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Abstract
We present a novel algorithm for the efficient extraction and visualization of high-quality ridge and valley sur-
faces from numerical datasets. Despite their rapidly increasing popularity in visualization, these so-called crease
surfaces remain challenging to compute owing to their strongly nonlinear and non-orientable nature, and their
complex boundaries. In this context, existing meshing techniques require an extremely dense sampling that is
computationally prohibitive. Our proposed solution intertwines sampling and meshing steps to yield an accurate
approximation of the underlying surfaces while ensuring the geometric quality of the resulting mesh. Using the
computation power of the GPU, we propose a fast, parallel method for sampling. Additionally, we present a new
front propagation meshing strategy that leverages CPU multiprocessing. Results are shown for synthetic, medical
and fluid dynamics datasets.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Ridge and valley manifolds have recently seen their popular-
ity increase noticeably in visualization. Their traditional ap-
plication in computer vision and medical image analysis has
found a natural extension in scientific visualization where
they offer a compelling means to succinctly describe the ge-
ometric core structure of complex three-dimensional fields.
Conceptually, ridges (and equivalently valleys) can be seen
as dual to isosurfaces, which are typically used to capture the
outer shell of objects embedded in a domain. These surfaces
are generally non-orientable and they possess a complex set
of boundaries. Hence, their extraction from a 3D scalar field
sampled on a grid is significantly more demanding than a
standard level set computation. As a result, algorithms that
have proved successful for the extraction of isosurfaces yield
disappointing results, in terms of accuracy, geometric qual-
ity, and computational efficiency when applied to ridge and
valley surfaces.

Despite the important contributions made in the visualiza-
tion literature to address this problem, significant limitations
remain that prevent the broad adoption of ridge extraction
techniques in the toolbox of visualization practitioners. First,
the techniques proposed to date are rather slow and they typ-

ically trade approximation quality for speed, which compli-
cates the interpretation of the resulting models. Second, the
quality of the extracted meshes has been mostly neglected
in previous work. This stands in contrast to the significant
research effort dedicated to isosurface (re)meshing. More-
over, a mapping of ridge surface extraction methods to the
graphics hardware is missing so far, due in part to the dif-
ficulties posed by an efficient GPU implementation of the
reconstruction kernels needed to compute derivatives during
the extraction.

This paper presents a fast method that addresses these
limitations through a novel hybrid CPU/GPU approach for
both the sampling and meshing of crease surfaces. We com-
bine a generalized front propagation strategy that shares sim-
ilarities with mesh reconstruction techniques with a care-
fully managed parallel organization of the computation that
leverages the GPU’s compute power. Specifically, our par-
allel front propagation meshing algorithm exploits the mul-
tithreading and multiprocessing available both on the GPU
and the CPU to advance multiple fronts at once while merg-
ing them into high quality meshes. This solution is suitable
for arbitrarily complex surfaces, it ensures the approxima-
tion and geometric quality of the produced triangulation and
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it achieves a significant performance increase compared to
previous techniques. As such, we believe that beyond ridges
the proposed approach will benefit the extraction of other
types of complex surfaces, such as level sets in nonlinear
fields. Indeed, our experimentation with synthetic, medical,
and engineering datasets confirms that our new technique
significantly outperforms existing methods in terms of qual-
ity and efficiency. In addition, our implementation accounts
for the scale space nature of ridge surfaces thus produc-
ing high quality meshes even in noisy or highly convoluted
datasets.

2. Previous Work

Ridges are fundamental features in image analy-
sis [EGMP94, PEMF98] that generalize the notion of
point-wise extrema (where the gradient vanishes) of smooth
scalar fields to objects of higher dimensions (e.g., curves
and surfaces). Ridges are typically characterized as a set
of points where a scalar function f in dimension N is
maximized in a set of p < N independent directions, thus
forming a set of dimension n = N − p. The height ridge
definition proposed by Eberly [EGMP94] defines the local
coordinate frame in terms of the eigenvectors of the Hessian
matrix H = ∇2 f (second-order derivative of f ) associated
with the p smallest eigenvalues λ1 < ... < λp with the
additional requirement that these eigenvalues be negative.
Valleys of f are similarly defined as ridges of − f . Spurious
structures can be filtered out based on the value f and the
crease strength |λp|.

Ridge surfaces in 3D (n = 2, p = 1) are often extracted
as 0-level sets of the scalar product between gradient ∇ f
and smallest eigenvector e2 of H [TG92, FP01]. An alter-
native (piecewise) level-set description of ridge and valley
manifolds based on a signed scalar field was proposed by
Peikert and Sadlo [PS08] who also proposed a filtered ridge
extraction based on adaptive mesh refinement [SP07]. The
detection of the zero crossings of this scalar product requires
careful inspection of the edges and faces of the voxels since
the considered eigenvector field has neither norm nor in-
trinsic orientation [SP99, KTW07]. Similar ideas form the
basis of the work by Li et al. [LLP∗10] who introduced a
grid-based algorithm for constructing polygonal approxima-
tions of extremal surfaces. A set of topological principles to
improve both correctness and performance of voxel based
ridge surface extraction methods was proposed by Schultz
et al. [STS10]. Observe that these various methods can pro-
duce artifacts and low quality meshes, due to the geomet-
ric and topological complexity of crease surfaces. Increasing
the resolution of the input volume alleviates some of these
problems but it does so at the expense of high computational
and memory requirements that add to the limitations of these
techniques. Remarkably, none of these algorithms takes ad-
vantage of the GPU.

Ridges were recently applied to vector [TSW∗05,

SWH05] and tensor visualization [KTW06, KTW07,
TKW08, STS10] problems through their computation in
scalar invariants of vector and tensor fields. Following a dif-
ferent strategy, Kindlmann et al. [KSSW09] introduced a
particle-based framework that optimally samples locations
in scale space. The method produces a quasi uniform sam-
pling of crease manifolds in output. However, it does not
produce a mesh and is computationally involved.

Finally various sampling and meshing algorithms have
been proposed over the last decade. Discussing all these con-
tributions is beyond the scope of this paper and we focus
on front propagation techniques with both error and qual-
ity control. Amenta and Bern [BO05] introduced the no-
tion of ε− sample, a key concept in the theory of sampled
surfaces, which is used by different meshing algorithms.
Amenta et al. [ABK98] proposed a technique for the recon-
struction of closed surfaces from unorganized sample points
with bounds on errors provided that a sufficient number of
samples are available. Alexa at el. [ABCO∗01] presented a
technique for the construction and rendering of smooth man-
ifold using point sets. Scheidegger, Schreiner, and their co-
authors [SFS05, SSFS06] contributed a bounded error trian-
gulation algorithm able to filter noisy input data and provide
good quality triangles independent of the sampling density.
These authors applied this algorithm for high-quality extrac-
tion of isosurfaces [SSS06]. Note that all these methods are
primarily concerned with the meshing aspect of the prob-
lem. They assume a pre-existing set of sample points, and
they typically have limited scalability.

3. Challenge and Proposed Solution

Surface meshing requires careful sampling, whereby the
sampling rate is usually selected conservatively based on
the maximum expected curvature of the surface [BO05]. A
subset of these points are subsequently connected to form
a mesh. Mesh generation research has devised a theory that
provides a relationship among the minimum number of mesh
vertices, the curvature of the surface, and the resulting mesh
quality. To accurately compute properties (e.g. smoothness
and boundaries) of a complex surface, considerably more
samples are required than those that will actually contribute
to the final mesh geometry. As the accuracy becomes more
of a concern (e.g. fast variation in curvature, thinner gaps be-
tween boundaries, etc.), the difference between the number
of required samples widens. In previous meshing techniques,
these large number of property samples would typically be
passed to the triangulation algorithms even though most of
the samples would not appear in the final mesh. Maintaining
this burdensome number of samples requires a significant
computation and memory overhead, something we are able
to avoid with the ability to discard unneeded samples on the
fly.

When crease surfaces are considered, a different strategy
is therefore needed that ties together sampling and mesh-
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ing more naturally. We propose a progressive cycle of sam-
pling and meshing, with an error bounding criteria. Dense
sampling, while still required by our approach, poses fewer
challenges, in both computation (due to our massively paral-
lel algorithm) and memory (the ability to efficiently discard
unneeded samples on GPU), compared to past approaches.
This strategy lends itself to an efficient implementation on
modern architectures, especially on GPUs, where compu-
tation is cheap while memory access can often become an
algorithm’s bottleneck.

4. Algorithm

Figure 1: Interaction diagram between CPU and GPU.

Our method starts with a scale space analysis that se-
lects at each spatial location the scale value that maxi-
mizes a measure of crease strength along the scale axis,
as suggested by Lindeberg [Lin98]. Practically, we use
the reconstruction framework proposed by Kindlmann et
al. [KTW07, KSSW09] to create a smooth 4D continuum in
which we carry out these one-dimensional searches, similar
to a method recently described in our previous work [BT10].
The gradient, Hessian, and all other relevant quantities are
then computed in pre-processing at each domain position at
that optimal scale.

Next, our method identifies a set of seed triangles form-
ing the initial fronts of the mesh as described in section 4.1.
The mesh propagation algorithm iteratively selects a set of
front edges to advance, sends a request for new vertices to
the GPU, and adds the returned vertices to the mesh accord-
ing to the strategy explained in section 4.2 (see figure 1).
The GPU’s role is to perform dense one-dimensional sur-
face sampling along the front edges until the needed vertices
are found according to the process described in section 4.3.
The main purpose of the sampling is to track the distance
between the surface and the mesh as a measure of error.

4.1. Seed Triangles

Seed triangles are used as an initial front from which we
grow new triangles that approximate the underlying surface.
These initial triangles are automatically computed by mesh-
ing in screen space the points obtained by ray-surface in-
tersections. These intersections are computed using the ray

casting approach we proposed in [BT10]. Depth discontinu-
ities are used to determine patch boundaries. Applied along
each coordinate direction and combined with depth peel-
ing [Eve01], this scheme produces a set of (typically redun-
dant) piecewise descriptions of each connected component
of the surface. Next, our algorithm randomly selects a num-
ber of seed triangles from each connected component of that
mesh based on its size. We verify that each triangle belongs
to a patch of the surface by taking additional samples inside
that triangle to ensure that it does not bridge two different
components. An alternative approach is to let the user se-
lect triangles by clicking on features (e.g. bones or skin in
medical datasets) in the ray casting interface.

4.2. Advancing Front Mechanism

We adopt the definition of the meshing problem proposed by
Schreiner et al. [SSFS06], which we introduce as follows.
Given an input surface S defined through a projection oper-
ator P : IR3→ S, we want to construct a triangulation Σ such
that the Hausdorff distance between Σ and S is bounded by
ε. We also want to control the number of outputted triangles
and their geometric quality. As different fronts are grown on
the surface, they will eventually encroach and be connected
to one another. Therefore, our front propagation algorithm
gives priority to accuracy over triangle quality in order to
minimize artifacts in between these fronts. Note that many
meshing algorithms provide estimated error bounds based on
local curvature under the assumption of a smoothly varying
surface normal, an assumption rarely valid for highly curved
crease surfaces. Indeed, these methods construct edges that
yield high-quality triangles rather than track the distance
between the mesh and the actual surface satisfied with the
smoothness assumption.

Unlike conventional front propagation meshing schemes
(e.g. [SSFS06]), our method selects a large number of front
edges to grow simultaneously in order to exploit the power
of massively parallel machines. However, this strategy intro-
duces several challenges from a meshing perspective since
mesh decisions are no longer made on a one by one basis but
rather as a batch. As seen in figure 2 (b) and (c), propagating
fronts in parallel may result in two triangles overlapping as
they try to simultaneously approximate the same area of the
surface, also known as a conflict. The detection of a conflict
is simplified knowing that the distance between any edge and
the surface should be less than the provided error bound, ε.
In short, two triangles are said to conflict if they do not share
a common vertex and their edges are less than ε apart. When
this problem occurs, we simply discard one of the triangles
and create an active edge between the closest pair of vertices
from both fronts, as can be seen in figure 2 (c).

Active edges are the edges that are used to grow new trian-
gles. We keep a pool of all active edges as a representation of
our fronts. Different triangles are produced at the same time
in parallel on the GPU. Every edge is sent to the GPU ac-
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companied with an advancing direction vector. The search
for the new vertex starts at the midpoint of the active edge
following the direction of that vector. An iterative process
takes place to gradually advance the vertex and correct the
direction.

(a) (b) (c)
bridging edge

Figure 2: In (a) and (b), we show cases that are avoided by
edge locking, while (c) shows a conflict between triangles of
different fronts.

We first find an advancing direction perpendicular to the
edge. If the active edge is part of an existing triangle, we use
the perpendicular to the active edge in the triangle plane but
in the opposite direction of that triangle. This is illustrated by
the blue vector in figure 3 (b). Note, this ensures the search
for the new vertex starts at the furthest direction from the ex-
isting triangle. Figure 3 (a) highlights the case when an edge
is not part of any triangle (i.e. a bridging edge between two
different fronts). For this, we simply use any perpendicular
from a non-shared vertex of a neighboring active edge.

n1

n2

n3

n4

perpendicular to 
 current edge

neigboring 
active edges n2

n1

v1

v2

neigboring 
active edges

active edge 
triangle
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direction(a) (b)

v1

v2

Figure 3: (a) A bridging active edge and (b) an active edge
that is part of an existing triangle. Neighbor active edges
are shown in green. The dashed red lines are examples of
possible perpendicular advancing directions.

The next step is to adjust the advancing direction based
on the expected triangle. Our strategy consists of passing a
search direction to the GPU that heuristically reduces the
possibility of a conflict between active edges. Fig. 4 illus-
trates the various cases we may encounter, where the blue
vectors show the result of computing the advancing direc-
tion. The ideal case is shown in Fig. 4 (a), where one of the
neighboring active edges (green) forms a sharp angle with
the current edge (red) and both of the neighboring edges’ far
vertices can be connected with a third edge (pink) to form
an edge that is shorter than the maximum edge length η. For
this situation, we simply set the advancing direction to be the

direction toward the corresponding neighbor vertex. If both
neighboring active edges satisfy these conditions, then we
choose the neighboring vertex having the closest distance to
the center of the current edge. Fig. 4 (b) demonstrates when
both neighboring active edges (green) meet the sharp angle
criteria, but neither edge (pink) can form a triangle due to the
maximum edge length constraint. For this case, we use the
direction toward the middle point of the neighbor vertices.
In (c), where only one angle is sharp and the correspond-
ing neighbor vertex cannot be reached with an edge shorter
than η, we split the angle between the edges with an edge
of length η (orange). We then set the direction toward the
point at the far end of that edge. If none of the previous sit-
uations apply, we simply use the perpendicular direction as
the search direction. The rationale for these decisions is that
smaller angles leave little room for overlapping with other
triangles. They also have limited connection options. If our
attempt failed and the new returned triangle produced a con-
flict, we simply discard it.
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Figure 4: Examples of various cases that are encountered
while computing the advancing direction.

To further prevent conflicts we do not send two neighbor-
ing active edges forming an angle less than 180° in the same
GPU batch. We do that by marking the vertices of each edge
added to the batch. Thin triangles also might occur if locking
was not used (see figure 2). When new vertices are returned,
we give priority to active edges that had sharp angles with its
neighboring edges. Their corresponding triangles are added
first to the mesh in order to avoid thin triangles. Notice that if
the new vertex failed to reach a neighboring target vertex we
simply use the new vertex favoring accuracy over triangle
quality.
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Figure 5: A triangle growing over successive iterations.

4.3. Triangle Generation

Every active edge is sent to the GPU in the form of two ver-
tices, v1 and v2, in addition to the initial search direction,
dir. The midpoint of the edge is iv3. Let T be the triangle
plane and P be a plane s.t. P ⊥ T , iv3 ∈ P, and P‖dir. The
new vertex nv3 should satisfy nv3 ∈ P and nv3 ∈ S.

As an initialization step, the vertex nv3 is set to iv3. An it-
erative process is then used in order to gradually advance the
point until the maximum edge length η or maximum error ε

is reached. In every iteration we first advance the point along
the line joining its last two positions for a small step τ. τ is
a fraction of ε to ensure that we are sampling the distance
between the surface and the triangle (i.e. sampling the error)
at the appropriate rate.

We next correct the new point position to guarantee that
it belongs to S as well. The correction of the vertex posi-
tion is done along the normal of the triangle plane using
the search technique mentioned in [BT10]. The search is
however bounded to a distance equivalent to the voxel edge
length around the point. Once the corrected location of nv3
is found, the error is evaluated and the error map is updated
according to the process described in section 4.4. The pro-
cess of acquiring a new vertex is computationally expensive
as it requires searching in two directions.

4.4. Error Tracking

As the triangles grow, we must ensure that they provide an
accurate approximation of the surface by tracking the error
between the actual surface, S, and the considered triangle.
The maximum distance between S and the triangle must not
exceed our set error tolerance ε. Solving the error tracking
problem in the two dimensional plane P (from section 4.3)
is a close approximation for the error between the triangle
and the surface since we know that all three points of the re-
sulting triangle reside on the surface and that the plane goes
through the middle of one edge to the point facing that edge.
Even if we assume that the surface is highly irregular, such
that the error could be growing toward the other two edges,

Algorithm 1: Pseudocode for triangle generation
Input: Edge points v1 and v2, advancing direction dir
Output: Third point on triangle v3, and boundary flag

dir := normalize(dir)
edge := v2 - v1
c := normalize(cross(edge, dir))
i := 0
while i < max do

Step 1. Find the new vertex
if i == 0 then

nv3 := iv3 + τ . dir
if i > 0 then

nv3 := v3 + τ . normalize(v3 - ov3)
Step 2. Correct the new vertex position
boundary := CorrectVertex(Normal(v1,v2,v3), nv3)
if boundary == 1 then

return;
Step 3. Find the new length and error
ln := max(|nv3 - v1| , |nv3 - v2|)
e := GetError(nv3, iv3, dir, c, distmap)
Step 4. Check the constraints
if ln > η then

return;
if e > ε then

return;
Step 5. Update the error distance map
UpdateErrorMap(iv3, ov3, v3, nv3, dir, c, distmap)
Step 6. Prepare for next Step
ov3 := v3
v3 := nv3
i := i + 1

the neighboring triangles should compensate for this effect.
Otherwise this high curvature feature would have a spatial
scale smaller than the local size of the triangles. Addition-
ally, we choose ε to be very small ( 1

6 of a voxel edge length
in all our experiments) to make sure that variations inside a
single triangle are limited [AB98].

local error maxima 
for given direction

ϑ
l

Γ

Friday, March 4, 2011

Figure 6: A 2D slice of the surface is shown, Γ. The max-
imum distance between Γ and the line, l, can only occur
where the tangent of Γ is parallel to l.

We wish to evaluate the error continuously along a curve
Γ, of the surface S. A straightforward, but inefficient, so-
lution would be to save the points along the search direc-
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tion. The error is then evaluated by finding the maximum
distance between any point and the line l. However, saving
and retrieving a large number of points along the way would
cancel out any benefit gained from running the extraction in
parallel on the GPU because of the GPU’s limited memory
throughput. It is important to note that the point of maximum
distance on the curve Γ from the line l must occur where the
tangent of Γ is parallel to l, as shown in Fig. 6. Using this
idea, we can limit the amount of information to track.

The example provided is simply a 2D slice, but of course
our problem is 3D. Because of this, we also need to keep
a record of the maximum distances per angle. Using what
we call an error map, we are able to discretize the angular
domain. The error map is simply an array where each en-
try is the maximum error of each angular sample. For each
sample point on the surface, we can approximate the error
by interpolating between our entries in the error map. Af-
ter we evaluate the error for our newly sampled point, we
update the angular entries in the map that fall between the
tangential slopes of this new point and the previous point.
This will ensure that future interpolations between map en-
tries will provided an accurate approximation. We found that
18 samples, or one sample every 10°, was enough to obtain
sufficient accuracy.

During the extraction process of a new vertex, the search
might hit the boundary of the crease surface. At this point,
the search fails to correct the vertex position along the nor-
mal. The search will then backtrack to the previous point on
the surface. We note that a point may falsely detect a bound-
ary when it hits a tiny hole on the surface. This situation
does not represent a discontinuity on the surface, but rather
a noise consequence. For this scenario we exclude an edge
from the front only if both of its vertices are on a boundary.
This solution also helps straighten the boundaries.

In summary, the process of acquiring a new vertex to com-
plete a triangle is a form of excessive surface sampling used
to capture the surface’s complex properties. In practice, the
intermediate steps can exceed a few dozen iterations for each
new vertex. Each iteration does not complicate the meshing
process or increase the memory overhead, but rather the it-
erations are mainly used to draw conclusions about the sur-
face’s properties.

5. Implementation

In contrast to marching cubes methods, front advancing al-
gorithms provide higher flexibility for the meshing deci-
sions, which enables better quality. However, the existing
front advancing schemes are poorly suited for parallel im-
plementation due to their reliance on the linked lists to repre-
sent fronts [BMR∗99,SFS05,SSS06]. These representations
are also problematic in the case of complex surfaces since
fronts might be numerous. Our implementation instead uses
a queue of active edges and keeps track of corresponding

connection information between vertices. Additionally, our
method can be applied in batch to produce a mesh with a
desired accuracy and quality.

Practically, we opted for a hybrid approach by dividing the
data volume into blocks, each block handling the advanc-
ing cases occurring within its boundaries. Triangles cross-
ing these boundaries are handled in a separate serial phase
while preserving the priority and order of operations. This
approach allows for high parallelism and is key to the over-
all performance of our method.

To detect conflicts, we use an axis aligned bounding box
octree to keep track of all triangles in the domain. If a box
intersection is detected, we perform more accurate checks
to verify the existence of a conflict. As the number of the
objects in the tree increase, the performance of the tree grad-
ually decreases. Hence, we decided to use a forest of trees to
cover the domain with one tree per block. Triangles cross-
ing block boundaries are duplicated across the correspond-
ing trees.

The cost of the ridge extraction on the GPU is primarily
due to texture fetches to access gradient and Hessian values,
and to the evaluation of the Hessian’s eigensystem. Fortu-
nately, our advancing front approach guarantees that these
expensive operations are confined the direct vicinity of the
surface, which contrasts with existing methods that carry out
the extraction search throughout the domain.

6. Results

We tested our method on a high-end Quad core Intel Core2
Extreme QX9650 (12MB, 3.0GHz) machine where the GPU
kernels are executed on NVIDIA GeForce GTX 280. The
implementation was done in CUDA and C++. To document
the performance of our method, we present here results ob-
tained for several datasets corresponding to different appli-
cation scenarios.

The selection of the accuracy parameter ε depends on the
user need. However, we found empirically that a distance
equivalent to one sixth of a voxel edge length is a good
choice. The GPU step parameter τ is typically chosen to be
1
4 × ε for all our tests cases. This parameter needs to be suf-
ficiently small to avoid missing important error variations.
The maximum edge length parameter η can be set to a mul-
tiple of the ε value (4 to 10). A smaller η is more conserva-
tive and leads to better triangle edge ratios. However, it also
leads to a large number of triangles.

We have considered four different test cases at different
degrees of complexity. The first dataset that we consider is a
synthetic dataset we created by computing the distance func-
tion for the faces of a rectangular volume. The ridge surface
would then represent the skeleton of that volume. We have
not applied scale space analysis for this test case to demon-
strate the robustness of our method. As seen in figure 7,
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the extracted mesh shows no artifacts even at the bound-
aries between the different branches. For non-manifold sur-
faces such as this one, our method do not attempt to handle
branching explicitly through numerical checks. We assume
that edges grow in a single direction and our front propaga-
tion strategy implicitly enforces a local manifold topology.
However, we found that at the intersection of the branches,
different triangles attempt to grow on different branches at
random. In addition, the seeding prevents a branch from be-
ing missed.

Figure 7: Mesh extracted for a synthetic test case.

The second dataset that we considered is a synthetic
(ABC) fluid flow that was analyzed through its Lagrangian
coherent structures (LCS) [Hal01]. We chose this dataset be-
cause of its smooth yet convoluted patterns that have been
abundantly displayed in scientific visualization and fluid dy-
namics publications. We did not apply scale space analysis
for this dataset as well in order to challenge the robustness
of the extraction algorithm. Our method achieves smooth re-
sults for this dataset as shown in figure 8.

Figure 8: Extracted mesh for the ridges of FTLE field in
ABC flow [Hal01].

As a second example related to fluid flows, we consider a
CFD simulation of a turbulent flow at a high Reynolds num-
ber that corresponds to a streaming jet. The simulation is
time dependent and we have selected an integration length

in the FTLE computation that reveals the patterns of the tur-
bulent mixing. This dataset is clearly a challenging one with
high geometric complexity in addition to topological intri-
cacy. Pre-processing for scale analysis was applied to this
dataset. Even in this demanding configuration our method
performed remarkably well. We illustrate this in figure 9 by
rendering the resulting mesh colored by the distance to the
mesh extracted by the method of Schultz et al. [STS10]. We
notice that the differences are relatively small and are mainly
concentrated at the boundaries of the surface. The complete
result of our method for this demanding dataset is shown in
Fig. 10.

Figure 9: Our extracted mesh for the jet dataset colored
with the distance to the mesh extracted using the method de-
scribed in [STS10]. The distance is relative to the longest
volume side.

Our third dataset corresponds to a medical imaging ap-
plication scenario. A number of papers in recent years have
investigated the visualization of ridge manifolds in the par-
ticular context of brain imaging. Following this approach
we are presenting results obtained for the DTI dataset that
was made available as part of the IEEE visualization con-
test 2010. Specifically, we applied our method to the second
dataset which corresponds to the brain of a patient exhibit-
ing a large tumor. Our results shown in Fig. 11 clearly cap-
ture the geometry of that salient feature of the dataset while
properly resolving the scale space context of its spatial em-
bedding. The latter can be easily seen through the color cod-
ing of the optimal scale that we have superimposed on the
extracted geometry of the ridges.

While the geometric structure of the cortical surface is in-
herently convoluted, as illustrated by the finest scales that
correspond to that region of the data we obtain smooth re-
sults in the vicinity of the tumor. It must be noted that this

© 2011 The Author(s)
Journal compilation © 2011 The Eurographics Association and Blackwell Publishing Ltd.

967



S. Barakat & N. Andrysco & X. Tricoche / Fast Extraction of Crease Surfaces

Figure 10: Complete ridge surfaces (LCS) of the FTLE field
in a turbulent jet. The maximum edge length is set to 10ε

compared to 5ε for Fig. 9.

surface, though geometrically pleasing, is in fact very sub-
tle and difficult to obtain. Indeed the ridge strength measured
on the surface is among the weakest observed in this particu-
lar data. Additionally, the surface contains a number of holes
and boundaries that our method was able to properly resolve.
In particular, our ray casting approach applied to a high res-
olution to the same region confirmed that the gaps that we
identified on the surface did correspond to discontinuities of
the ridge manifold.

We show the numerical results obtained with our datasets
in table 1. In this table we compare our method with the
current state of the art in ridge surface extraction that was
recently described in a paper by Schultz et al. [STS10]. Our
method yields both a smaller mesh size and a better mesh
quality than previous approaches. The quality is evaluated in
terms of both the average ratio between the minimum and
maximum edge length incident at a vertex, and the average

Figure 11: Our extraction for the ridge in the IEEE Visu-
alization 2010 Contest brain dataset colored by the scale
information (blue:coarse, red:fine).

Table 1: Results of our method compared to two variations
of [STS10]. "S1" uses the same resolution as our method,
while "S2" is doubled along each axis. The percentage of dis-
carded triangles for our method was 8.6%, 32.7%, 29.4%,
and 27.5% for the Cube, ABC, Jet, and Brain data sets, re-
spectively.

Time Edge- Edge-
(sec) # Tri. Vertex Triangle

Cube

Our 4.73 55K 0.58 0.73

S1 4.2 86K 0.20 0.41

S2 24.14 350K 0.21 0.41

ABC

Our 52.3 632K 0.46 0.61

S1 18.03 912K 0.37 0.54

S2 227.6 3866K 0.39 0.56

Jet

Our 143.3 1761K 0.47 0.67

S1 54.3 1790K 0.37 0.55

S2 996.1 6284K 0.39 0.57

Brain
Our 32.75 405K 0.39 0.59

S1 149.1 3101K 0.36 0.50

ratio between the minimum and maximum edge length in a
triangle. In table 2, we show information about the mean and
RMS distance between our meshes and the meshes extracted
by Schultz’s method. We have noticed that the distances are
generally small and concentrated at the boundaries of the
surfaces.

One limitation we noticed in our method is the presence
of a small number of skinny triangles in the resulting mesh.
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Table 2: The mean and RMS distance between our meshes
and the meshes extracted using the method described
in [STS10]. The numbers are relative to the longest volume
side.

Mean distance RMS distance

(e-3) (e-3)

Cube 0.132 0.478

ABC 2.57 5.9

Jet 0.731 1.058

Brain 0.438 0.684

These triangles are created when two triangles grow on non-
neighbor active edges in a way that limits the space between
them. This problem could be resolved in a postprocessing
step through local re-meshing. However, this step would
need to ensure the same accuracy. Our method is also limited
by the trilinear interpolation imposed by the graphics hard-
ware, which contrasts with the smooth reconstruction ker-
nels that are available to other methods [KTW07,KSSW09].
However we did not find this aspect to penalize the quality
of our results.

7. Conclusions and Future Work

We have presented a novel technique for the fast extrac-
tion of high quality ridges from 3D data sets. We have pro-
posed an innovative strategy that intertwines sampling and
meshing and exploits the compute power of both the CPU
and GPU through a careful organization of massively paral-
lel (sampling) and inherently sequential (mesh consistency
checks) operations. We have also shown that our method
produces higher quality meshes in terms of both approxi-
mation accuracy and geometric properties.

We find the observed collaborative performance between
CPU and GPU very promising and we would like to pur-
sue this avenue. We believe that utilizing new technologies
such as OpenCL will be useful in this endeavor. Additionally
we would like to see how our parallel approach performs
on even larger data sets and investigates its scalability on
many-core systems. This promises to be particularly inter-
esting in the context of problems that far exceed the memory
of modern day desktop computers, such as in the process-
ing of high-performance computing simulations. Streaming
strategies will need to be considered in this case.

Though our method performs reasonably well in ridge
surface extraction and is fast compared to conventional front
propagation techniques, we are confident that significant per-
formance gains can be achieved by using a better spatial data
structure for conflict detection. In particular we found that
the collision detection method we used had limited scala-
bility, thus it can adversely impact the performance of our
method in the context of very large meshes.
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