
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Approximate Free Space Construction and Maximum Clearance Path
Planning for a Four Degree of Freedom Robot

Chloe Arluck∗ Victor Milenkovic† Elisha Sacks‡

Abstract

We present an algorithm for constructing an inner ap-
proximation of the free space for a polyhedral robot with
four degrees of freedom. The robot rotates about a fixed
axis and translates in three dimensions with respect to
a fixed polyhedral obstacle. We approximate the free
space by subdividing the rotation dimension into short
angle ranges, generating a three dimensional free space
for each angle range, and constructing a graph for nav-
igation in the four dimensional space. We also present
an algorithm for path planning that is complete in the
approximated space. The path planning algorithm pro-
duces paths that are guaranteed to be collision free and
approximately maximizes obstacle clearance, ensuring
safe and practical paths.

1 Introduction

We present a method of approximating the free space of
a polyhedron R that rotates around a fixed axis, with-
out loss of generality the z-axis, and translates freely
relative to a polyhedron O. For example, R models a
drone helicopter and O models a warehouse. Further,
we present a path planning algorithm that demonstrates
the benefit of free space construction for fast and effi-
cient navigation: after a one-time computation to con-
struct the free space, we can quickly construct paths
between any two configurations or determine that none
exists.

There are cases where traditional probabilistic road
map planners have poor performance, particularly cases
where the path must traverse through narrow passages.
Additionally, PRM planners test for collision along lo-
cal paths by taking discrete samples, and therefore may
miss collisions when obstacles are very thin. While
many sampling methods have been developed to ad-
dress the narrow passage problem [1] [2] [5], and collision
detection can be guaranteed using adaptive resolution
[15], the challenge of choosing the appropriate variety
of PRM planner for the problem adds additional tuning

∗Department of Computer Science, University of Miami
c.arluck@cs.miami.edu
†Department of Computer Science, University of Miami

vjm@cs.miami.edu
‡Department of Computer Science, Purdue University

elisha.sacks@gmail.com

complexity for the user. We present a path planning al-
gorithm that requires minimal tuning, handles narrow
passages, and produces paths that are always collision
free.

2 Constructing the Free Space

We approximate the four dimensional free space S by
subdividing the rotation dimension into short angle
ranges and generating a three dimensional free space Si
for each angle range. If n is the number of angle ranges,
each Si is an inner approximation of the free space with

rotation [2πin , 2π(i+1)
n]. Meaning, for all θ ∈ [2πin , 2π(i+1)

n]
and for all t ∈ Si, R does not intersect O at (t, θ), where
(t, θ) denotes a rotation of R by θ then a translation of
R by t. To generate Si, we construct R′, a polyhedral
approximation of R swept through the rotation [0, 2πn]

about the z axis. Then Si = O ⊕−R′i where R′i is R′

rotated 2πi
n about the z axis, ⊕ denotes the Minkowski

sum, minus denotes the negation of each vertex, and
over line denotes the complement.

 q

 q'

 p

 p'

Figure 1: The containing polygon of a segment pq ro-
tated in the plane.

To construct the outer approximation of the sweep of
R, we reduce the problem to sweeping segments in the
plane. Let p and q be endpoints of a segment in the
plane where |p| ≤ |q|. If p′ and q′ are p and q rotated
θ about the origin, then an outer approximation of the
sweep for segment pq is the pentagon with endpoints p,
p′, q, q′, and the intersection of tangent lines at q and q′

(Fig. 1). If the nearest point on pq to the origin is not
an endpoint, we split at the nearest point and take the
sweep of the two segments individually. Fig. 2 shows
that not splitting at the nearest point results in a poor
approximation.

30th Canadian Conference on Computational Geometry, 2018

p

p'q

q' s' s p

p'q

q'

(a) (b)

Figure 2: (a) The union of polygons containing the
sweep of ps and qs, where s is the point on pq closest
to the origin, and (b) a single polygon containing the
sweep of pq.

(a) (b) (c)

Figure 3: (a) An input face F and the result of splitting
F by (b) its tangent plane and then by (c) xy-planes
passing through each vertex.

This two dimensional method is used to construct the
outer approximation of the sweep of R as follows. Let F
be a face of triangulated polyhedron R. We subdivide
F in order to consider it as a set of segments pq that
lie on planes parallel to the xy-axis. We split F by the
plane containing the nearest point of each segment (Fig.
3(b)) to avoid the poor approximation shown in Fig. 2.
Next, we split by planes parallel to the xy-plane going
through each vertex (Fig. 3(c)). The result is a set of
trapezoids each with their top and bottom edges being
segments parallel to the xy-plane.

The outer approximation of the sweep of a trapezoid
is the union of the 2D sweep approximations for each
z cross section. Sides of this union are ruled but not
necessarily planar. We introduce cross section segments
separated by at most θ in angle and rθ in z, where r is
the radius of the robot, and we connect adjacent seg-
ments by their convex hull. The outer approximation of
the sweep of R is its union with the outer approximation
of each trapezoid sweep.

(a) (b) (c)

Figure 4: (a) A triangulated robot R, (b) its tetrahe-
dralization and (c) its sweep polyhedron R′.

Given the three dimensional free spaces Si, we con-
struct a graph for navigation in the four dimensional
space S. A node represents a connected component of a
space Si. If components of Si and Si+1 intersect, then
their corresponding nodes are neighbors. By providing
the relationship between the inner approximated sub-
spaces Si, this graph defines an inner approximation of
S. After performing the one-time computation to con-
struct the inner approximation of S and the graph, we
can query the graph to quickly construct paths between
any two configurations, or determine that none exists.

3 Error Bound on the Sweep Polyhedron

p

p'

p

p'

(a) (b)

Figure 5: (a) A cap and (b) a cup at point p.

We wish to find an upper bound on the excess gen-
erated by this sweep approximation. For a sweep of a
segment the excess is composed of caps and cups. A
cap at a point p is the region between a circle of radius
|p| and the tangent lines at p and p′, where p′ is p ro-
tated θ about the origin (Fig. 5). The area of a cap
is p2(tan θ

2 −
θ
2), which has third degree Taylor series

approximation p2 θ
3

24 . A cup at p is the region between
segment pp′ and a circle of radius |p| (Fig. 5). A cup
at p has area p2 θ−sin θ2 and Taylor series approximation

p2 θ
3

12 .

 p

 p' q

 q'
 m m'

Figure 6: The pseudo area when the midpoint m is the
closest point on pq to the origin. In this case equivalent
to the actual sweep area.

To find an upper bound on the excess area of the
sweep, we consider the worst case. For convenience, we
define the pseudo area, a measure that is always less
than or equal to the actual area swept by segment pq.
If m is the midpoint of segment pq, then the pseudo
area is defined to be

(q2 + p2 − 2m2)
θ

2
−m2 θ

3

24
.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Intuitively, the pseudo area is the sum of the areas
swept by the two subsegments on either side of m with-
out a cap at m. When m is the closest point on pq to
the origin, the pseudo area is equivalent to the actual
sweep area (Fig. 6) and we will show that it is always
less than or equal to the actual sweep area.

If p is the point on the segment closest to the origin,
then the area swept by pq is∫ |q|

|p|
θrdr = (q2 − p2)

θ

2
.

Since p is the closest point on pq to the origin, |m| > |p|.
Hence q2 − p2 > q2 + (p2 −m2) −m2 and the pseudo
area must be smaller than the actual area in this case.

If the closest point on pq to the origin is some internal
point s, then the area swept by the segment is the sum
of the areas swept by the two sub-segments without a
cap at s, which is swept by both sub-segments.

(q2 + p2 − 2s2)
θ

2
− s2 θ

3

24

Since, |m| ≥ |s|, this area must be greater than or equal
to the pseudo area.

 p

 p'

 q

 q'
 m m'

 p

 p'

 q

 q' s s'

(a) (b)

Figure 7: The (a) pseudo excess and (b) actual excess
generated when approximating the sweep of segment pq,
where m is the midpoint and s is the point closest to
the origin.

Similar to the pseudo area, we define the pseudo ex-
cess, a measure that is always greater than or equal to
the excess area generated by the outer approximation
of sweeping segment pq. The pseudo excess is a cap at
endpoints p and q and a cup at midpoint m (Fig. 7).

(q2 + p2 + 2m2)
θ3

24

If p is the point closest to the origin, then the excess
is a cap at q and a cup at p.

(q2 + 2p2)
θ3

24
.

Since |m| ≥ |p|, this value must be smaller than the
pseudo excess. If s is the closest point on pq to the
origin, then the excess is a cap at p, a cap at q, and a
cup at s.

(q2 + p2 + 2s2)
θ3

24

Since |m| > |s|, this value is greater than or equal to
the pseudo excess.

Now, given triangulated polyhedron R, consider an
input face. The outer approximation algorithm splits
by a plane parallel to the xy-axis at each vertex, so the
input face is divided into two triangles sharing an edge
pq with length l. We wish to find the vertex positions
that result in the smallest pseudo area and the largest
pseudo excess, while fixing the z-components of each
vertex and the length of segment pq.

Without loss of generality we consider only one of
the two triangles. Let t be the vertex opposite edge pq
and consider an arbitrary segment p̂q̂ where triangle pqt
intersects a plane parallel to the xy-plane. Since the z-
components of p, q, and t and the length of pq are fixed,
the length of p̂q̂ is also fixed. Let m̂ be the midpoint of
p̂q̂. If the distance from the z-axis of every m̂ does not
decrease, then for segment p̂q̂ the pseudo area does not
increase and the pseudo excess does not decrease. We
will perform a series of operations that do not decrease
the distance between m̂ and the z-axis and that fix the
z-components of all vertices and the length of pq.

1. Rotate t about the z-axis until it is aligned with
the midpoint of pq. Since t is moving towards the
midpoint of pq, m̂ is moving away from the z-axis.

2. Rotate p about q and until |p| = |q| while rotating
t about the z-axis to remain aligned with the mid-
point of pq. Since p is moving away from the z-axis
and and t remains aligned with the midpoint, m̂ is
moving away from the origin.

3. Scale the x and y components of t until t is distance
r from the z-axis, where r is radius of the robot.

4. Translate p and q to distance r from the z-axis such
that the distance l between p and q stays the same.

Then m2 = r2 − l2

4 , the pseudo area is l2θ
4 + (l

2

4 −
r2) θ

3

24 , and the pseudo excess is (4r2 − l2

2) θ
3

24 . As r
increases, the pseudo area decreases and the pseudo
excess increases.

The result is a scalene triangle where all vertices are at
the maximum distance from the origin and t is equidis-
tant to p and q. Changing the position of any vertices
either reverses one of the above operations, exceeds the
radius of the robot, or violates the original conditions
that the z-components and length of pq are fixed. Hence
this triangle achieves the minimal allowable pseudo area
and the maximal allowable pseudo excess. Since t is
equidistant to p and q, the midpoint of each segment
is the nearest point, so the pseudo excess and area are
equal to the true excess and area. Since the pseudo ex-
cess and area are always worst than the true area and
excess, this must be the worst case for approximating
a face of R. We will integrate to find the volume of
the swept triangle and its excess. Let H be the differ-
ence in z-component between t and segment pq. The

30th Canadian Conference on Computational Geometry, 2018

length of the segment being swept as a function of h,
where h ∈ [0, H] is L(h) = l

H h. Each segment on pqt
has its nearest point on the midpoint. The swept area
of such a segment is the sum of the areas of the two
sub-segments minus a cap at its midpoint. This area
is bounded below by the area swept by one of the sub-
segments Amin(h) = L2(h) θ8 . Then a lower bound on
the swept volume is

Vmin =

∫ H

0

Amin(h)dh =
l2θH

24
.

The excess area generated by each segment is Aex(h) =
θ3

24 (4r2 − L2(h)
2). So the excess volume generated by

triangle pqt is

Vex =

∫ H

0

Aex(h)dh =
θ3

24
H(4r2 − l2

6
).

So, an upper bound on the ratio of excess volume to
sweep volume is

Vex
Vmin

=
24r2 − l2

6l2
θ2

where r is the radius of the robot and l is no smaller
than minimum altitude of all input triangles. Hence,
the error on the polyhedral approximation of the sweep
is O(θ2) and produces a close approximation when θ is
small.

Additional excess is introduced when we approximate
ruled surfaces by a sequence of convex hulls, but because
they are only necessary for cap and cup segments, which
have length O(θ), by construction these have O(θ4) vol-
ume and there are O(1

θ) of them, and so the error they
introduce is also O(θ2).

4 Path Panning

Suppose we want to navigate between configura-
tions (ta, θa) and (tb, θb). Then θa is contained in

[2πin , 2π(i+1)
n] for some i and t lies in some connected

component of Si. This defines a node that contains
(ta, θa) and, similarly, a node that contains (tb, θb).

Given the graph we constructed, we can perform a
breadth first search between these nodes to quickly de-
termine whether such a path exists. Since the graph
defines an inner approximation of S, we may return a
false negative but not a false positive. If a path exists,
our search will return a sequence of free space compo-
nents {C1, C2, ..., Cn} connecting (ta, θa) and (tb, θb) if
one exists.

Given a method of finding paths between two points
in the same component, we can construct a valid path
from (ta, θa) to (tb, θb) as follows: Navigate inside C1

from ta to some point t2 in C1 ∩ C2. Rotate from θa
to some θ2 in the range of C2. Similarly, for each i >

2, navigate inside Ci−1 from ti−1 to some point ti in
Ci−1 ∩ Ci and rotate from θi−1 to some θi in the range
of Ci. Lastly, navigate in Cn from tn to tb and rotate
from θn to θb. The result is a valid path from (ta, θa)
to (tb, θb).

For generating a valid path, the choice of ti is arbi-
trary. However, a more methodical choice of ti can re-
duce path length. Working backwards, we assign tn to
the nearest point in Cn−1∩Cn to tb and, iteratively, as-
sign ti to the nearest point in Ci−1 ∩ Ci to ti+1. While
the problem is symmetrical, working backwards from
the terminal point results in a more intuitive path: the
robot will approach an obstacle and then rotate to ma-
neuver around it.

5 Finding Paths in a Free Space Component

The described path planning algorithm requires a
method of finding a path between two points in a given
component. In general, the problem of finding the short-
est path between two points among polyhedral obstacles
is NP-Hard [3], so instead we seek a valid and reasonable
path. The shortest path can be approximated in poly-
nomial time using a visibility graph [6] [9] [13]. The
more densely the graph is constructed, the closer the
approximation. However, in practice, achieving a good
approximation is expensive.

We instead reduce the problem to finding paths along
the surface of the obstacle. The problem of finding
shortest paths on the surface is much simpler and can be
solved in polynomial time by wavefront propagation [7]
or by partitioning of the obstacle surface [16] [11] [12].
We implement a simpler algorithm for finding paths on
the surface.

We reduce the problem to finding paths on the surface
as follows: To find a path from p to q, which lie in
component C, we find all the points where the segment
pq intersects with a face of C. If any portion of pq lies
outside of C, we replace it with a path on the surface of
C. The result is a path that is fairly intuitive: the robot
will move directly towards its destination and maneuver
around obstacles as it encounters them.

We find a path from s to t on the surface of a triangu-
lated connected component C as follows. First, we use
breadth first search to find a sequence of neighboring
faces {T1, T2, ..., Tn} that connect the containing faces
of s and t (Fig. 8(a)). Let ti be the transformation
that rotates Ti+1 about its shared edge with Ti so that
the two triangles lie in the same plane. By applying
t1 ◦ t2 ◦ ... ◦ ti−1 to each Ti, the faces are ‘unfolded’ to
all lie in the same plane (Fig. 8(b)). Since the common
edges of the triangles are unchanged, the shortest path
through all the common edges is the same in the planar
problem as it is in the original problem.

We use a funnel algorithm to find the shortest path

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

(a) (b) (c)

Figure 8: (a) The sequence of triangles returned by
breadth first search for a path from s to t, (b) the se-
quence unfolded into a 2D and the resulting shortest
path, and (c) the 2D shortest path converted back to
3D.

through every common edge of the planar triangles in
linear time [4]. We add each common edge, finding the
convex hull of the right hand vertices by making only
right hand turns and the convex hull of the left hand
vertices by making only left hand turns. Whenever the
right path becomes left of the left path, move elements
from the beginning of the left path to the end of the
output path. Whenever the left path becomes right of
the right path, move elements from the beginning of the
right path to the end of the output path.

Given the shortest path in the planar problem, we find
the intersection of the path with each common edge. For
each intersection point, we find the point that is the
same distance along the equivalent three dimensional
edge. The result is the shortest path from s to t through
{T1, T2, ..., Tn} (Fig. 8(c)).

(a) (b) (c)

Figure 9: (a) The sequence of triangles found by going
the other way around the vertex shown in Fig. 8, (b)
the sequence unfolded into 2D and the resulting shortest
path, and (c) the 2D shortest path converted back to
3D.

Since the resulting path is dependent on a sequence of
faces {T1, T2, ..., Tn}, we iteratively modify the sequence
of faces until we reach a local optimum. For each point
where the path goes through a vertex v, the path may
improve by going the other way around v. We replace
all Ti that are incident on v with faces on the other
side of v and perform the two dimensional shortest path

algorithm again (Fig. 9). The resulting path is either
shorter or unchanged. We repeat this process until the
path remains unchanged for every vertex on the path.
The result is a locally optimal path on the surface of C.

6 Approximate Maximization of Path Clearance

Given a graph of free space components and the de-
scribed method of generating paths within a component,
we can navigate between any two connected points in
the free space. However, the resulting path may con-
tain points on the boundary of the free space, where
the robot would scrape against an obstacle. In practice,
it is preferable to generate paths with sufficient distance
between the robot and any obstacle, for safety and for
the maneuverability of the robot.

We expand the graph to account for path clearance
by structuring it in levels, where deeper nodes represent
free space components with more clearance. The user
selects the unit of clearance d and the number of levels
l. For each level l > 0, Sli is the subset of Si where the
robot has at least d · 2l−1 clearance from O, generated
by taking the Minkowski difference of Si with a sphere
of radius d · 2l−1. As before, each component of Sli
is represented by a node in the graph and edges are
placed between intersecting components belonging to
neighboring angles ranges. So, at each level, the graph
is a representation of the four dimensional free space
with clearance of at least d · 2l−1.

Additionally, each component is connected to its chil-
dren: the components of the succeeding level that are
contained in it. When a component of Sli is narrowed to
produce a space with more clearance, it may be elimi-
nated or split into multiple components of Sl+1

i . Hence
a component may have zero, one, or multiple children.

Given this new graph, we now have the capacity to
search for paths in the free space at multiple clearance
values. Suppose we want to navigate between compo-
nents Ca and Cb. A path that traverses deeper nodes
corresponds to a path with more obstacle clearance, so
we search for a path that maximizes node depth. A sim-
ple algorithm to find the deepest path is to visit each
node, starting at level 0, and remove the node if doing
so does not disconnect Ca and Cb.

A maximal depth search has the advantage of maxi-
mizing the clearance on a local basis. The robot can tra-
verse through high clearance components in parts of the
path where space is available and also squeeze through
tight passages. We choose to increase the clearance unit
exponentially in order to capture multiple resolutions
with relatively few levels. This results in better paths
for problems where the tightness varies greatly at dif-
ferent points in the workspace.

We can further optimize the clearance of the output
path by adjusting the paths between two points within a

30th Canadian Conference on Computational Geometry, 2018

c
1

c
2

p

p’ q’

q

P Q

Figure 10: A path from c1 to c2 within a component
that traverses through its nearest children, P and Q.

component. Suppose we need a path between points c1
and c2 within component C, and C has children. Then
the children are contained in C and have more clearance.
So a path through the children of C is preferable to a
path through C. We wish to generate a path though
C that avoids the space outside of its children. We
first find P and Q, the nearest children to c1 and c2,
respectively. Next, we find p and q, the nearest point
in P to c1 and nearest point in Q to c2. If p′ and q′

are the nearest pair of points between P and Q then
{c1, p, p′, q′, q, c2} is a path through C that avoids the
space outside its children (Fig. 10). If P or Q also
have children, we recursively use the same algorithm to
find paths in P or Q. This algorithm minimizes the
distance the robot must travel in components with low
clearance. For faster path finding, we find and store p′

and q′ for each pair of nodes that share a parent during
graph construction.

7 Implementation Details

All computation is implemented using the adaptive pre-
cision controlled perturbation robustness library [14] 1.
The library ensures results are accurate to the user spec-
ified error bound. The Minkowski sums, which are re-
quired to generate each three dimensional subspace, are
computed using a convolution based approach [8].

For convenience, we save each each subspace and
the graph of free space components to files to be used
for future path queries. Doing so requires convert-
ing the polyhedra with high precision coordinates to
meshes with floating point coordinates. The vertices
are rounded using a geometric rounding algorithm that
preserves the topology of the mesh [10].

8 Results

In the problem depicted in Fig. 11, the obstacle is
a box with two inner chambers. There are narrow
paths connecting the first and second chamber and
connecting the second chamber to the outside. The two
narrow paths have opposite orientation and navigating
from the start position inside the first chamber to the

1http://www.cs.miami.edu/home/vjm/robust/

(a) (b)

Figure 11: Start (green) and end (red) positions for
a rectangular robot navigating around a two chamber
obstacle.

end position outside requires the robot to make two 90
degree turns. We generate a path for this problem that
approximately maximizes the robot’s distance from
the walls. An animation of that path is available at:
http://web.cs.miami.edu/home/arluck/tworoom/2.
The animation shows the scene from three different
views: one in each chamber and one outside.

(a) (b)

Figure 12: A cross shaped robot navigating through
(a) a 2D integer lattice and (b) a 3D integer lattice of
narrow poles on an incline.

Next, consider the problem in Figure 12. There is
a cross shaped robot inside a room open on one end.
Between the robot and the exit is an integer lattice of
narrow poles with a radius of 10−5. This case is diffi-
cult for traditional PRM, since it would require a very
small step size in order to detect the collision with each
pole. We generate a path that rotates back and forth to
weave through the lattice while rising to accommodate
the incline. An animation of that path is available at:
http://web.cs.miami.edu/home/arluck/lattice/.

For both problems, we divide the rotation dimension
into 40 angle ranges. On one core of a machine with an
Intel Xeon E7 CPU, we generate the 40 free spaces in
just under 10 minutes for the first problem and 25 for the
second problem. We construct the no-clearance graph
in about 15 and 30 minutes and each addition level of
clearance in 40 minutes and 1 hour. After the one-time
computation of the free space, we can generate paths
between any two configurations in only 5-10 seconds.

2Animation created by Hal Milenkovic

http://www.cs.miami.edu/home/vjm/robust/
http://web.cs.miami.edu/home/arluck/tworoom/
http://web.cs.miami.edu/home/arluck/lattice/

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Acknowledgments

Arluck and Milenkovic are supported by NSF grant
CCF-1526335. Sacks is supported by NSF grant CCF-
1524455.

References

[1] N. M. Amato, O. B. Bayazit, and L. K. Dale. OBPRM:
An obstacle-based PRM for 3D workspaces, 1998.

[2] V. Boor, M. H. Overmars, and A. F. van der Stap-
pen. The Gaussian sampling strategy for probabilistic
roadmap planners. In Proceedings 1999 IEEE Interna-
tional Conference on Robotics and Automation (Cat.
No.99CH36288C), volume 2, pages 1018–1023 vol.2,
1999.

[3] J. Canny and J. Reif. New lower bound techniques
for robot motion planning problems. In 28th Annual
Symposium on Foundations of Computer Science (sfcs
1987), pages 49–60, Oct 1987.

[4] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and
R. E. Tarjan. Linear-time algorithms for visibility and
shortest path problems inside triangulated simple poly-
gons. Algorithmica, 2(1):209–233, Nov 1987.

[5] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani,
and S. Sorkin. On finding narrow passages with proba-
bilistic roadmap planners. In Proceedings of the Third
Workshop on the Algorithmic Foundations of Robotics
on Robotics : The Algorithmic Perspective: The Algo-
rithmic Perspective, WAFR ’98, pages 141–153, Natick,
MA, USA, 1998. A. K. Peters, Ltd.

[6] K. Jiang, L. S. Seneviratne, and S. W. E. Earles. Find-
ing the 3D shortest path with visibility graph and min-
imum potential energy. In Intelligent Robots and Sys-
tems ’93, IROS ’93. Proceedings of the 1993 IEEE/RSJ
International Conference on, volume 1, pages 679–684
vol.1, Jul 1993.

[7] S. Kapoor. Efficient computation of geodesic shortest
paths. In Proceedings of the Thirty-first Annual ACM
Symposium on Theory of Computing, STOC ’99, pages
770–779, New York, NY, USA, 1999. ACM.

[8] M.-H. Kyung, E. Sacks, and V. Milenkovic. Robust
polyhedral Minkowski sums with GPU implementation.
Computer-Aided Design, 6768:48–57, 2015.

[9] T. Lozano-Pérez and M. A. Wesley. An algorithm for
planning collision-free paths among polyhedral obsta-
cles. Commun. ACM, 22(10):560–570, Oct. 1979.

[10] V. Milenkovic and E. Sacks. Geometric Rounding and
Feature Separation in Meshes. ArXiv e-prints, May
2018.

[11] D. Mount. On finding shortest paths on convex poly-
hedra. page 35, 05 1985.

[12] J. O’Rourke, S. Suri, and H. Booth. Shortest paths on
polyhedral surfaces. In K. Mehlhorn, editor, STACS
85, pages 243–254, Berlin, Heidelberg, 1984. Springer
Berlin Heidelberg.

[13] C. H. Papadimitriou. An algorithm for shortest-path
motion in three dimensions. Information Processing
Letters, 20(5):259 – 263, 1985.

[14] E. Sacks and V. Milenkovic. Robust cascading of oper-
ations on polyhedra. Computer-Aided Design, 46:216–
220, Jan. 2014.

[15] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact Col-
lision Checking of Robot Paths, pages 25–41. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.

[16] M. Sharir and A. Schorr. On shortest paths in poly-
hedral spaces. In Proceedings of the Sixteenth Annual
ACM Symposium on Theory of Computing, STOC ’84,
pages 144–153, New York, NY, USA, 1984. ACM.

	Introduction
	Constructing the Free Space
	Error Bound on the Sweep Polyhedron
	Path Panning
	Finding Paths in a Free Space Component
	Approximate Maximization of Path Clearance
	Implementation Details
	Results

