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Abstract. We consider the problem of tracing Ihe intersection of surfaces given either implicitly or parametri-
cally, We give a numerical tracing procedure in which a third-order Taylor approximant is constructed lor
taking sleps of variable length, and the points so found are improved by Newlon iteratlion. We show how Lhis
construction relates to local parameterizations of the curve ar singularities, and discuss our experience with the
method. For plane curves, given implicitly, we show how desingularizalion lechniques can be incorporaled to
trage correctly through all vypes of singularities, An implementation of this method is also discussed.

1. Introduction

A basic operation recurring in geometric modeling js the evaluation of space curves given as
the intersection of two surfaces. Existing geometric modeling systems lypically restrict the
geometric coverage, Lhat is, the allowed faces may be planar [Wesley et al. '80), natural. quadrics
[Requicha et al. *83), arbitrary quadrics [Levin '79, Ocken el al. ’83], or parametric patches of
various types [Boehm el al. "84, Pratt '86]. With such specializalions many good techniques can
be developed (hat take advantage of the specific restrictions.

In this paper, we consider the evaluation of surface intersections in general. The intersectling
surfaces may be specified implicitly as f)(x, y, z)=0and f,(x, y, z) =0, where Ji and f; are
smooth functions, or parametrically as (x = G, (4, 0,), y = Gy (1, v), 2=G5,(uy, v,)) and
(x=Gy5(u3, 03), y=Gy3(U3, v;), 2= G3,(uy, 1)), where the G, i=1213, j=1,2, are
smooth functions. In full generality, tracing the intersection curve is a difficult problem, and
one of our objectives is to explore the scope of a purely numerical approach. In [Pratt et al. ’86],
Pratt and Geisow review several such methods. A common problem stems from the inherent
geometric complexity of high degree algebraic curves that arise as curves of inlersection. In
particuiar, such a curve may possess singular points where the curve has an abrupt change of
normal direction (cusps), multiple self-intersecting branches (nodes), or self-tangent branches
{lacnodes).

A numerical tracing scheme technically requires formulating and solving a linear system of
equations. Such a system is formulated both for determining an approximant Lo the curve at a
given poinl, as well as when refining an estimate of the location of a point on the curve with
Newton iteration. Al a curve singularity, the linear system is singular, and at points nearby the
condition number of the system is so large that roundofl errors destroy all accuracy of the
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estimate. Purely numerical tracing schemes have great difficulties in this siluation: As the
singuiarity is approached, these programs may fail. Even if they trace through the singularity
without mishap, they may identify the curve branches incorrecily.

It is not known how to rectify all these difficulties with a single numerical method.
Nevertheless, it is our experience that a carefully crafted numerical tracing routine is capable of
handling many of the difliculties characterized above. We propose here such a scheme in which
the intersection curve is locally approximated by a low degree Taylor polynomial interpolant,
and a new curve point estimate is derived from it by taking sleps of variable lengths. Newton
iteration is then used to refine this new point estimate.

A strength of the method lies in its ability to consolidate the computation needed for the
Newton iteration with the computation determining the power series expansion. Moreover, as
we show, there is a close correspondence of the computational machinery needed by the
method with an algebraic procedure for analyzing the curve at singular points. Although this
correspondence is not exploited in this paper, it permits a fairly simple extension Lo cope
directly with a large class of singularities.

Our approach Lo surface interseclion tracing applies directly to solid modeling operations,
for example when intersecling faces are defined on implicit surfaces. Moreover, when rendering
curved faces, silhouelle curves of curved faces need 10 be determined, and may be defined as
the intersection of wo surfaces. Another advantage of our approach is that we can construct
higher order approximants to the intersection of parametric surfaces directly. Previously, only
piecewise linear lechniques have been used that are constructed either from subdivision
methods [Cohen et al. '80], or directly from the equations. In the lalter case, a step length
constraint is added Lo avoid solving an undetermuned system [Pratt et al. "86]. However, as we
have found, there is no difficulty in solving the underconstrained system and the step length
constraint is artificial.

In [Montaudouin et al. "86], power series are constructed to locally approximate plane
algebraic curves and surface intersections. The method technically relies on the Implicit
Function Thecrem, seeking to represent a curve branch explicitly in one coordinate as function
of the other coordinale(s). The advantage of such a representation is (hat it allows simple
stepping techniques. On the other hand, the gqualily of approximation is limited by a more
stringent convergence criterion, and the method does not seem to have a natural extension that
handles singular points.

Next, we consider the special case of tracing plane algebraic curves defined implicitly as
f(x, y}=0. Tracing plane curves which are given parametrically simply amounts to evaluating
the parametric equations for several distinct parameter values. So, one couid try lo oblain a
rational parameterization of f. Only curves of genus zero possess a rational parametric form,
however. For algorithms to test whether and how implicitly defined plane curves can be
rationally parameterized, see [Abhyankar et al. '87c).

The tracing of implicitly defined plane curves anses in solid modeling in a number of ways:

(1) When the faces of a model are parametric patches, with a-priori known implicit
equations, edges bounding these patches can be represented as planc curves in the parameler
plane of one of the faces, see [Farouki "86].

(2) When intersecling wwo implicit surfaces f,(x, y, z}=0 and f,(x, y, z)=0, one of
them, say f;, mighl possess a ralional paramelerization. I[ so, the parametric form can be
determined in certain cases. By substituting thereafter the paramelnc equations of f, into the
implicit equation of f;, a plane curve in the parameler plane is obtained that is in birational
correspendence with the intersection curve of f; and f;. For efficient algorithms to test
whether and how an implicit quadric or cubic algebraic surface can be parameterized, see
[Abhyankar et al. '87a, Abhyankar et al. '87b].
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(3) When intersecting nonrational implicit surfaces f,{x, Yo z)=0and fo(x, », 2)=0, one
can always find a rational surface f3(x, y, z)=0 containing the intersection curve of S and
fo- After f; has been found, it is easily paramelerized, and we can obtain a plane curve hy
substituting as in (2) above. For methods 10 find /> sec [Holfmann °88, Snyder et al. '14, p.
219]. Furthermore, there are projection techniques that find a birational map to some plane
algebraic curve directly and which, as part of the map so constructed, delermine [, [Abhyankar
et al, '87d, Garrity et al, '87].

Here, birational correspondence means that in each direction rational maps exist. In
consequence, a tracing procedure for plane algebraic curves yields a tracing procedure for
algebraic space curves. Note, however, that the corresponding plane curve might have more
singularities than the space curve. Moreover, the degree of the curve is the product of the
surface degrees, so that tracing the corresponding planar curve is numerically more delicate, If
the birational map is not derived carefully, finally, the degree of the plane curve may be even
higher. Thus, for simple singularities, the purely numerical appreach remains attractive.

We show that for plane algebraic curves the correct branch conncclivily can be achieved by
utilizing results from algebraic geometry. The trace of J(x, y)=0 commences al a given input
point with a desired direclion. At noncritical segments, we proceed numerically as before.
When the condition number of the system becomes very large, we try 10 locate a ncarby curve
singularity. Then, by applying quadratic transformations, the branch of J we trace is biration-
ally mapped to a branch of a transformed curve g that has no singularities. The transformed
branch is traced and the points of g are mapped to corresponding points of f. The trace of £
continues until we have passed the singularity of f. In this way, correct branch connectivily is
achieved.

Geisow, [Geisow 83, Prawt el al. '86], discusses a number of prior approaches to lracing
plane algebraic curves and then proposes subdivision. Briefly, the curve A(x, y)=0 is
conceplualized as the inlersection of z=h(x, y) and z =0, and after translating z = h(x, y)
into Bernstein form, several subdivision schemes are proposed for evaluating the curve in small
regions in which it is well behaved. Although the method can cope with many singularities, no
analysis is made to identify branch conneclivity or to give an analysis of the structure of the
singulanity. Waggenspack [Waggenspack "87], extends this approach by approximating within a
subdivided region, the curve by a conic or a rational cubic.

There are algorithms for analyzing the Lopology of real algebraic curves in the plane, e.g..
[Arnon et al. "83]. Based on cylindrical algebraic decomposition, [Collins "83], these algorithms
make extensive use of symbolic computation and rool isolation to locate critical curve poinls,
that is, singularities and points whose langents are parallel 10 one of the coordinale axes.
Thercafter, the crilical points are connected with curve segmenls that are simple 1o trace.
Algorithms of this type will never fail. However, due 1o extensive computations. they have not
yet made an impact on solid and geometric modeling practices. Whether specialized versions
will eventually be competitive in space or lime remains to be seen,

2. Notation and definitdons

Partial derivatives are written by subseripling, for example, [ =8f/dx. [, =3>f/(dxdy),
and so on. Since we consider analytic curves and surfaces, we have Jor =/ €lc.

Vectors and vector funciions are denoted by bold letters. The inner product of vectors @ and
b is denoted a- b. The length of the vector a is le)| =va-a.




288 C L Bujaj er al. / Tracing surface intersections

The gradiens of [ is the vector Vf = ([, f,, /.). The Hessian of f is the symmetric matrix

foo Soo A
H i = f e fn f\'
f:,r f:_\' f::

The inlersection of /, and f, is denoted by r(s) and is a vector lunction of the argument s,
typically the arc lengith measured from some point on the curve. Derivatives of r(s) are
denoted £/, 7, ..., rO.

At point p=(x, y, z) is regufar on f if the gradient of f at p is not null; otherwise the
point is singular. A point p of the intersection r(s) is regufar if p is regular on both f; and f,
and if the gradients ¥/, and v/, are hnearly independent. That is, the surlaces are nol singular
al p and intersect transversally.

Il one of the surfaces is a plane, then a simple coordinate transformation reduces the
problem to {racing a plane curve f(x, y)=0. Assume that this curve contains the origin and is
algebraic, Then the order form is the homogeneous polynomial F{x, y) consisting of the terms
ol lowest degree in f. Tt contains information about the curve's behavior at the origin. If the
order form is linear, then the curve has a simple point at the origin, i.e., the curve is not
singular at the origin. If the order form is nonlinear, then the origin is a singufariry. The degree
of F is then called the order of the singularity. Morcover, the linear factors of F are equations
of the rangents of the curve al the origin.

An important concept from algebraic geometry, used to study the local ¢urve structure, is
that of place, eg. [Walker '50, p. 96]. Brielly, a place of f(x, y}=0is a pair of power series

x(.!.') =uo+als+a2.s'2+ LI
y(s)=hy+bhbs+bs*+ .-

such that f(x{s}, y(5)) is identically zero. The place is said to be cemered at the point
(x(0), ¥(0)) of the curve. It is always possible to choose the place such that x(s) = s*, for some
. Intuitively, a place is a local parameterization of the curve, centered at (x(0), y(0)), with a
cerlain radius of convergence Lhal varies with the place.

IT the cenler ¢ is not a singular point, then the place is equivalent to the Taylor series about
¢. If the ¢ is singular, then the curve may have more than one distinct place centered at ¢, each
corresponding 1o a distinct branch of the ¢urve,

The order of a place centered at the origin is the lowest exponenl with a nonzero coellicient
in the power series. For example, the order of

x(s)=s2, y(s)=24’
is two, whereas Lhe order of
x(s)=s5, y(s)=s+s?/2—s'/8+—---

is one.

Centered at every nonsingular point, the curve has exactly one linear place, i.c., a place of
order one. AL a singular point the curve has one or more places which may or may not be
linear. However, if there is only one place at a singular point, then this place must be nonlinear.

3. Nonsingular curve points on surface interscctions

We consider first tracing the intersection of implicit surfaces, f,(x, y, z)=0 and
Sa(x, y, £) =0, given an initial curve point and a direction. In (he simplest situation we trace
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the intersection in a neighborhood in which both i and f; are regular and their gradients are
linearly independent. Geometrically this means that the surfaces intersect transversally and are
not singular in the vicinity. We formulate a system of cquations from which both the local
approximation as well as the Newton iteration are derived. Under the assumption of linearly
independent gradients, we have a system of linear equations of rank 2. The choices made when
solving the system correspond to paramelerizing the approximant by arc length.

We then skeich how this approach can be direcly transferred (o tracing the intersection of
parametric surfaces, (G, (u, v,), G,,(u,, vy), Gya(uy, 21)) and (Gya(ua, 0y), Gaalus, 0y),
Gya{u,, ©5), with the G, ;, i=1,23, j= 1,2, as smooth functions, given an initial curve
point and a desired direction. Again, higher order approxtmants are easily constructed and are
useful for estimaling a sale step lenglh. Under the assumption of linearly independent
gradients, we now have a system of linear equations of rank 3. It is clear that the approach
generalizes Lo tracing the intersection of # — 1 hypersurfaces in n-dimensional space.

3.1. Equation for the intersection

We Ireal the case thal the intersection r is a function, having at least four continuous

derivalives, of a parameter 5. Then
2 3
r(s)=r(0)+sr'(0) + %—r”(O) + %—r'" (O) +e(s)=p(s)+ e(s), (1)

where p is the cubic Taylor interpolant to r at s=0 and e is its error, or remainder. Below we
give a numerical procedure for finding values of the derivatives, given a point g, on the
intersection. Since e(s)=0(s*} in a bounded interval containing s =0, a sufficiently small s
makes the value p(s) of the cubic an accurate estimate of r{s). Using p(s) as an initial
estimate, one can then obtain another point, 4. on the intersection with a very few steps of
Newton iteration. The process then repeats. In this way a sequence of points, g, N=
0,1, 2,...,0n the intersection is determined.

The derivatives are necessarily not unique because the paramelerization of r by s is
nonuntque. We choose s as arc length. Then the unit tangent ¢, the unit principle normal a,
and the unit binormal & are related by the Frenet—Serret formulae [Franklin ‘44, p. 107]:

%=xn, %=—Tn, %E:Tb"’ff, 2

where «=1/p is curvature and T=1/7 is torsion. The vectors {, n, and b form an
orthonormal triad with # =5 X 1. With s arc length, the derivatives of # are given by

ris)=r, r"(s)=g-::=xn,
r"'(s)=[%(Kﬂ)=%§n+x3—:-]=K'n+be—nzt. (3)

3.2, Implicit definition

First suppose that points on the curve are defined as solutions of fx, p, 2)=f(r)=0,
J=1, 2. The Taylor expansion of £,(r(s)) in powers of s is

_ o dx . afdy  of dz]
5(r(s)) —,;(r(O))+s[EH;+$d—f+m?]+
=5(r(0) +svf;- r'(0)
+%[Vf}-r"(0)+r'(0)-HL-r'(O)]+ ce, j=1,2, @

where vf; is the gradient of f; and H, s Hessian, bolh evaluated at r(0).
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Since the intersectlion satisfies f;(r(s)) =0, the coeflicient of cach power of 5 in (4) must be
zero. Given a point g = r(0) on the intersection, the m-th derivative of r then satisfies

vfiq)-r"(0)=b,,. j=1,2. (5)

The quanlilies b;,, arc expressed in terms of the partial derivatives of f; and lower-ordes

F.m

derivalives of r; e.g.:

Ba=0, ba=—r'©)-H,-r(0), j=1,2;

i

for b;,, see Appendix A.l. For each m, (5) is a pair of cquations for the three components of
r"(0). Appendix A.2 details how to solve this system with numerically stable techniques.

It follows from the independence of the gradients that there is a unit vector ¢ which is
perpendicular to both gradients:

Vfl'I=Vf2'l=0, I'le.

Excepl for sign, ¢ is unique. Any vector can be written as a linear combination of these three;
in particular ’

.l'("” = anrt + ﬁmvfl + Ymva'

Direct substitution into (5) yields

BV VH+ 4V Vha=b . j=1,2. (6)
There is a unique solution, 8,,, +,,,» of this system and, therefore,
r = a,t + B.Vf) + Y. Vfa, ™
with e, arbitrary, is the general solution of the system (5).
Because b,, = by, =0 makes 8, =v, =0, we have r’(0)=a,t. The choice a,,=1 makes

r’(0) a unit vector tangent io the intersection. For very small s, the term s’(0) in (1)
determines the orientaticn of the intersection and we choose the sign of ¢ so as to maintain the
orientation when s is positive. Specifically, let r,_; denote the derivative at the (n — 1)-th point
on the intersection. After ¢ is computed for the n-th point, if r,_| - £ < 0, then we replace ¢ with
-

For m = 2, the unique solution of (6} and the choice a, =0 leads to a unique vector r”(0).
Then with x the positive square root of r”(0) - r”(0), we have r”(0) = kn, where n is the unit
principle normal to the intersection.

Finally, by taking a, = — &%, we have obtained the first three derivatives of r related as in

(3>
3.3. Parametric definition

Next suppose that points on the surfaces are given in terms of parameters (1, v,), k=1, 2:

(xis o 2} = (Gl.k("ki ) Gz.k(”ks v ) GJ.k("k! Uk))

where the G, are given smooth functions. The intersection is defined by G; (w1, v;)=
G;2(ta, v2), j=1, 2, 3, a system of three cquations in four unknowns. Once the unknowns
have been determined as functions of s, points r{s) on the intersection are obtained by direct
evaluation:

r(s)= (Gi.k("k(S): Uk(s))' Gz.k("k(s)v Uk(S))s Gs.k("k(&')- ”;.—(5))) (8)

where k is either 1 or 2.
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Let R be the vector with four components defined by R = (u,, 0y, M3, 15), and sel
f}(R)=G}.1(”:! U|)‘_(;j.2("2‘ v). j=1,2,3. 9
Then F(R(5))=0, and the Taylor expansion of E(R(s)is
5(R(s)) = E(R(0)) + svE,- R*(0)

+§[w;-n"(0) HRIO0)Hy RO + -+, j=1,2,3,
so that if @ is a solution of (9), then
vE(Q)-R™(0) =B, j=1,23. (11)
I 1he set of three gradients is linearly independent, then the general solution of (11) is
R™ =« T+ 8 UF +vy,VF + 8,VF,, (12)

implementation of the implicit formulation, this is accomplished by changing the size of some
arrays and including the evaluation of points on the intersection with (8). Moreover, it should
be evident that the method generalizes to iracing the intersection of #1—1 smooth hyper-
surfaces m #-dimensional space assuming transversal intersections.

3.4, Newion approximation

Given an initial point Po near the curve, we find a point ¢ on the curve by generating a
sequence of points p,, p,,+-- — g. We se1 L{r(s)) =0, r(0) =p and sr'(0) =4, in (4), and
neglect the terms with higher powers of s 10 get Newton's method. Thus we solve

V./}(Pk)'dk=_f}(Pk), Jj=12 (13)

Equation (13) is the same as equation (5). When the pair of gradicnts is linearly independent,
the general solution is

Ak=ﬂk""BkaI(PA-)""Ykaz(Pk)- (14)

and the values of By and y, are determined uniquely. Because 1 is orthogonal 1o both surfaces,
a change of p, in the direction of ¢ changes the values of f; only negligibly, and we set o, =0
thereby obiaining a unique solution for Ak, We then set Poi=p.+A,.

Once the point g is found with acceplable accuracy, the approximation of r(s) with ri) =g
15 deternuned as described above,

Ll

3.5. Step lengih

We use the higher order derivatives of r to estimate the accuracy of the low-order lerms in
the Taylor approximation. With this estimate, a step size is chosen such that the conrribution of
the second and third order Lerms together is at most 1/5 of the first order term. That is, we
require that both

Is277(0)/2) and |s% (0) /6

are smaller than |sr’(0))) /10 = [s{/10. For an example see Section 3.7 below. Since the step
sizes could become arbitrarily small, a minimum Step size is specified also.
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This method for choosing step lengths is not guaranteed to give accurale results in general,
but is simple and works in most situations, since the small magnitude of the higher order terms
often indicates convergence of the full Taylor series. For more sophisticated ways guaranteed to
give accurate results, see [Montaudouin et al. "86).

3.6. Transformations of the equations

The intersection of f, and f, is also the intersection of

h=a,fitaf and fr=a fi+a:: 0

where a;, are conslants satisfying a,,d,5 — 4,45, # 0. Thus we can solve the cquivalent
system

ij(q) . r(mj(o) = aj.lbl.rrl + aj.'.’_bz,m! j =1, 2;

where the b, , are as before.

Fig. 3.1. Cylinder—cylinder intersection, x%+ 22+ 2z = Fig. 3.2, Nodal singularily, = + p* —x*=00:+x7=0.
0ny*+z+4z=0.

Fig. 3.3. Tacnode singularity, z + 2 +y1=0nz +* Fig. 3.4. Tacnode and nodal singularities, z — 2x* — y*
=0 =0n:z—3x3y+y*-2y>=0.
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By choosing the constants 4, suitably, we can, for example, formulate equivalent systems
in which vf, and v/, are orthonormal or some of the intrinsic curve paramelers, such as
curvature radius, appear explicitly on the right side. This shifts the programming work lo
finding proper constants. Morcover, some of (hese choices parallel an algebraic approach to
finding a local approximation at a singular curve point, as explained in Section 4.

3.7, implementation

We have implemented the numerical tracing procedure in Fortran. Figs. 3.1 through 3.8
show some examples of curve traces thal were produced with this program and a standard
graph utility under Berkeley Unix. The plane curves have been traced as the intersection of
f(x, y)=0 with z=0, withoul any program modifications. As described further in the
appendix, the linear system is solved using singular value decomposition [Golub et al. 85,
Stewart '73]. This approach is numerically very slable and increases the reliability in near-singu-
lar cases considerably,

AN ]

N

.

Fig. 3.5. Projection of Fig. 3.2. onlo the plane : =0, Fig. 3.6. Projection of Fip. 3.4 onto the plane = =0.
yi-xt-x'=q 2x"—3.t1y+y2—2y:'+y"=|l

Fig. 3.7. Two real components touching y? — x? — y = Fig. 3.8. One sell-intersecting real component, »? — x©
0. —yi=p.
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Tuble 1

Poinlt Trer Next Siep
(+0.19%682 +0.218711 —0.039873) 3 —0.27637
{(+0.01568% +0.015809 —0.000246) 2 —0.19340
{—0.124761 —0.116720 —0.015565) 2 +0.16081
{—0.245628 —0.213339 —0.060333) 2 +0.15031
(—0.358096 —0.286503 —0.128233) 2 +0.15308

A¢ certain singularities, e.g., for the nodal singularity in Fig. 3.5, the curve orientation
v/ X v/, reverses. This is a global property that depends on how the curve branches intersect
at the singularity. If one were to determine its presence in this way, a complete analysis of the
singularity would be required. To avoid this, we have added a heuristic that reverses the tracing
direction whenever the oriented tangent changes by more than a maximum angle, say 90
degrees. In consequence, a cuspidal singularity cannot be traced with this algorithm.

In our experience, nodal singularities cause no problems as long as the tangent direclions of
the intersecting branches are sufficiently separated. Many tacnodes are also handled reliably,
e.g., Fig. 3.4. However, there are siluations where branches may be conflused. For example,
both the curve C;: y? — x* - y*=0 (Fig. 3.7) and the curve C,; y%— x®— y® =0 (Fig. 3.8) are
traced as if they had two real components meeting langentially at the origin. While this is
correcl for Cy, it is not correct for C,, since C, consists of a single real component with two
branches at the origin, each having an inflection at the singularity. Note that the tangent
compulation of Section 4.1 or the singularity analysis of [Owen et al. *87] does not suflice to
distinguish the two cases.

Table 1 above shows a shorl sample trace of z+y>—x*Nz+ x% The curve is shown
graphically in Fig. 3.2, The initial point estimate is (0.2,0.2, —0.1). The step length is
determined adaptively as described. In addition 1o point coordinates, both the next step length
and the number of Newton iterations needed o determine the point to within 10™'? are shown.
For simplicity, only 5 decimals are given. At this singularity the orientation reverses and is
reflected in the change of sign of the step length. Since the third derivative r”™ is not
necessarily perpendicular to r’, the point distance docs not always correspond to the step
length,

4. Singular curve points

Consider now Lhe interseclion curve when the surfaces are given implicitly by f; and f,. Ata
singularity p, the Taylor expansion of r does not exist in the ordinary sense. Nevertheless,
System (5) remains formally valid and can be used to determine approximants to r at p. This
fact is less attractive than one might suspect at first, since the equations no longer are linear
and, thus, become more difficull 10 solve. A point p is singular on r(s) for one of the following
reasons:

(1)} The gradients vf; and ¥f, are linearly dependent.

(2) One of the gradients, say V[, is zero, but the other is not.

(3) Both gradients ¢f, and ¥f, are zero.

4.i. Tangents at singular points

We consider Case 1, i.e, linearly dependent surface gradients. From Section 3.6 it [ollows
that this case is in substance the same as Case 2, and we demonstrate how the familiar tangent
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cone conslruction corresponds to an elementary simplification of the Equation System (5).

When the gradicnts are linearly dependent, the tangent planes of f; and > are the same. We
assume without loss of generality (hat the point p is the origin and vf, = (0, 0, 1). Therelore,
we may write

f1=2+f;=0,
h=pz+fi=0

where the polynomials f; and f; consists of terms of degree 2 or higher.

Now the intersection of f, and f; is also the intersection of f, and f, =fi—pfi- We
determine the curve tangent(s) from f, and f;. The terms of lowest order in f+ comprise a
homogeneous form £ that approximates the surface f; =0 in the neighborhood of the ongin
and has degree 2 or higher. F(x, y, z)=0 is a cone with the origin at its vertex. It intersects
the plane tangent to f; =0 only at the origin or in a set of lines through the origin that are
tangent to the branches of r, the intersection of f, and f,.

It is possible that F is divisible by z. In that case the compuiation must be iterated; ie., we
must determine a f, by subtracting from f; a multiple of z*f,, where & is suitably chosen.
Mora in [Mora *82] proves that this computation lerminates.

We determine the tangents to (he intersection at the origin by substituting z = 0 in F. This
yields the homogeneous polynomial F(x, v, 0) in two variables. The roots of F(x, y,0) are
(0, 0) and (Ax, Av) where not both « and v are zero and A + 0. The root (0, 0) is an improper
solution for G and is excluded. If there are no other real roots, then the cone intersects the
plane z = 0 only in the origin, a case that does not arise when tracing a curve branch.

For every other real root (Au, Av) we oblain a corresponding tangent vector r’ = (Au, Av, 0)
to r at the origin, Here A is chosen such that the vector has length 1.

We demonstrate by example that this tangent computation is equivalently done by elemen-
lary manipulation of the equations of System (5). The deeper reason for this is further clarified
below and rests on the correspondence of the Taylor series at regular curve poinis with formal
power series expansion of r at singularities.

Example. Consider the intersection of the two cylinders f, =x?+z2+2z=0and f,=y* + 2
+ 4z =0 which is irreducible and has a nodal singularity at the origin, as shown in Fig. 3.1.
The curve is equivalently the interseclion of f, with the elliptic cone f; =f, — 2f, = y> — 2x2 —
z2. For this cone F = f;. Therefore the tangents at the origin are given hy the roots of y2 — 2x2,
i.e., they are the lines (A, V2 A, 0) and (—A, YZA, 0).

Next, when we formulate the equations of System (5) for f, and f, and write
(x(s). y(s), z(5)) for r(s), we obtain at the origin

2z'(s) =0,
4z'(s) =0,
22" = —2x"7 =2z,

4z = ~2p"* 2z,

By subtracting Lhe third equation twice from the fourth and dividing by two, we obtain the
cquation

0= 2x12 _yJZ + z.r:’.'

Note the similarity between this equation and the Langent cone of f,. Thus, solving System (5)
for v’ is equivalent to determining the tangent directions from Ji and £
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4.2, Algebraic correspondence

r(s)= 2 (as b;, ¢;)s'

izl
where (a,, b;, ¢;} is a veclor, e.g., [Walker °50, Ch. IV 2, V.5]. The formal derivative of r by s is
delined as

r'(s)= Z (aier, bivys )i+ 1)s".
=0
The power series must salisfy identically f;(r(s)) = 0. Substituting the scries of r(s) into fy and
collecting terms, we obtain a formal series
> K,s"=0.

mz=1
This leads to a system of equations
K,=0, m=1,2,3,...

where K, is the coefficient of 5™ in the resulling series. A similar system of equations is
obtained for f,(r(s)) = 0. Because the formal derivative above has all the familiar properties of
derivalives, these equations are formally the same as System (5).

Because of this algebraic correspondence, it is possible to approximate the curve at a
singular point by formulating the system of equations as before and solving it for the unknown
coefficients. In contrast to the nonsingular case, however, the system no longer is linear and
thus is more difficull to solve. We explain the procedure by an example:

We consider the intersection of the surfaces /i =z +y?— x> and f,=z+ x? with a nodal
singularity at the origin, as shown in Fig. 3.2. We set

x(s) =als+az_s‘2+ a3.s':' + -,
y(s)=bys+bys?+bysd+ -- -,
2(sy=ci5+ 57 ot 4 s

where (a,, by, ¢,)=r(0), (a3, b,, ;) =r"(0)/2, and so on. The equations of System (13), or
equivalently, of System (5), are thus

CIZO,
¢, + b =0,
Cz+a12=0,

cy+ 2 b, —al =0,
cy+2a,a,=0,
¢y + 28,0y + b2 — 3aia, =0,

ca+2a,a,+a3=0,

As before, the system is underconstrained. Tt is possible o choose the independent quantities
such that one of the series is +s5* [Walker ’50, p. 109]. Here s need not correspond to arc
length. We choose ¢;=—1 and ¢;=¢4,= --- =0. Then the following two solutions are

3!
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obtained:

x(s})=s,
52 .TJ

y(s')=s+—2———8—i T
z(s) = ~s5?

and
x(s)=us,
y(s)=—s—-32—h+§¥ -,
z(s) = —s>.

The scries correspond to the local paramelerizations of the two intersecting branches. For
remarks about their convergence see, €.2., [van der Waerden 38, p. 52].

Because the equations are nounlinear, this a

pproach is difficult (o implement. The dcgree of

the equations depends on the order of the singularity. In the simplest cases this is two,

However, higher order singularities can
and 1o identily subsequently a solution

5. Plane curves

occur that may make it difficul( to solve the equalions
that paramelerizes the traversed path.

We now consider tracing a segment of the

plane algebraic curve f(x, ») =0, beginning at an

initial point (x,, y,) at which tracing commences in a specified direction. For simplicity, we
assume thal the initial point is not singular. With this assumption, the trace direction is simply
specified as posirive, following the tangent vector (—£, £.), or negative, tracing in the opposite

direction. If the initial point is singular, a

more complicated specification procedure is required

that identifies the intended branch and a direction on jt. Such specificalions can be worked out
without difficulty, based on the desingularization techniques described below. See also [Hoff-
mann et al. "87] for a discussion of this problem in the context of solid modeling,

3.1. Desingularization

Desingularization of plane curves is based on the following classical theorem, proved by
Riemann and Cayley:

Theorem, Every plane curve can be hirationally transformed into a curve devoid of singularities.
Among the different proofs of the theorem are constructive versions that derive the needed

birational transformation from a sequence of simple quadratic transformations, €.2., [Abhyan-
kar '83, van der Waerden *38, Walker "50]. Two transformations are needed:

n: x=nx,
N =y/x,

Tt xa=x/y,
V2=

The inverse transformations are, respectively, x=x,, y=x,y,, and X=2X3y:, ¥=3, The
basic properties of transformation T} can be summarized as follows:
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{a} (bl

™~

Fig. 5.1. Desingularization of a nodal singularity. (a) Curve 32— x* — x*=0.(b) Curve alter applying T;: y§ —1—x,
=0.

(1) All points {x, y) with x % 0 are mapped 1-1 to the x,—), plane.

(2) All points (0, y) are mapped to infinity.

(3) As we approach the origin on a branch, the limit of the image points is the image of the
origin on the branch. This limit depends on the direction of approach, hence the pencil of
dircctions through the origin, except the y-axis, are mapped to finite points on the y,-axis.

In particular, 7, maps irreducible curves 1o irreducible curves. The line x, = 0 1s called the
exceptional line of T,. The properties of T; are analogous. The exceptional line of 7; is y, =0.

In intuitive terms, the transformation separate curves branches that intersect with different
tangent directions. This is plausible since the line y — mx =0 through the orgin is mapped to
(he line y, —m =0 that intercepts the y, axis at distance m from the origin. Moreover,
branches that arc in higher order contact, such as tacnodes, are mapped to singularities in the
x,—y, plane at which the contact order is reduced. Finally, the order of a nonlinear branch
through the origin is also reduced. The latter two facts are not easily seen, as they depend on
structural properties not readily apparent from the graph of f and the elementary concepts
such as tangent direction, curvalure, etc. Nevertheless, given a suitable measure for the
complexity of a singular point, it can be shown that every application of T; or 7, simplilies the
complexity of the point, so that the lopology of the singularity is eventually resolved into a tree
struclure, each of whose leaves corresponds Lo a nonsingular curve branch. For ¢xample,
[Abhyankar '83] defines such a measure based on the structure of the order form, [Walker 750]
uses a measure relaled to the curve genus, whereas [van der Waerden *38) uses the intersection
multiplicity of the branch with the polar form as a measure of complexity.

(a) (b)

.
;

Fig. 5.2. Desingularization of a cuspidal singularily. (a) Curve y* — x* = 0. (b} Curve alter upplying Ty: )i = x, = 0.
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Jim,y) >0 ’J—/
/ j(l.‘rJ(D

Fig. 5.4, Siandard curve oricntation.

{a)

Fig. 5.5. Orientation reversal at a singularity, p? —x2 -

(b)

x" = 0. Also shown arc Slx, )= te

i

ﬂwﬁﬁhﬁ)

I I g

Fig. 5.6. Topology af y* —x*— p*=0ai the singularity. (a) Curve. {b) Schematic of iis noncrassing branches.

{a)

b

(b)

b

Fig. 5.7. Tapology of y* — x*— y® = 0 al the singularity. (1) Curve. (b} Schematic of its crossing branches.

points (a, b), i.e., points such that f(a, 5) <0, the branch orientation reverses precisely when
this branch intersects an even number of other branches, Two examples, Figs. 5.6 and 5.7, show

the curve in the neighborhood of the singularity as well as a schematic diagram of the
topological structure of the singularity.
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We now quantify the correspondence between the orientation of f and its proper transform
g and derive a simple method for detecting orientation reversal without having to analyze Lhe
topological structure of the singularity in detail. Let p = (a,, 5;) be a nonsingular point of f,
where ay = 0. Let

x(s)=apg+as+as*+ -,
y(s)=bo+bs+bys*+ -

be the place of f centered at p. The place defines a branch orientation of increasing s that need
nol agree with the standard orientation (—f,. f.). Centered at the corresponding point
p1 = (ag, bp/ay), the wransformed curve g has the place

x {s)=x(s),
yl(s) =¢gt o5+ clsz+ --

Since x(s)=x,(s), the curve and its transform are oriented the same way. Moreover, since
1 {5) = y(s)/x(s), we divide the two power senes 1o obtain

¢o = bo/ay, Cl=(blan_albn)/a%

and so on. Now p and p, are not singular. Consequently, the Taylor sertes exists, ay is
proportional to —f, and —g,, b, is proportional to f,, and ¢, is proportional to g,. Thus, the
sign of the proportionalily factor a relates the orientation of the Taylor series with the standard
orientation. Therefore, given the direction of tracing f, we obtlain the corresponding tracing
direction of g from

g\ =C(_,G., g_t=a(-\f‘+yf,.)/x2.

Conversely, given the tracing direclion of g, we obtain the corresponding tracing direction of f
in the same way.

In consequence, the following procedure is used (0 maintain a consislent tracing direction
through singularities:

o
<

\
S

/
"

Fip. 58. 3 —x*+x'=0 Fig. 5.9. ).1_‘\,3'2[}.

/
A

F:gS]O’c—x; -pi=0 Fig. 5.11. x —3t_1"'+2y
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VRN

Fig. 5.12.2x" = 3x%p +p2 — 237 34 = 0. Fig, 5.13. x* + x%y% - 2% — xp? 4 y2 .

o2 N}

Fig. 514, (x* 4 ;7)Y + 3x%y — p* = 0. Fig. 5.15. (x?+3%)" —ax?)2 =,

Step 1. We lraverse f in the direction t(—f., f.), where u=1or u= —1.

Step 2. When approaching a singular point, the proper transform g of f is calculated. Let p
be a point on f traversed belore the singularity, and let p, be the corresponding point on g.
The partials of f and g arc evaluated at these points, and the lactor « of proportionality
determined as described above.

Step 3. Il a> 0, the transform g is traversed in the dircction u{—g., g.); otherwise, it is
traversed in the opposite direction. '

The same traversal correlation is established when leaving the vicinity of the singularity,
re-establishing the proper traversal direction on f from the traversal direction on g.

3.3, Implemenrarion

We have implemented the algorithm on a Symbolics 3650 Lisp machine and traced the
curves shown in Figs. 5.8 through 5.15. In our experience with the program, it is possible to
trace through complex singularities. A problem for Lhe present implementation is locating the
singularity accurately. For example, locating the cuspidal singularity of the family of curves
¥y*—x**! = 0 becomes increasingly more difficult as m grows. Another problem arises when
a curve is almost singular, as in the case of the family of curves p? — x> — x?— ¢ = 0. For very
small values of € the curve has very high curvature in the vicinity of the origin and appears to

be singular.
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Appendix: Computational details

We describe in more detail the derivation of the quantities 4, ,,, i=1,2, B; ., j=1,2,3 and

FN

the use of the singular value decompaosition to solve the linear system of Section 3.
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A.L Derivation of the b, ,, and B, ,

The expressions for b; ,, arc developed from the Taylor cxpansion of f; and f, of Section
3.2. For f; we obtain
Nilx, p, 2} =fi(xa+ Ax, Yot Ay, zptAz)= Z .ﬁ'.;.kAxia}’jAzk,
i j.k
where
1 Qititk
)ﬁ'.j-kz i1k axiayfazkfl(xo, Yo zu)-

Weset Ax=x"s+x"s*/2+x"s°/6+ -+ +, Ay=y's+y"5s?/2+ .-+ elc. Then
(Ax) = (x" Y52+ x'x"s + -+ - (Ax)Y =(x)'s>+ ---,
AxAy=xy's*+ (x"y" +x’ ")s /24 - AxAyAz=x"y'2's* + ..

and so on. Substituting into the Taylor’s series for f; and equating to zero the coefficients of
s™ m=1,12, 3, we get the equations

fropx"+ fo10y" + fooaz" =0,
Sro0x” +foroy” + fo0a2”
= _z[fz_o.u(x')z +fu.2.u()")2 +fo.o.2(zf)2 +f1.1.ax’}” +f,_0_1x'z' +fn.1.1.l"-"-"] '
froox™ +far0¥” +fopaz™
= _G[fzoox,x” o209y Fhhoa2'2” + fLio(xX Y + x'y") /2
+froalx"2" +x27) /2 +fo1aly " +y’2") /2
+f100(xXY + fozo(¥') + fops(2')
+fz.1.o(-"~")2}”+f1.2.0x'()”)2+f2,o.|(4‘")22’
+f1.o_2x'(z')2 +fo.z.1(}")25’ +f0.1.2)”(3')2 +f1.1.1«‘-")"-°-"] -
They are the equations
vfi-r'=0, Vii-r'=b,, Vh-r" =by,

of Section 3.1. The explicil form above is used for compulting by, and b,, in the program. A
similar set of formulae is obtained for compuling b,, and &,,, when f, is replaced with S
The expressions for B; ,, are developed, in an analogous fashion, from the Taylor expansion

of F, F; and F; of Secuon 33,
A.2. Singular value decomposition

Both Newton’s method for refining a point estimate and the determination of the curve
approximant entail solving a linear system

ATw=1z.
For the implicit case A is a 3-by-2 matrix whose columns are the gradients of f1 and f;, and
where w and z are column vectors of length 3 and 2, respectively. For the parametric case A is
a 4-by-3 matrix whose columns are (he gradients of F,, F, and F;, and where w and z are
column vectors of length 4 and 3, respectively.
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When the pair of gradients is linearly independent, then the general solution of this system
was wrilten in Section 3.2 as

w=avfi+ v+t
and in Section 3.3 as
w=aVF + 8vVE +yvF+tr

This is not the general solution at a singularity where the pair of gradients is lincarly
dependent.

To treat all cases in a vniform way with a computationally stable process, we compule the
singular vatue decomposition of 4 [Golub et al. ’85, Stewart *73]. (We linked the thoroughly
lested routines of Linpack [Dongarra et al. '79] to our program.) Thus, we factor A as
A=USVT" where UER'™® and VEeR>? for the implicit/implicit case are orthogonal
matrices and £ €R’*? is diagonal. For the parametric/parametric case U €R*** and
Ve R**? are orthogonal matrices and I & R*** is diagonal. The system A'w=2z now
becomes

VITU W=z,
and we wrile its solution as
w=a'lh+ U, +y'U;,

where U, denotes the j-th column of U. Since the gradients ¥/, and vf; and the vector r are
not generally orthonormal, and since the U, are, the quantities o', 87, and ¥’ differ from their
counterpart in Section 3.1.

There are three cases:

(i) If the pair of gradients is linearly independent, then X, >0, ¥,,> 0, and the [irst two
columns of I span the same space as the pair of gradients. Tn that case,

a’.__(Vsz)/El.h B = (VzTZ)/Ez.za
and y’ is arbitrary.
(ii) If the pair of gradients is linearly dependent and ar least one is nonzero, then %, , >0,

3X,,=0, and the first column of & spans the same space as the pair of gradients. If ¥3'z # 0,
then there is no solution; otherwise

a’ = ( VITZ)/EI.I;

and 87 and v’ are arbitrary.

(in) If both gradients are zero, then so is 2. If z # 0, then there is no solulion; otherwise o,
B’, and v are arbirrary.

This is now used as follows.

Newton’s method. We always choose y” = 0. In Case (ii), 8’ is also set to zero. In Case (iii),
the initial guess is perturbed and the iteration restarted. Usually two or three iierations suffice,
Il the singular value decomposition is not recomputed at each iteration, the number of
ilerations Lypically doubles.

Finding the Approximant. The solutions to the linear systems are determined using the
Frenel—Serret formulae [Franklin '44, p. 107]:

dr db dn
E_K"‘ E__Tn’ a-—-Tb_Kr,

where s is arc length, r is the unit tangent, n is (he principle normal, # is the binormal,
& =1/p is curvature, and T=1/7 is torsion. The vectors ¢, n, and & form an orthonormal
triad with

n=bXxt.
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Al a point r(s) on the curve, we have
’ "” dr
r'(s)=1, r(s)=a=xn,

d
r’” (.S') = Ig-(xn) = %n + K%E‘
In Case (i) we obtain r" = U; using y; = £ 1. For the first point on the curve, the sign of
¥ is an input parameter; for other points, the sign of ¥, is chosen to be the sign of ~'(0)TU; at
the previous point r(0). To get r”(s), we use y, =0, so that r’ and r” are orthogonal. The
length of r”(s) gives the curvature x. To get r ™ (s), we choose yq = ~ &>
In Case (if), we project r'(0) into the plane spanned by U, U;, and then normalize the
projection to get r’(s); an input vector is given if k = 0. For r”, we choose 8, and y; to make
r” and r” orthogonal; r” is chosen as above.
In Case (iii), we return to the preceding point and double the computed step length.

=k'n+xTh—rt.
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