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Abstract

Cumulative exposure to repetitive and forceful activities may lead to muscu-
loskeletal injuries which not only reduce workers’ efficiency and productivity,
but also affect their quality of life. Thus, widely accessible techniques for
reliable detection of unsafe muscle force exertion levels for human activity is
necessary for their well-being. However, measurement of force exertion levels
is challenging and the existing techniques pose a great challenge as they are
either intrusive, interfere with human-machine interface, and/or subjective in
the nature, thus are not scalable for all workers. In this work, face videos and
machine learning techniques are used to detect the high force exertion levels
of over 65%MVC (Maximum Voluntary Contraction), representing the dis-
comfort feeling in force exertion; thus providing a non-intrusive and scalable
approach. Efficient feature extraction approaches have been investigated, in-
cluding the movement of different landmarks of the face. Based on the data
collected from 18 subjects, features extracted from the face videos give 92%
overall accuracy in prediction the discomfort force levels. Further 0.78 recall
and 0.88 AUC (Area Under Curve) values indicates the model’s performance
in detecting the forceful exertions. The approach is also shown to be robust
to the correctly identify force level when the person is talking, even though
such datasets are not included in the training.

Keywords: Computer Vision, High Force Exertions, Facial Expressions,
Machine Learning

1. Introduction1

Musculoskeletal disorders (MSDs), such as sprains or strains resulting2

from overexertion, accounts for 349,050 cases for all workers [1] annually.3

This means that 33 workers in every 10,000 suffer an injury severe enough4
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that they must take time away from work. [1] Although overall percentage5

of the workforce getting hurt is small, these injuries are preventable. Fur-6

thermore, they not only impact individual worker’s health and quality of7

life[2], they also result in significant cost employees and society (e.g., workers8

compensation, medical care, loss productivity, training temporary workers).9

The annual cost of the injuries in the United States are nearly $60 billion in10

direct workers compensation costs [3]. Due to high direct and indirect cost11

of MSDs, there is a strong motivation for all stakeholders (e.g., employers,12

workers, and researchers) to identify factors that lead to MSDs and actively13

monitor and eliminate worker exposure to these factors.14

A comprehensive report by the National Institute for Occupational Safety15

and Health (NIOSH) lists high/sustained force, repetitive movements, and16

poor biomechanical postures as contributors to MSDs, with conclusion that17

evidence exists linking force to musculoskeletal injuries [4]. Similarly, in18

other studies, risk factors for MSDs include repetition, posture, vibration,19

and forceful exertions [5, 6]. High force exertion levels are reported as the20

most common contributing factors with sufficient evidence to suggest a causal21

relationship for work-related musculoskeletal disorders (MSDs) [5, 6, 7, 8, 9].22

Several key physiological and biomechanical mechanisms are proposed23

for how force exertions lead to injuries. Different tissue can be damages by24

various injury mechanisms including acute and prolonged exertions [2]. As25

an example, chronic low back pain can be a result of tears in the soft tissues26

[10]. For instance, high and/or frequent force exertions initiates lumbar disc27

damage and degeneration [11]. As another example, prolonged force exertions28

could lead to wrist injuries where frequent force exertions by the hand (e.g.,29

pinching and griping) lead to and exacerbate inflammation of the carpal30

tunnel cumulative tissue stress can eventually lead to injuries [12].31

Force is one of the hardest to measure because it is difficult to observe32

and depend on individual’s effort. For example, changes in expressions are33

subtle unless high forces and strong efforts are needed. Many methods are34

currently available to measure the high force exertion level. However, each35

method vary in reliability and feasibility as they are either 1) intrusive (e.g.,36

disrupts the worker while they are performing their job), 2) interfere with37

human machine interface (e.g., need to install force gauges on tool-handles38

and machine controls), 3) subjective, and most importantly 4) not widely39

scalable across all workers, jobs, and workplaces as trained ergonomics and40

safety professionals are needed to implement these methods. Kong et. all41

[13] evaluated comfortable or uncomfortable feelings for the grip force level42
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and reported 65% Maximum Voluntary Contraction (MVC) as the transition43

level to change from comfort to discomfort. To better understand the comfort44

and discomfort concept and better the need for a new evaluation model was45

emphasized [14].46

This paper proposes objective and automated predictions high force ex-47

ertion levels which has minimum distractions on workers and could be used48

in wide variety of workplaces by using the videos of the person to predict49

the high level of force exertions. Innovations in computer vision techniques50

can address many of the deficiencies in the current approaches. This paper51

proposes a new objective approach, which can be widely accessible and is not52

intrusive to workers.53

2. Methods54

The overall algorithm proposed in this paper is using video recording55

of participant’s face video as an input and classifies the comfort/discomfort56

level of a grip force.57

2.1. Participants58

Eighteen healthy volunteers participated in this study. The participants59

were recruited from a university population through email including a de-60

scription of the study. This study was reviewed by the university’s Insti-61

tutional Review Board and exclusion criteria were current musculoskeletal62

impairments that prevented participants from performing force exertions.63

Sixteen males and 4 females participated in the study, all were right hand64

dominant, and their ages ranged from 18 to 24 years. The details of all the65

subjects that participated in the study is given in Table 1.66

2.2. Study Setup67

The power grip dynamometer (Lafayette Hydraulic Hand Dynamometer,68

Lafayette Instrument Company, IN, USA) was used to measure the grip force69

of each subject. This devise helps in measuring the maximum isometric70

strength of the hand and forearm muscles and hence helps us collecting the71

ground truth of force exertion level for each subject.72

A GoPro HERO4 camera (GoPro, San Mateo, CA, USA) was used to73

capture the video of subjects while they were performing different kind of74

activities. The GoPro is placed in front of the subject, 0.5 meter away from75

face, and video recorded the subject during the entire experiment. Video76

recordings are done at 50 frames per second.77
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Figure 1: The experimental setup with a subject holding a grip dynamometer and pulse
oximeter attached to the earlobe. The PPG signals were recorded using pulse Shimmer3
GSR+ (Shimmer, Dublin, Ireland), but the resulting PPG were not used in this study

Female (n=10)
Mean ± SD Min Max

Age (years) 20.8±2.0 19 24
Weight (lb) 125.2±23.7 100 188

Grip Force (lb) 63.0±23.8 30 105

Male (n=8)
Mean ± SD Min Max

Age (years) 21.4±1.3 20 23
Weight (lb) 143.8±18.9 120 170

Grip MVC (lb) 92.3±13.9 64 120

Table 1: Data for 18 subjects in our experiment
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2.3. Data Collection78

At the beginning of the data collection session, participants were pro-79

vided a description of the study, and written consent was collected. Subjects80

were seated in front of the white background to minimize the noise in video81

processing in detecting the face. The handheld dynamometer was adjusted82

by hand size to ensure standardized and comfortable gripping postures for83

each subject.84

Participants received a 5-minutes practice period to familiarize with grip85

device and exertion force at varying levels. The overall study involved exer-86

tion at six levels of force and one activity. In the first trial, each participant87

performed a grip exertion at maximum force exertion. The subjects were88

instructed to maintain the maximum force for 9 seconds (note that although89

the magnitude of the force may decrease during the 9-seconds, participants90

continued to exert their maximum effort). The recordings were stopped after91

9 seconds.The second exertion trial was 0% grip force. In this trial, subjects92

were asked to hold the grip dynamometer without exerting any grip force.93

The subjects rested for 2 minutes between each force exertion levels to pre-94

vent fatigue effects from carrying over to the next force exertion trial. Then95

the 15, 33, 50, and 75%MVC colelcted and the videos of face. In each trial,96

subjects were asked to exert exactly the percentage of their maximum grip97

contraction and if the subject exerted force ±10% of the specified force, the98

trial restarted (after 2 minutes gap). The distribution of the grip force for99

different subjects is reported in Table 1.100

2.4. Video Processing101

The videos of several subjects are recorded under different force exertion102

levels as explained in section 2.3. Each video is processed using the DeepFace103

algorithm proposed in [15]. This is a state-of-the-art algorithm developed104

by researchers at Facebook. DeepFace is a face recognition algorithm that105

consists of four main stages: 1. Detect 2. Align 3. Represent, and 4. Classify.106

There have been other work in developing algorithm for facial recognition107

[16, 17, 18, 19, 20, 21], but DeepFace [15] reached an accuracy of 97.35% in108

Labeled Faces in the Wild (LFW) dataset and reduced the error in face109

recognition of current state-of-the art by more than 27%. The high accuracy110

in DeepFace is achieved by revisiting both alignment and representation step.111

3D face alignment has been done using piecewise affine transformation and112

face representation is derived using 9-layer neural network which is a key for113
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the high performance. Therefore, we utilized DeepFace for recognizing faces114

in our approach.115

The 9 seconds video of each subject is trimmed to 7 seconds before passing116

it to DeepFace. The first 2 seconds of videos are removed because each117

subject requires initial 1 to 2 seconds to reach to the required force level.118

Each video is recorded at 50 frames per second and hence, consists of 350119

frames We process all these frames using DeepFace that recognizes and aligns120

the face of each subject across the frames using 68 landmark points on the121

face. Figure 2 shows how DeepFace is used to extract faces from the each122

frame in the video. Figure 2 (a) is an example of an actual frame in the123

video. DeepFace recognizes the face of the person in each and crops the face124

out of it as shown in Figure 2 (b). This algorithm helps identify 68 landmark125

points on the face as depicted in Figure 2 (c) and track these 68 landmark126

points over the whole video The 68 landmark points represents the contour127

of the face, eyebrows, eyes, lips, and nose (Figure 3). Detecting and aligning128

the face in each frame of the video is one of the most critical step in our129

overall methodology, because relevant features to train a neural network will130

be extracted from the output of DeepFace.131

Figure 2: The steps followed for feature extraction from each frame of the video. (a) The
actual image (one of the many frame) from the video captured during the experiment.
(b) The detected and aligned face using DeepFace. (c) The face along with the 68
landmarks on it. These 68 landmark points are used by DeepFace in face recognition.

2.5. Feature selection132

The extraction of “right” features is important as it plays significant133

role in training a neural network. The choice of relevant features leads to134

the simplification of the models which in turn requires shorter training time135
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Figure 3: The location of 128 landmark points on the face for different subjects.
Additional 60 landmarks have been identified on the face for efficient model training.

[22]. “Right” set of features helps in avoiding the curse of dimensionality136

and leads to generalization of the model by reducing the variance in the137

model [23]. Choosing the subset of features from the available data reduces138

redundancy in the input to the neural networks and subsequently improving139

the performance. We will extract relevant features from the Frames that has140

been processed by DeepFace.141

2.5.1. Facial feature142

Deepface utilizes the information of 68 landmark points on the face. Our143

proposed method uses 128 landmark points on the face as shown in Figure144

3. Based on 68 landmark points given by Deepface, we located 60 more145

landmarks on the face that lies on the left and right cheeks. 30 landmarks146

on each cheek is located based on the location of landmarks on the contour147

of the face and eyes. Different landmark points can be grouped together148

based on the location on the face as: 1: Contour of Face (17 landmarks), 2:149

Eyes (12 landmarks) 3: Eyebrows (10 landmarks), 4: Nose (9 landmarks),150

5: Lips (20 landmarks), 6: Cheek (60 landmarks). All the 128 landmark151

points were tracked in 350 frames for each video. The location (x and y co-152

ordinate values) of each landmark was extracted and based on the location,153

the movements of each landmark with respect to its location in the first154

frame were calculated over the entire video. The movements of the distances155

between landmarks were calculated using Euclidean distance equation, which156

is presented in equation 1.157
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d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 (1)

The average and standard deviation of facial landmarks’ movement within158

each group are chosen as the domain features (Figure 4). The total of twelve159

feature were used in training the final model. As the subject increases the160

effort level, facial expression tends to change and there are clear differences161

in the movement of the movement of facial landmarks for different force162

exertion. For all of the groups, the average movements for discomfort levels163

were higher than discomfort, however they are some overlapping areas in164

each group. It is also interesting to see that movement of noses landmarks165

are always the least while contours movement tend to be the highest.166

Specifically, as hand force level increase to discomfort level, facial land-167

marks tend to move apparently and more variably, which can potentially168

indicate that facial landmarks movement between frames can be a good fea-169

ture for the prediction model.170

Figure 4: Movement of facial landmarks

2.5.2. Comfort and Discomfort Groups171

Based on the previous study stating the change of the feeling from comfort172

to discomfort in 65%MVC [13], the current study used it as the threshold.173
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Thus, 0, 15, 33, and 50%MVC and considered in comfort group and 75 and174

100%MVC are considered as discomfort group in grip force exertion. Based175

of our Research Hypothesis, since we are proposing an automated method176

for predicting the high force exertions, the discomfort group was chosen to177

be the true prediction of the proposed model. The confusion matrix is shows178

in Table 2.179

Actual Discomfort Actual Comfort
Predicted Discomfort True Positive (TP) False Positive (FP)

Predicted Comfort False Negative (FN) True Negative (TN)

Table 2: Confusion matrix

2.6. Machine Learning Models180

2.6.1. Data re-sampling181

The dataset is unbalanced between two levels since it has four comfort182

levels and two discomfort levels. Unbalanced dataset is an issue that can lead183

to unreliable learning model. Specifically, when dealing with detecting abnor-184

mal situations, such as fraud detection, because the unbalanced dataset can185

bring biased toward the majority group[24]. Current state-of-art techniques186

for solving this issue are the followings: 1. Sampling techniques: Down-187

sampling the majority, Over-sampling the minority and re-sampling both. 2.188

Cost sensitive learning: Assigning a heavier cost to wrong classification of189

the minority and focused on reducing the overall cost [25]. Randomly down-190

sampling the majority is chosen as the strategy in this study. In addition,191

multiple classifier evaluation indexes, other than overall accuracy, are used to192

further evaluate our models and overcome the unbalanced dataset problem193

2.6.2. Evaluation Methods194

In many binary classification cases, dataset will be divided into positive195

and negative samples, and confusion matrix shown in table 2 will be applied196

to describe the model’s performance. To prevent injuries, detecting the dis-197

comfort levels over comfort seems to be more important in actual workplaces.198

For this reason, this study focus more on detecting discomfort hand force level199

to prevent injuries, discomfort levels are considered as positive samples and200

comfort groups as negative samples. Precision, Recall and F1 score were used201

to evaluate our models’ performance in classifying the positive samples. The202

receiver operating characteristic (ROC) curves and the values of area under203
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curve (AUC) were used to evaluate our models’ overall performance. False204

alarm rate was also addressed in order to better introduce ROC and AUC205

techniques [26].206

Sensitivity, commonly known as recall and true positive rate, represents207

the ratio of number of correctly classified positive samples to total number208

of positive samples. In this study, this index is the representation of the209

probability of true prediction when the subject is exerting force in discomfort210

level. Recall rate is calculated by using the equation 2.211

Recall =
True positive

True positive+ False negative
=
True positive

positive
(2)

Precision represents the ratio of number of correctly classified positive212

samples to total number of predicted positive samples output from the model.213

In this study, precision means that when the model gives a positive sample214

prediction, what is the probability that this prediction is correct. The preci-215

sion is calculated using equation 3.216

Precision =
True positive

True positive+ False positive
(3)

F1 score is generally considered as the comprehensive measurement of217

precision and recall, and the equation used to calculate it is shown in equation218

4.219

F1 Score = 2 ∗ precision ∗ recall
precision+ recall

(4)

False alarm rate, or false positive rate, is used to measuring how many220

comfort level samples are wrongly classified as discomfort level in our studies221

and it is calculated as equation 5.222

False alarm rate =
False positive

False positive+ True negative
(5)

Through combining true positive and false negative rate, ROC curve is223

able to make a balance between benefits and thus become common in evaluate224

the overall performance of binary classification with imbalanced data set.225

An example of ROC curve is shown in Figure 5. However, since comparing226

differences between curves is difficult, a single scalar value, known as area227

under curve (AUC) is introduced. AUC is the area between the diagonal228
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line and the Rcurve. The relative classifier’s performance to AUC score is229

proposed in table 3 [27].230

Figure 5: Example ROC Curve

AUC Range Performance

1-0.9 Excellent
0.9-0.8 Good
0.8-0.7 Fair
0.7-0.6 Poor
0.6-0.5 Fail

Table 3: A general guide to evaluate classifier using AUC

2.6.3. Various Learning Models and Choosing Best Performance231

learning models: After all features are extracted and dataset is balanced,232

the following supervised learning models are trained:233

1.Random Forest234

2.Support Vector Machine (SVM)235

3.Bagging K-Nearest Neighbor236

4.Neural Network237

238

Models training: Each model was trained using re-sample balanced dataset239

and pre-assigned labels. Best parameters of each model was found using grid240

search method, and specified callback methods for Neural Network.241

242
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Testing: Each model was tested using K-fold cross validation approach.243

Specifically, leave one subject out, leave two subjects out and leave three244

subjects approaches were applied.245

246

Choosing The Best Model: When testing each model we trained using247

leave one out cross validation approach at the earlier stage, we found that248

SVM, Random Forest and Bagging KNN models did not perform well and249

the Neural Network model outperform these models in significant degree.250

Therefore, the Neural Network chosen and used it for further analysis. De-251

tails information about the performance of each model will be shown in result252

section.253

254

Details of Neural Network Model: A neural network with 1 input, 3 hidden255

and 2 output layers as shown in Figure 6 was built. For each hidden layer, 128256

neurons was used. The activation function used in the training of network257

was exponential linear units (ELUs) [28] as defined in equation 2. Batch258

normalization was used in each hidden layer [29]. In the output layer, two259

neurons were used for discomfort hand force level and comfort hand force260

level. The best performance of the network was achieved with using SGD as261

an optimizer along with binary cross-entropy as a loss function. In addition,262

Model Check Point and Early Stop techniques were implemented to find the263

best parameters and stop the training.264

f(x) =

{
x if x ≥ 0
α(ex − 1) if x ≤ 0

(6)

Figure 6: The architecture of a fully connected neural network with three hidden layers.
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2.7. Multi-level force exertion and activity tasks classification265

Other than two-level classification (Comfort and Discomfort), three-level266

(i) and activity tasks (ii) classifications were also performed using the same267

methodology.268

(i) For three-level force exertions, Neural Network model was trained to269

classify three levels. No/Low (0%), medium (50%), and high (100%) force270

exertion levels considered as the classification groups. The facial feature are271

given in figure 7.272

The model was tested using one leave out cross validation approach.273

Through setting each label as positive sample in alternate order, multi-label274

classification model can be evaluated through the precision, recall and F1275

score of each label.276

(ii) For activity classification, Talking task was considered as it is frequent277

in actual workplaces. For testing the model’s robustness in classifying the278

activity tasks from force exertions, Talking video were recorded. The activity279

data only used for testing in the best model, and no training was performed280

for activity classifications.281

Figure 7: Movement of facial landmarks for three-level classification
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3. Results282

3.1. Results of different classifications283

The performance of various models tested with leave one out approach284

is given in Table 4. The Neural Network Model shows higher accuracy in285

comparison to rest of the models.286

Model Precision Recall F1 Score AUC Overall Accuracy

SVM 0.52 0.61 0.56 0.67 0.69
Random Forest 0.51 0.81 0.62 0.71 0.68
Bagging KNN 0.51 0.75 0.61 0.70 0.68

Neural Network 0.97 0.78 0.86 0.88 0.92

Table 4: Performance of each model

3.2. Classification of Comfort and Discomfort Force Exertions287

Neural Network Model was tested individually using leave one out, leave288

two out and leave three out cross validation approaches. For leave three out289

approach, there were 816 combinations to select 3 subjects from 18 total290

subjects. Due to heavy process of training 816 models, 153 combinations291

were randomly chosen for testing. The testing results of each approach are292

shown in Table 5.293

Tesing Approach Precision Recall F1 Score AUC Overall Accuracy

Leave 1 out 0.97 0.78 0.86 0.88 0.92
Leave 2 out 0.85 0.81 0.83 0.87 0.89
Leave 3 out 0.82 0.75 0.78 0.83 0.86

Table 5: Results of each testing approach

The overall accuracy decreased from 92% to 86% as expected. Even with294

leave three subjects out, the model still showed satisfactory performance with295

AUC larger than 0.8, which can demonstrate the effectiveness of the selected296

features and the neural network model.297

The model’s performance at each force level was reported in Table 6.298

Accuracy was applied to evaluate the classification performance at each force299

level. As expected, lower accuracy was observed in 50% and 75% levels.300

14



Force Level (%MVC) 0 15 33 50 75 100
Accuracy (%) 100 100 100 94 67 89

Table 6: Prediction accuracy at each force level

3.3. Various Force exertion classification301

Table 7 demonstrate the result of each label.302

Label Precision Recall F1 Score
No/Low 0.79 0.61 0.69
Medium 0.67 0.78 0.72

High 0.79 0.83 0.81

Table 7: Results of three level classification

The overall accuracy of the three level classification model is 74%.303

3.4. Test Model Robustness in Activity Tasks304

Since the talking was performed without any force exertions in this stud-305

ies, the talking situation was considered as comfort level. The best model306

was used for analyzing the talking situation. Model’s accuracy was 77.8%307

when tested on talking data.308

4. Discussion309

Computer vision and machine learning can predict the force exertion level310

using extracted facial features and provides a novel approach for such estima-311

tion. Understanding force exertion levels has important implications across312

domains and applications, and in this work, we demonstrate the approach313

in the context of workplace injuries. Specifically, varying levels of force and314

duration/frequency of these forces are predictive of musculoskeletal injuries.315

This section provides more discussion on using machine learning in predic-316

tion of force exertion level and provides more insights on the feature selection317

that is introduced in this work.318
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4.1. Deep-face and Neural Networks in Classifying High Force Exposures319

There are various methodologies [30, 17, 18, 16, 21, 19, 20, 31] proposed320

that can achieve facial recognition but the methodology proposed in [15]321

outperforms other methods and results in the accuracy of 97.35% in Labeled322

Faces in the Wild (LFW) dataset, reducing the error in face recognition of323

current state-of-the-art by more than 27%. This method is more robust and324

the explanation on DeepFace is discussed in section 2.4. The 9 layer neural325

network used in Deepface makes it more robust to detect faces in the video326

for our study and henceforth extract relevant features from the video frames.327

These facial features represent a key component for force classification.328

The neural networks are known to be universal approximators [32] and329

hence are used to identify the underlying function explaining the relationship330

between the features and response variable. This approach is used extracted331

features to classify the force exertions and add additional novelty by leverag-332

ing the underlying physiological mechanisms of generating muscle forces to333

improve force classification accuracy.334

4.2. Non-contact Exposure Assessment335

The force exertions has been considered as one of the main contributing336

factors in current risk assessment tools [33, 34, 35]. The high variability of337

the identified risk score with respect to the estimated force exertion param-338

eters is reported in current assessment tools. For example, the Strain Index339

Assessment [35] score will double if the intensity of the exertion changes340

from 20% to 40% [9]. In addition, Bao et al. reported weak correlation341

values between the ergonomists estimates and the worker’s self-reports for342

pinch and grip force. Further exploration suggested among relationships of343

worker’s self-reports, the ergonomist’s estimates and the directly measured344

hand forces [36]. The proposed non-contact assessment method for classi-345

fying force levels can provide an objective automated estimations of hand346

forces.347

4.3. Classification of Comfort/Discomfort Force Exertions348

The performance of the best model for predicting the comfort (0, 15,349

33, 50%MVC) and discomfort (75 and 100%MVC) is given at table 5. The350

proposed new objective approach can identify the high force exertions with351

over 90% accuracy. This model and approach could be translated into widely352

accessible tool in workplace which is not intrusive to workers.353
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”U” pattern was observed in reporting each level’s accuracy. At lev-354

els near the considered threshhold (65%MVC) the accuracy of classification355

would decrease as expected.356

4.4. Classification of Low/Medium/High Force Exertions357

The performance of the model for predicting the three-level force groups358

was reported to be 74%. The lower performance could be due to the fact359

that facial features of minimum hand force exertion and medium hand force360

exertion do not have significant difference as we can observe in figure. Re-361

sults from table 7 demonstrates that the model perform well in identifying362

maximum hand force exertion while has shortage in identifying medium and363

minimum hand force exertion. The average movement of 50% was calculated364

to be less than the resting level (0%). This seems to be unlikely, but one365

potential reason could be the attention of the subject in holding the 50%366

force. The subject’s face seems to move more in resting while they are not367

concentrating on one task (more variation in 0% than 50%).368

4.5. Analysis of Activity Tasks with Current Model369

The potential reason for unsatisfied performance of the best model when370

tested on talking data is that facial movement are more significant when371

people are talking, especially the movement of lip and face contour, which372

can confuse the model. Walking situation was also being concerned at the373

early stage of our studies. However, significant loss of facial data when374

subjects are walking caused our attention. Subjects’ face were not being375

clearly detected in some of the frames, which caused the failure of landmarks376

plotting. The applicability of DeepFace algorithm when people are under377

intense body movement like walking is under suspicion, although DeepFace378

algorithm is proven to be capable of detecting and centralizing the face under379

various scenes.380
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