attempt to fit the values at
the data sites relative to the surface. As we compute the potential v(x)
for the point x, we gain information about all the data sites that belong
to the feature surface (paired with the fitting edge points) and that fall
in the neighborhood of the point in question. For the computation of zi
through the fitting of the data relative to the surface, we project these
sites to the surface and compute the corresponding potential values.
Hence, for a site i located at pi, we have the value yi, and the potential
vi. For each site i, we have the following fitting constraint f (vi) = yi,
with weight ri = ||x� pi||. The distance based weights are used to
penalize further data sites compared those closer to x.

We use a local circle algebraic fit [28] in the 2D domain of yi and
vi in order to compute the corresponding value for the potential v(x).
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p5

p6
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p8

Value

Potentialp4 p2

p8 p1
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p7p3p5

Sample sites
Discontinuity surface

Fig. 6. The edge data sites near x and its natural neighbors are used
for the 1D value fit.

This is illustrated in figure 6. We have chosen to use the algebraic
fit because of its flexibility in representing the shape of the smooth
value transition in addition to its efficiency. It is worth noting that the
sample sites of the surfaces are only used for this 1D fitting as they
are discarded from the Voronoi diagram. This is because of the large
gradient magnitude at these sites that tends to negatively affect the
Sibson’s interpolation. In addition, these gradients close to the steep
transitions in value are often more susceptible to noise. Finally, zi can
be computed as:

zi = f (v(x))

Since zi(x) provides an estimation of the value exactly at the location
x, we do not need the gradient for the first order function xi(x) and we
can simply set xi(x) = zi(x).

In figure 1, we show a side by side comparison of the 2D flow map
approximated using the regular and our modified Sibson’s interpola-
tion. The red and blue color channels correspond to the first and sec-
ond components of the flow map respectively. The difference in ap-
proximation quality is particularly clear close to the edge features. The
FTLE fields computed from the approximated flow maps is shown in
figure 7. The ridges of FTLE which coincide with the edges of the
flow map are much clearer and less distorted using our edge-based re-
construction. In figure 2, we demonstrate the approximation quality
of our method in comparison to various other existing approximation
techniques.

(a) (b)

Fig. 7. 2D FTLE field : FTLE computed from (a) the regular Sibson’s
interpolation reconstruction of the flow map, and (b) from our feature
based reconstruction.

6 SCALABLE IMPLEMENTATION

Designing an algorithm that scales to massively parallel architectures
is imperative due to the huge sizes of the flow data produced through
simulations. Both the flow map reconstruction and the adaptive refine-
ment procedures described in this paper were designed with scalability
in mind. For the reconstruction, the investigation and detection of the
edges using Canny’s filter is done in parallel [22]. The reconstruction

time is dominated by the computation of the natural neighbors for both
the regular discrete Sibson’s interpolation and our method which also
requires computing the potential function with respect to the surfaces.
A kd-tree data structure is used to keep track of the data samples and
to locate the site Vc((i)) closest to any raster position i in parallel as
described in algorithm 1. The loop over all raster positions is executed
in parallel. However, there are two operations that might lead to a race
condition. The first consists of inserting a new natural neighbor for
a position p. We therefore have a lock assigned to the natural neigh-
bor list at each position p. The second operation is incrementing the
weight of the natural neighbors n(p,Vc(i)). This operation has to be
atomic. This has negligible effect on performance.

The natural neighbor list itself is an unsorted vector where all items’
locations in memory remain valid after their insertion despite follow-
ing insertions. This alleviates the need for read locks that require syn-
chronization between processors causing larger delays compared to a
linear search of the list. As more samples are inserted due to refine-
ment, the radius r for raster positions i decreases and consequently
reduces the rasterization cost. The computation of the reconstructed
value using the natural neighbors is inherently parallel for all output
positions. It is worth noting however, that computing the potential
function for the data sites in order to perform the 1D function fitting is
a costly operation. Instead, we pre-compute the potential function for
all data sites with respect to all surfaces before applying the interpola-
tion. For the adaptive refinement, the integration of different particles
tangent the flow velocity is an inherently parallel process. The selec-
tion of the new samples locations as described in section 4.2 can be
executed in parallel. However, care must be taken while updating the
count of new samples in each existing Voronoi cell.

Notice here that the computation of the natural coordinates at any
point poses no significant dependency that would limit parallelism.
Hence, a large group of samples can be added everywhere in the do-
main simultaneously through refinement before rasterization is per-
formed in parallel. This is in contrast to approaches that require in-
cremental local reconstruction through MLS fitting intertwined with
the repeated computation of FTLE and the corresponding ridge ex-
traction [30] [1]. To achieve a smooth approximation through MLS a
large 3D fitting neighborhood is needed in order to avoid skewed sit-
uations especially due to the FTLE complexity. As a local small set
of new samples are added in a region growing fashion, the MLS fit-
ting and structure investigation need to be repeated for all nodes in the
mentioned neighborhood. The fitting might be performed dozens of
times at a single node for each new sample added to its domain before
the region is considered at sufficient approximation accuracy. These
methods also fail to provide an intermediate view of all the structures
in the domain and might miss small features. It is worth mention-
ing that in our case, the limited 1D MLS fitting is only needed in the
close neighborhood of the surfaces. This neighborhood is consistently
shrinking as new samples are added. Hence, the main difference is
that adding new samples reduces the fitting computations rather than
increase it.

7 EXPERIMENTS AND EVALUATION

A natural and compelling application of our technique is the efficient
and scalable computation of Lagrangian coherent structures. These
structures can create a portrait of transient flows. The most popular
characterization of these structures is based on the concept of FTLE.
Note that alternative definitions of LCS that apply a variational ap-
proach to their characterization [14] will benefit from our method even
more given the high smoothness that they require from the flow map.
It is as important as the high-quality reconstruction of the flow map to
provide also a high-quality reconstruction of its derivatives since those
are directly relevant in the characterization of important flow behav-
iors.

We have tested our adaptive refinement and reconstruction on five
datasets as listed in table 1. The computation of the flow map is per-
formed for a regular grid using a velocity field defined on an unstruc-
tured grid. For the steady and analytical test cases, the computation
was run on an NVIDIA GTX 590 GPU using CUDA for speed. For
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the Delta Wing, the computation was performed using the CPU on
a shared memory multiprocessor machine with 64 cores. The same
machine was used to document performance numbers for our method.
For all datasets used, we compare our refinement and approximation
to the four-point adaptive scheme described by Garth et al. [8]. The
method provides a scalable algorithm for the approximation of the flow
map using a four-point subdivision sampling scheme combined with
smooth reconstruction kernel. However, the method cannot use gra-
dient information provided at the data sites. We also compare our
edge-based approximation to that achieved by the Sibson’s interpola-
tion that was adopted to use our refinement strategy. The l parameter
of the refinement has been fixed to 4.0 for all datasets. The compu-
tation of the hysteresis thresholds of Canny’s edge detection is done
based on the percentages listed in table 1 (described in section 5.1).

The first dataset we consider is the standard analytical ABC
(Arnold-Beltrami-Childress) flow. The ABC flow is a canonical test
case, exhibiting complex turbulent structures [13]. In figure 11, we
provide a visual comparison of the FTLE ridges extracted at two differ-
ent refinement stages of the flow map. Using only 1.2% of the full res-
olution, our edge-based method was able to extract a smooth surface
for the FTLE ridges. The adaptive four-point scheme was less suc-
cessful in providing an accurate visualization of these structures. The
regular hierarchical organization of the samples has a significant effect
on the approximation of the flow map gradient close to the surfaces.
Our adaptive version of the Sibson’s interpolation also suffered from
artifacts due to the coarse sampling. The first order term of the Sib-
son’s interpolant combined with the large gradients close to the edge
features leads to a high sensitivity to the site locations. At a follow-
ing refinement stage, we see a considerable improvement in the results
achieved by the adaptive four-point scheme and our adaptive version
of Sibson. However, the improvement remains behind that achieved by
the method presented in this paper. The mean square distance (MSD)
relative to the full resolution flow map, shown in figure 10(a), clearly
indicates a significant gap between the methods compared in favor of
our technique. The refinement method described also leads to a steeper
decline in the error especially at the early refinement stages.

The Delta Wing dataset is concerned with the study of the transient
flow above a delta shaped wing moving at low speed and an increas-
ing angle of attack. Scientists are mainly interested in the formation of
vortices on both sides of the wing and their breakdown. In figure 13,
we demonstrate the FTLE ridges extracted using around 4.2% of the
full resolution samples. Our method is particularly superior showing
structures near the shear surface at the wing front, and near the turbu-
lent vortex in the back. The mean square distance between the original
and the approximated flow maps indicates a significant decay in error
using the refinement method discussed for the Sibson’s based meth-
ods. The Delta Wing dataset contains a dense set of structures and the
availability of gradient information to the Sibson’s methods helped im-
prove the convergence. For the same reason the Sibson’s based meth-
ods performed poorly when less than 4% of the samples are used. This
is because the first order term of the Sibson’s interpolant is likely to
perform poorly when insufficient samples are available to capture any
structures in the flow.

The Ellipsoid dataset is produced through a flow simulation around
an ellipsoid. Vortex shedding can be observed as several layers of
flow structures at the boundary and above the ellipsoid. The FTLE
ridges extracted from the flow map at different refinement stages is
shown in figure 12. Our reconstruction leads to smoother surfaces at
all refinement stages particularly when only 2% of the full resolution
samples are used. In figure 10(c), we can clearly observe a smaller
approximation error achieved by our method especially when less than
4% of the full resolution samples are used. Looking to the mean square
errors (MSE) of the FTLE field in figure 10(d), the differences between
the approximation methods is more obvious (also see figure 14). It is
worth noting that even the small differences between the curves in this
graph are significant because they mainly correspond to differences
around the structures which are only a small percentage of the entire
volume.

The Hill’s Vortex dataset corresponds to a simple analytic vortex

ring model based on Hill’s spherical vortex [24]. In figure 10(e), we
show a comparison of the different flow map approximations based on
the mean square distance. Our edge-based reconstruction is clearly
superior. We also notice that the adaptive four-point scheme has
a smaller difference to the ground truth than the adaptive Sibson’s
method for the early iterations. However, the four-point scheme intro-
duces systematic errors due to its inherent sample organization. These
errors lead to significant artifacts in the FTLE field as seen in fig-
ure 10(f). This is further demonstrated visually in figure 8 (figure 14
for the Ellipsoid dataset). Similar ridge extraction parameters are ap-
plied to all test cases. However, we tuned the parameters in favor of
the four-point scheme results. Changes to the parameters might reduce
the artifacts only at the expense of loosing portions of the structures.
It is important to notice, that our approximation explicitly attempts to
preserve the gradient directions orthogonal to the surface through the
fitting. Hence, the gradients for the flow map fields in our case are bet-
ter preserved. Since the FTLE computation relies on the Jacobian of
the flow map, it is then expected to see differences for ridges extracted
from FTLE.

(a) (b) (c)

Fig. 8. The FTLE ridges from: (a) The full resolution flow map, (b)
adaptive four-point approximation, and (c) our edge-based approxima-
tion. The number samples used is 369098 (2.2% of the full resolution).

Another analytical dataset we consider, is the Double Gyre
dataset [25]. The reconstruction times for the adaptive Sibson’s
method and our method is less than three seconds. In figure 9, we
compare the FTLE field computed based on the various approxima-
tions. We clearly notice the artifacts introduced by the adaptive four-
point scheme. Our method is superior especially close to the ridges of
FTLE.

(a) (b) (c) (d)

Fig. 9. The FTLE field from: (a) The full resolution flow map, (b) adap-
tive four-point approximation (FTLE MSE is 2.3⇥10�2), (c) the adaptive
Sibson’s approximation (FTLE MSE is 1.2⇥10�2), and (d) our method
(FTLE MSE is 9.2⇥10�3). The number samples used is 27262 (5.2% of
the full resolution).

The computation time needed by the adaptive Sibson’s approxima-
tion for all datasets is documented in figure 10(h). The cost declines
as the number of samples increases due to the decreasing rasteriza-
tion radius for the points in the refined regions. The computation time
of our method is dominated by the need to compute the projection
of all data sites to all surfaces. We believe that this cost can be re-
duced significantly if this projection was limited to those sites close
to the structures. This however requires further investigation on the
ideal representation to keep track of the domain. Due to the poor edge
detection in early refinement stages, the number of surfaces could be
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highly affected by fragmented surfaces and leading to high computa-
tion times. This cost decreases as the refinement progresses until the
number of surfaces is fixed (see figure 10(h)). The computation times
for the adaptive four-point method are indicated in table 1. Each re-
finement iteration for the four-point subdivision scheme requires eight
times the time and space of the preceding iteration. We therefore limit
the number of iterations to three, and experiment with the threshold
parameter until we achieve the needed number of samples. This is im-
practical in reality since the refinement should be driven by the quality
of the approximation making the number of iterations unknown and
possibly significantly larger.

(a) (b)

(c) (d)

Fig. 11. FTLE ridges for the ABC dataset extracted from the approxi-
mated flow map: (a) Adaptive four-point scheme using 201326 samples
(1.2% of full resolution), (b) Our method using 201326 samples (1.2% of
full resolution), (c) Adaptive four-point scheme using 704643 samples
(4.2% of full resolution), (d) Our method with using 704643 samples
(4.2% of full resolution).

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed to reduce the cost of the flow map compu-
tation through approximation. We discussed how to efficiently recon-
struct the flow map at a higher resolution using a small fraction of the
original samples. This was possible through a model that attempts to
explicitly capture edge structures in the flow map and use it to steer
the reconstruction. We demonstrated that the careful handling of the
Sibson’s interpolation near the flow structures can in fact improve the
approximation both quantitatively and qualitatively. We have also dis-
cussed a new method for the incremental refinement of the approx-
imation using a criteria derived from the interpolation model. The
experiments performed on 3D flow datasets demonstrated superiority
in preserving the visual quality of the extracted LCS structures based
on the approximated flow map compared to the state of the art meth-
ods. The results obtained also show that the presented method can
consistently reduce the approximation error through refinement and
essentially achieve smaller error than existing methods using the same
number of samples.

There are several ideas to extend this work in the future. We have
attempted to reduce the number of samples without consideration to

(a) (b)

(c) (d)

Fig. 13. FTLE ridges for the Delta Wing dataset extracted from the
approximated flow map: (a) Adaptive four-point scheme using 940584
samples (4.2% of full resolution), (b) Our method using 940584 samples
(4.2% of full resolution), (c) Adaptive four-point scheme using 2284277
samples (10.2% of full resolution), (d) Our method using 2284277 sam-
ples (10.2% of full resolution).

the possible coherence between the trajectories of certain groups of
nearby samples. It might be advantageous to explore such coherency
to reduce the cost of the samples used or to improve the quality of the
approximation. Another improvement avenue concerns making the
detection of the edge features and the modification of their representa-
tions applied on the fly locally as new samples are added. We intend
to explore other alternatives for the 1D fitting of the values as a func-
tion of the potentials at the data sites. Some fitting strategies lead to
considerably better results than the ones discussed in this paper at the
expense of a much higher computational cost. Also, we would like
to extend the method to approximate a sequence of flow map com-
putations corresponding to multiple integration durations. Finally, we
want to investigate the use of the method described to provide an in-
teractive visualization of the flow structures, where our reconstruction
is applied in a view dependent manner.
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tion.
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