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AR HMD Guidance for Controlled Hand-Held 3D Acquisition

Daniel Andersen, Peter Villano, and Voicu Popescu

Fig. 1. Top left: Our acquisition guidance system, made up of an AR HMD and a handheld camera rig tracked using a fiducial marker.
Top middle: Operator AR view of scene, with virtual overlay of camera rig, automatically-generated suggested views (white icons), and
suggested acquisition path (blue lines). Top right: Interactive guidance (green rectangle) for precise 6-DOF alignment of camera rig
with suggested view. Second row: Photogrammetric reconstruction of scene from images captured during guided acquisition. Third
row: AR view of suggested views on outdoor scene, and photogrammetric reconstruction from acquired views.

Abstract—Photogrammetry is a popular method of 3D reconstruction that uses conventional photos as input. This method can achieve
high quality reconstructions so long as the scene is densely acquired from multiple views with sufficient overlap between nearby
images. However, it is challenging for a human operator to know during acquisition if sufficient coverage has been achieved. Insufficient
coverage of the scene can result in holes, missing regions, or even a complete failure of reconstruction. These errors require manually
repairing the model or returning to the scene to acquire additional views, which is time-consuming and often infeasible. We present
a novel approach to photogrammetric acquisition that uses an AR HMD to predict a set of covering views and to interactively guide
an operator to capture imagery from each view. The operator wears an AR HMD and uses a handheld camera rig that is tracked
relative to the AR HMD with a fiducial marker. The AR HMD tracks its pose relative to the environment and automatically generates
a coarse geometric model of the scene, which our approach analyzes at runtime to generate a set of human-reachable acquisition
views covering the scene with consistent camera-to-scene distance and image overlap. The generated view locations are rendered to
the operator on the AR HMD. Interactive visual feedback informs the operator how to align the camera to assume each suggested
pose. When the camera is in range, an image is automatically captured. In this way, a set of images suitable for 3D reconstruction can
be captured in a matter of minutes. In a user study, participants who were novices at photogrammetry were tasked with acquiring
a challenging and complex scene either without guidance or with our AR HMD based guidance. Participants using our guidance
achieved improved reconstructions without cases of reconstruction failure as in the control condition. Our AR HMD based approach is
self-contained, portable, and provides specific acquisition guidance tailored to the geometry of the scene being captured.

1 INTRODUCTION
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3D acquisition and reconstruction of real-world objects and scenes is
an important technology with a wide range of applications. Inspection
and maintenance of industrial facilities is made more efficient by cap-
turing reliably precise 3D models of machinery. Capturing high-fidelity
models of living spaces for easy interactive viewing online helps sellers
in the real estate industry more efficiently attract interested buyers.
Analysis of crime scenes by law enforcement is made more robust
by 3D acquisition, by tracing bullet paths or determining visibility of
different areas of the scene. The digital humanities and archaeology



is enhanced by acquiring metrically-accurate models of artifacts both
for preservation and for analysis by researchers around the world. The
usefulness of these applications relies on the ability to acquire data
efficiently with the goal of achieving a high-quality reconstruction.

Acquisition based on digital photography (photogrammetry) is a pop-
ular method due to the ubiquity of high-quality cameras in smartphones,
and due to recent improvements in photogrammetric reconstruction
algorithms implemented in consumer-level photogrammetric software,
which can more robustly detect salient features between photos cap-
tured from nearby views and can match these features to generate 3D
models of real-world scenes.

Despite its reliance on relatively time-intensive offline reconstruc-
tion, photogrammetry is able to achieve high quality results, due to its
emphasis on crisp, feature-rich images captured in a dense arrangement
around the scene. However, the high quality results depend on a high
quality acquisition process, which depends on several factors that an
operator must simultaneously keep in mind while acquiring the scene.
The scene should be captured from views that are approximately the
same distance from the scene so that the amount of detail is consistent
across the model. Neighboring views should also have at least a certain
amount of image overlap so that scene features are imaged multiple
times for reduced uncertainty. The placement of views in space should
be adapted based on the shape of the scene. Each image captured
should be blur-free so that feature matching has the highest chance of
success. Coverage of all regions of interest in the scene is needed for
an optimal reconstruction.

Poor acquisition leads to poor reconstruction results, such as blurry
textures or low geometric resolution in some regions, or holes where
geometry could not be reconstructed. In the extreme case, entire sec-
tions of the geometry may be missing, or only a small fraction of input
images may be matched, leading to a catastrophic failure to reconstruct
any model. Such acquisition problems are not immediately obvious
until after the acquisition session, during the computationally intensive
reconstruction stage, at which point returning to the scene to acquire
more images may be impractical or even impossible.

Achieving high quality acquisition is a challenging task for a human
operator, as it requires a quantitative analysis of the scene and precise
measurement of camera position and orientation in order to assume the
desired poses. An operator must keep track of which views should be
captured, as well as which views have and have not yet been captured
during acquisition.

While prior work has explored the problem of interactive guidance
during 3D acquisition, such approaches have relied on external cloud-
based computation or hand-held smartphone tracking that is limited to
simple scenes (e.g. approximating the scene as a hemisphere on a flat
surface) and that requires slow device movements. What is needed is
a self-contained method of automatically generating view suggestions
for complex scenes, as well as a method of intuitively visualizing the
suggestions to the operator and tracking which views have or have not
yet been captured.

Augmented reality head-mounted displays (AR HMDs), which cou-
ple an augmented overlay of visual information onto the real world
with real-time acquisition of rough geometric models for localization
purposes, can help address this challenge. The combination of these
two properties allows for geometric analysis of a scene for photogram-
metric acquisition, while also providing the tracking and visualization
needed to show an operator which views should be acquired and to
guide the operator to capture imagery from precise locations that fulfill
the acquisition criteria needed for good coverage.

In this paper we present a method for AR HMD-based guidance to
enable efficient photogrammetric acquisition with guarantees. Specifi-
cally, our approach provides guidance to achieve consistent coverage
of a region of interest, consistent image overlap between neighboring
views, and consistent distance between views and the scene.

Our system is made up of an AR HMD and a smartphone camera
rig (Fig. 1, top left). Using the onboard camera on the AR HMD,
we track the 6-degree-of-freedom (6-DOF) pose of the camera from
a fiducial marker rigidly attached to the camera rig. The AR HMD
automatically tracks its own pose within the operator’s environment and

generates a low-polygon approximate geometric model using active
onboard sensors. The operator can select within the scene a region of
interest to be acquired. Upon selection, we generate a set of views that
surround the region of interest and that are suitable for photogrammetric
acquisition (Fig. 1, top middle). The suggested views are rendered as
AR overlays onto the operator’s view of the real world scene. When the
operator places the camera rig near the suggested view, visual feedback
is provided to guide the operator to assume a precise 6-DOF pose,
and a photo is automatically captured when the camera is held stably
in place (Fig. 1, top right). The operator moves from view to view
until a set of hundreds of images has been acquired suitable for offline
photogrammetric reconstruction (Fig. 1, middle row). Our approach
is self-contained and portable and works both indoors and outdoors
in overcast/cloudy weather, making it well-suited to the use case of
photogrammetry (Fig. 1, bottom row). We refer the reader to our
accompanying video, which demonstrates our approach in use on a
variety of scenes.

Our work addresses two central research problems. First is how
to define a set of acquisition poses that enforce coverage guarantees
specific to our reconstruction method of photogrammetry; our solution
is based on signed distance functions and iterative mesh refinement
that relies on representing overlap between images as the length of
edges in a mesh. Second is how to provide visual guidance to allow a
user to capture an image of a real-world scene from a specified 6-DOF
pose; our approach hinges on adaptive visual guidance offset from the
physical camera that allows the user to position the camera intuitively
for hundreds of acquisition poses.

We have validated our approach in a user study (N = 10) in which
participants acquired imagery of a real-world scene either with a con-
ventional smartphone camera (Control condition) or with our AR HMD
based guidance system (Experimental condition). When compared
against a ground truth reference reconstruction of the scene, images
acquired in the Experimental condition led to a significantly more
complete model, with approximately 95% of the scene reconstructed
to within 5cm of ground truth as opposed to only 60% of the scene
reconstructed in the Control condition.

2 PRIOR WORK

In this section, we discuss relevant prior work in the areas of view
planning and the use of AR for acquisition guidance.

There has been much research into the problem of view planning,
with the goal of defining a set of views to acquire that efficiently and
completely cover a region of interest [8]. Ahn et al. examined a method
of planning the placement of 3D scanners for large outdoor histori-
cal sites [3]. Wakisaka et al. used a voxel occupancy classification
approach to define an optimal placement of terrestrial laser scanners
for acquisition of industrial spaces [32]. While these approaches are
suitable for the task of capturing a large scale scene with a capture
device that is inconvenient to move regularly, the approach requires
pre-labeling an existing aerial map which is less suited for more casual
photogrammetric acquisition. Additionally, these approaches focus on
the 2D placement of a scanner within an environment, while handheld
photogrammetry usually relies on the additional views that specific 3D,
6-DOF poses can add to a reconstruction. While research into view
planning in 3D contexts has also been previously explored, many of
these approaches emphasize minimizing the number of views acquired
for the sake of time and efficiency [27]. In contrast, our use case of
casual handheld photogrammetry is one where the time and effort to
capture each photo is relatively small, and so we prioritize ensuring
that an operator captures a semi-dense and complete set of images that
will assure a complete reconstruction.

Augmented reality has been explored for its potential to improve the
act of view planning during 3D acquisition and to integrate visual feed-
back into the capture process. Pan et al. presented an early approach to
this problem by interactively reconstructing a handheld object while
presenting a video AR overlay of the current reconstruction, as well as
guidance arrows to tell the operator to manipulate the object to view all
sides [21]. This approach is suited for small-scale objects that can be
easily approximated as a sphere for outside-in capture, but a different



approach for visualization and analysis is needed for larger and more
arbitrary geometry.

Some prior smartphone-based systems exist for guided photogram-
metric acquisition. For example, Trnio and SCANN3D track image fea-
tures to indicate to the user if a current pose has a recommended amount
of overlap [29, 31]. Such interfaces are completely self-contained, but
there are several limitations. These approaches either assume the set
of acquisition views can be approximated as points on a sphere, or the
application only tracks features relative to the most recent photo and
thus lacks a global context to guide the operator. These approaches
also offer no scene-specific estimate of how many images are needed
for a good reconstruction; instead, the operator must rely on their own
judgment or past experience to guess if enough photos have been cap-
tured. Furthermore, the smartphone must be moved slowly and held up
constantly to not lose tracking, which requires cumbersome reinitializa-
tion if the operator pauses due to arm fatigue; in contrast, our approach
offloads tracking to a head-mounted platform, which is more robust to
sudden motions of either the AR HMD or the handheld camera.

Some approaches to interactive guided 3D acquisition focus on
online reconstruction, where each acquired image is integrated into
an increasingly-improving model [14]. To some degree, our approach
makes use of such incremental reconstruction by relying on the rough
geometry generated by the AR HMD. However, our approach makes
the assumption that a truly high quality photogrammetric reconstruction
(of the sort that justifies the use of photogrammetry) is computationally
intensive and not well suited for a fully self-contained and portable
platform. By ensuring that our acquisition approach is self-contained,
we retain an advantage of photogrammetry in that external computation
or an always-on broadband Internet connection is not needed, and
that in situ capture can be done even in austere environments such as
archaeological sites.

This disadvantage of online reconstruction is illustrated by the work
of Langguth and Goesele, in which a robust incremental reconstruction
is achieved with next-best-view guidance to a user, but the processing
time between each view limits feasible capture to only a few dozen
images and not the hundreds that are usually needed for high quality
photogrammetric reconstruction of larger objects [16]. Another exam-
ple of online reconstruction for guided AR acquisition was shown by
Locher et al., where a smartphone interface displayed a next-best-view
map to a user to encourage acquisition of a scene from uncaptured
views [18]. However, each view was sent to a remote server for incre-
mental reconstruction and recalculation of the next best view, a process
took almost 3 minutes per view. This approach is suitable for a mass
of users each acquiring a few additional images while walking past a
famous landmark; it is less suitable for single-session acquisition by
one or a few users.

While most prior work on AR view guidance has focused on smart-
phones or tablets, there has been some investigation into the secondary
perspective that an AR HMD can provide. Andersen and Popescu
proposed an AR HMD based method of guiding a user to acquire a
dense set of panoramas for the purpose of image-based modeling [4, 5].
The user wore an AR HMD with a panoramic camera attached, and
walked with consistent head height through an indoor scene; an AR
interface displayed a top-down view of the room, divided into grid cells
that were marked as either captured or not yet captured. While this
approach is suitable for capturing a large and dense set of panoramas,
it is not suitable for photogrammetric capture which requires a set of
views that is both varied in height and concentrated around a consistent
distance to the target.

Our work is inspired by automated capture of outdoor scenes by
aerial drones. Such approaches rely on an explore-and-exploit strategy
in which a rough, low-detail reconstruction is made of a scene by
acquiring imagery from a known safe altitude, and then determining
a set of additional views that are both navigable and achieve a higher
quality reconstruction [30]. Huang et al. implemented a next-best-view
acquisition of scenes using a toy drone, for the purposes of image-
based modeling [15]. Roberts et al. proposed a method of drone-based
refined acquisition by voxelizing the scene, determining an optimal
camera orientation for each voxel, and using an additive approximation

Fig. 2. Pipeline of our approach.

of a coverage criterion to select views and an efficient path [28]. Our
approach to view generation is perhaps most similar to the work of
Peng and Isler, who simplify the 3D search space of finding views from
voxels into a 2D search space by defining points on a manifold that
wraps around the scene; however, our approach uses signed distance
fields rather than relying solely on extrusion of mesh points along a
surface normal due to the noisy nature of the rough geometry from our
AR HMD [22, 23].

Some recent research has focused on fully autonomous scene recon-
struction by robotic operators [1]. For example, Liu et al. investigated a
method of both autonomously exploring a scene without prior human in-
put while also scanning individual objects within the scene [17]. While
autonomous devices hold great promise for the future of 3D acquisition,
especially for large scenes that would be tedious to acquire manually,
it is still the case that robotic systems are expensive, bulky, and have
difficulty navigating many cluttered environments. In contrast, hu-
mans are extremely effective at navigating the sorts of human-designed
environments that contain many interesting acquisition subjects.

We also wish to distinguish our approach from a recent work by
Dong and Höllerer that uses an AR HMD to capture color textures of a
scene and apply them to a reconstructed mesh [10]. The work is focused
on augmenting the AR HMD’s rough geometric model of the scene
(which we also use in our work) with color aligned from the AR HMD’s
onboard RGB camera. The goal of their work is to operate under a
constrained memory and performance footprint and to achieve good
texturing of that rough geometry in real time. However, their approach
only results in a textured mesh at the same level of quality as the original
rough geometric model, with holes or artifacts still present. Regions of
missing geometry cannot be repaired after acquisition because image
data is not preserved. Our approach acknowledges that a high quality
reconstruction is only feasible with offline processing, and so focuses
only on guidance and saving all input data during acquisition for later
processing.

3 OVERVIEW

In this section, we provide an overview of our approach. An operator
uses our AR acquisition interface (Sect. 4), which is made up of an AR
HMD and a tracked handheld camera rig. The AR HMD visualizes a
set of suggested acquisition views, and provides interactive guidance to
the operator to assume each view with the handheld camera rig.

Fig. 2 illustrates our pipeline, which can be divided into an online
acquisition stage and an offline reconstruction stage. In our work, we
focus exclusively on the online acquisition stage in order to increase
the coverage and density of acquired images, and we use conventional
off-the-shelf 3D reconstruction approaches to generate a 3D model
from the acquired images.

Acquisition of geometric proxy: Our method first requires the acqui-
sition of a rough geometric proxy of the scene. We rely on modern AR



HMDs’ ability to provide rough geometry of the wearer’s environment
using onboard sensors. An operator can simply wear the AR HMD and
walk around a target scene and generate a geometric proxy in a matter
of seconds.

Selection of target scene: The operator uses an interface on the AR
HMD to select a region of interest and a selection radius. The subset of
the rough geometric proxy that is within the selection radius is copied
and used for generating suggested acquisition views.

Generation of suggested views: Given an input mesh taken from the
AR HMD’s rough geometry, our approach automatically generates a
set of acquisition views based on heuristics that are widely used in the
photogrammetric community to ensure a high quality reconstruction.
First, imagery should be captured from a consistent distance from the
scene, so as to prevent cases where some regions of interest have widely
varying resolution or detail from other regions of interest. Second, a
large amount of images overlap (usually 50%−70%) between adjacent
photos is important, so that a single feature point is imaged in multiple
views and can be reconstructed accurately. A third, and implicit, design
requirement is that any views presented to the operator should be
physically reachable by a human without excessive difficulty. Sect. 5
provides detail about our method of automatic view generation.

View acquisition with AR guidance: Once a set of views has been
generated, they are visualized to the operator as an AR overlay super-
imposed onto the scene. The operator then is tasked with physically
placing the handheld camera rig at each view, matching both position
and orientation. The AR interface provides interactive visual feedback
so that the operator can precisely align the camera with the suggested
view. Once the camera has been placed near the suggested view, the
camera automatically captures an image. The operator repeats this
process until all views have been captured.

Photogrammetric reconstruction: The output of acquisition is a
set of photos covering the scene, along with a rough estimate of the
camera’s pose based on the AR HMD’s tracking of the camera rig.
We input these to a conventional structure-from-motion (SfM) system,
which extracts and matches features of nearby photos, generates a
sparse point cloud, and then creates a textured 3D mesh of the scene.

4 AR ACQUISITION INTERFACE

In this section, we describe our AR HMD-based acquisition interface.
We explain how an operator can select a region of the environment
for acquisition, can visualize a set of acquisition views suitable for
photogrammetric reconstruction, and can use AR-based guidance to
precisely place a handheld camera at each suggested view.

During acquisition, the operator wears an AR HMD and uses a
handheld camera rig to capture imagery of the scene from multiple
views (Fig. 1, top middle). The camera rig and AR HMD are wirelessly
networked together. The AR HMD contains active sensors that track the
headset’s position/orientation relative to the environment as the operator
walks around the scene. The AR HMD also uses these active sensors
to generate a rough geometric model of the scene. A forward-facing
RGB camera onboard the AR HMD is calibrated prior to operation to
determine the camera intrinsics and is used to track the 6-DOF pose
of a fiducial marker attached to a handheld camera rig. The camera
rig is made up of a smartphone with a scene-facing RGB camera and
a rigidly-mounted fiducial marker. Fig. 1, top right, illustrates the
operator’s view of the tracked camera rig as seen through the AR HMD.
The frame of the smartphone (white rectangles) and the position of the
smartphone’s camera (blue dot in top left of frame) are highlighted to
the operator as AR overlays.

Given a real-world scene to be acquired, the operator first points
at the center of the scene with an AR cursor visible on the AR HMD,
and defines a radius of interest to select a subset of the AR HMD’s
rough geometric model. A user interface on the camera rig allows the
operator to specify a desired target image overlap ω ∈ [0.0,1.0] and
desired camera-to-scene distance d. Our automatic view generation
approach defines, in a matter of seconds, a set of camera poses that
cover the region of interest at a consistent distance from the scene and
with the desired image overlap. We next describe the details of our
automatic view generation approach.

5 GENERATION OF SUGGESTED VIEWS

Input: mesh M, camera-to-scene distance d, image overlap ωh,
image sidelap ωv, camera horizontal FOV θh, camera
vertical FOV θv, user height hu, floor height h f

Output: set of 6-DOF views
1 bh← (1−ωh)

(
2d tan θh

2

)
;bv← (1−ωv)

(
2d tan θv

2

)
2 sd f ← SignedDistance(M)
3 IC← IsoContour(sd f ,d)
4 Mo f f set ←MarchingCubes(IC)
5 Mre f ined ←Mo f f set
// Baseline enforcement

6 for k iterations do
7 foreach edge ei j = (vi,v j) in Mre f ined do
8 ni← vi.normal
9 viewi← LookAt(vi,−ni,up)

10 (x j,y j)← Pro ject(viewi,v j)

11 bi j← lerp(bh,bv,atan2(y j,x j)
2
π
)

12 if ei j.length < bi j− ε then collapse ei j
13 else if ei j.length > bi j + ε then split ei j
14 end
15 end
16 Mclipped ←Clip(Mre f ined ,hu,h f )
// View definition

17 views← {}
18 foreach vertex vi, normal ni in Mclipped do
19 viewi← LookAt(vi,−ni,up)
20 views← views∪{viewi}
21 end
// View augmentation

22 foreach vertex vi, normal ni in M do
23 p← vi +d ∗ni
24 if dist(p,NearestNeighbor(p,views))> max(bh,bv) then
25 v← LookAt(p,−ni,up)
26 views← views∪{v}
27 end
28 end
29 return views

Algorithm 1: Our method of generating acquisition views.

In this section, we describe our method of generating a set of sug-
gested acquisition views suitable for photogrammetric reconstruction.
Algorithm 1 provides an overview of our approach. The input to our
algorithm is a triangle mesh M that is copied from the AR HMD’s
rough geometric model and which defines a region of interest in the
scene (Fig. 3, top left). The output of our algorithm is a set of 6-degree-
of-freedom poses (positions and orientations) that define the suggested
views for the operator’s handheld camera rig.

Besides the input mesh M, we also take as an input parameter a
desired camera-to-scene distance d, as well as a desired image overlap
as a value between 0.0 (0% overlap) and 1.0 (100% overlap). We
consider both horizontal overlap (which we label ωh), and vertical
sidelap or ωv. The handheld camera’s field of view is an additional
parameter and is a fixed property of the camera hardware. We label the
camera’s horizontal field of view as θh and the vertical field of view as
θv. Our view generation method takes into account both the horizontal
and vertical field of view of our acquisition device.

As explained in Sect. 3, our method must also ensure that the sug-
gested views are reachable by a human operator. At runtime, we raycast
from the operator’s HMD position towards the floor and estimate the
operator’s height hu and the height of the floor plane h f . We include
h f and hu as input parameters to our view generation.

Given values of d, ωh, ωv, θh, and θv we define a desired horizontal
camera baseline bh and a desired vertical camera baseline bv. That is, if
two views are horizontally adjacent to each other, their baseline should
be bh to achieve an image overlap of ωh; if two views are vertically



Fig. 3. The stages of the view generation pipeline. Top left: input mesh M selected from the AR HMD rough geometry. Top center: mesh Mo f f set
created with marching cubes. Top right: mesh Mre f ined after iterative mesh refinement. Bottom left: mesh trimmed to remove human-unreachable
views. Bottom center: generated views (white arrows). Bottom right: suggested acquisition path between views (blue lines).

adjacent (one directly above the other), the baseline should be bv to
achieve an image sidelap of ωv. We assume that the scene can be locally
approximated as a plane imaged by adjacent cameras oriented opposite
the plane’s normal. Algorithm 1 details how the baseline values are
computed. For example, with an FOV θh = 65◦, a camera-to-scene
distance d = 0.5m, and an overlap of ωh = 0.67, the horizontal baseline
bh is approximately 0.21m.

We create a signed distance field (SDF) from our input region of
interest mesh M (distances are sampled discretely and stored in a
3D Cartesian grid). We define an offset isocontour from the SDF at
distance d, and convert the offset implicit function to a triangulated
mesh Mo f f set (Fig. 3, top center) using marching cubes [19].

We next iteratively refine the offset mesh. The vertices and surface
manifold of Mo f f set are approximately distance d from the surface of
M, but the initial distance between the vertices is arbitrary and derived
only from the resolution of the marching cubes algorithm. We use
a modified version of Botsch and Kobbelt’s algorithm for remeshing
to iteratively split and join faces based on a target edge length [7].
By default, their algorithm adjusts meshes based on a single target
edge length. In our case, we desire a differing edge length for each
edge depending on whether camera views centered at the two vertices
of the edge, and oriented opposite the vertices’ normals, would be
horizontally or vertically aligned with each other. During each iteration
of mesh refinement, we use the LookAt function to compute a 6DOF
view for each endpoint of an edge ei j in the mesh. The position of
the view is at the vertex position, the forward direction of the view is
opposite the vertex’s normal, and the input up direction is the world
up direction in the AR HMD coordinate system (+Y). We then project
the vertex position of one edge endpoint onto the other endpoint’s
view. Depending on how horizontal vs vertical the projected point is,
we linearly interpolate between bh and bv to get a baseline bi j, which
we set as the target edge length for this edge during this iteration of
mesh refinement. To prevent the refined mesh from oversmoothing
and changing its shape radically from the original surface manifold
defined by the SDF, we project the updated vertex positions after each
iteration onto the nearest triangle of the original Mo f f set . We refine
the mesh over k iterations (we use k = 20 in our experiments) until all
edge lengths are approximately bi j . After iterative mesh refinement, we
have a mesh Mre f ined where all vertices are approximately d from the
surface of M while also having adjacent vertices separated by a baseline
between bh and bv, depending on how horizontally or vertically aligned
the adjacent vertices are (Fig. 3, top right).

The resulting mesh Mre f ined may include regions that are difficult

or impossible for a human operator to reasonably reach (e.g. vertices
under the floor, or too high to reach with one’s arms). Using the defined
input parameters h f and hu for the height of the floor and the height
of the user, we clip Mre f ined of all faces and vertices that are above
a certain offset from hu or below a certain offset from h f . In our
experiments, we set the lower cutoff to 0.6m above the floor height h f ,
and we set the upper cutoff to 1.05 times the estimated height of the
operator hu. Fig. 3, bottom left, shows the resulting trimmed mesh.

We now convert the generated mesh into a set of camera positions
and camera forward vectors. We take each vertex Vi and associated
normal Ni of Mre f ined and define a camera pose Ci with position Vi and
forward direction −Ni. To avoid regions of the scene being undersam-
pled in a complex scene, we augment the set of views by taking the
original vertices of our input mesh M, extruding them d along their
normal directions, and adding them iteratively to our set of camera
poses if (1) they are in between our cutoff heights, (2) they are not
within a collision distance of M, and (3) they are not within max(bh,bv)
of any other camera in the list of camera poses.

Now that we have our list of positions and forward directions for
our cameras, we create full 6-DOF poses for each by using the LookAt
method with the world up-direction (+Y ) as the input up direction. This
direction assures that most poses will keep the handheld camera rig in
a consistent orientation during acquisition, which is most comfortable
for a human user. Fig. 3, bottom center, shows the generated views.

At runtime, the operator is shown a suggested acquisition path from
one view to the next (Fig. 3, bottom right). This is computed by starting
at the closest view to the operator, then selecting the immediate nearest
neighbor view repeatedly in a greedy approach until all currently-
unacquired views are in the path. The path is recomputed each time the
user acquires a new view.

6 VIEW ACQUISITION WITH AR GUIDANCE

Once the set of suggested acquisition views has been generated, they are
rendered on the AR HMD as floating icons to indicate the position and
orientation of the views (Fig. 1, top middle); the suggested acquisition
path is also rendered. The operator begins photogrammetric acquisition
of the scene, the goal being to physically position the camera rig such
that the smartphone camera’s position and orientation matches the
suggested view, and then to capture an image of the scene from that
view.

Our AR HMD interface provides interactive adaptive guidance to
help the operator more precisely guide the camera rig into the proper
location, as well as an automatic photo capture feature to ensure that



Fig. 4. AR interactive guidance to place camera at suggested view.
(a): before approaching view. (b): as camera approaches, view icon
transforms (yellow rectangle). (c): camera in range with visual feedback
(green rectangle and loading circle). (d): feedback immediately after
automatic capture (view disappears with animation).

acquired images are free from motion blur. When the camera on
the handheld rig is placed near an acquisition view, the view’s icon
(Fig. 4, a) expands into a world-space-aligned yellow frame (Fig. 4,
b). The operator aligns the camera rig such that the rectangular frame
of the smartphone is aligned with the suggested view’s frame. As the
camera rig is aligned, the frame changes color gradually from yellow
to green (Fig. 4, c). Once the camera rig’s position and orientation
are both within a desired threshold (in our experiments we set the
position threshold to 5cm and the rotation threshold to 15◦), the AR
HMD indicates to the smartphone that a photo should be taken. The
smartphone tracks its own acceleration using onboard accelerometers,
and once the phone has been held stably in place at the suggested view,
a photo is automatically captured and the view is removed from the AR
visualization (Fig. 4, d). We define the smartphone to be held stably in
place if its linear acceleration remains below 1m/s2 for 300ms.

The operator repeats this process view by view, until all desired
views have been captured by the handheld camera rig. The output of
the acquisition is a set of RGB images that achieve coverage of the scene
subject to the input parameters of camera-to-scene distance and image
overlap. The set of acquired images can then be processed offline by
conventional structure-from-motion software for photogrammetric 3D
reconstruction. We additionally save at the time of each photo capture
the estimated poses of the camera rig in the AR HMD’s coordinate
system, and we use these initial poses as input during camera alignment.

7 RESULTS AND DISCUSSION

In this section, we provide implementation details of our prototype
acquisition system, we present results of several acquired scenes, and
we detail a user study conducted to validate our approach.

7.1 Implementation overview

We implemented a prototype system for our AR-HMD-guided pho-
togrammetric acquisition method. The AR HMD we used was the
first version of the Microsoft HoloLens, and we used a Google Pixel
3 smartphone (resolution: 4032 x 3024, FOV: 65deg x 49deg) in our
handheld camera rig [12, 20]. The handheld camera rig was mounted
with ArUco fiducial markers and was tracked by the HoloLens using
the HoloLensARToolkit library [6, 11, 26]. The marker was tracked by
the AR HMD at 30fps, which is also the frame rate of the HoloLens’
onboard RGB camera. Wireless communication between the AR HMD
and the camera is achieved with a socket connection and using the
smartphone as a Wi-Fi hotspot, which makes the system completely
self-contained and portable even in austere environments without any
Internet connection. Our application runs on the AR HMD at 60fps.
Given an input region of interest about 2.5m to a side (represented in
the AR HMD rough geometry with about 15000 triangles) our system

Fig. 5. An example of our AR HMD guided acquisition functioning in
an outdoor environment. Top: Suggested views and acquisition path.
Bottom: High quality photogrammetric reconstruction.

Table 1. Summary of acquired scenes.

Scene
(Figs.)

Distance
d (m) Overlap ω

Time
(sec)

Num.
images

StackedRocks
(1, bottom row) 0.5 0.50 430 93

Pentagon
(5) 0.5 0.50 510 146

Turbine
(1, middle row) 0.5 0.66 667 170

generates a set of suggested views in about 13 seconds, as computed
locally on the HoloLens.

7.2 Reconstruction results
We captured sets of images from several scenes using our AR HMD
guidance method. Table 1 summarizes each scene’s input parameters,
number of pictures taken, and acquisition time. As can be seen, high
quality reconstructions can be achieved by following the guidance
provided by our AR HMD approach in just a matter of minutes.

7.3 User study
To validate our approach and to gain formative feedback on our user
interface, we conducted a user study in which ten participants each ac-
quired imagery of a medium-sized complex scene (2.0m x 1.6m x 1.7m)
under both unguided (Control) and AR HMD guided (Experimental)
conditions.

Participants: 10 participants (8 male, 2 female; age: 28.9± 4.4)
were recruited. Participants were either graduate students recruited
from our lab or graduate/undergraduate students recruited from our
university’s Computer Science, Computer Graphics Technology, and In-
dustrial Engineering departments. All study participants were first-time
users of our acquisition approach. In a pre-session 5-point Likert scale
questionnaire, participants self-reported their prior experience levels in
various skills related to the task. Participants reported some knowledge



Fig. 6. The scene captured by user study participants.

of augmented reality (2.6± 1.1), head-mounted displays (2.9± 1.4),
and 3D reconstruction (2.4±1.1), but were generally unfamiliar with
photogrammetry itself (1.5±0.7).

Task: Participants were tasked with acquiring images of a target
scene with the goal of achieving a complete 3D reconstruction. Fig. 6
shows the scene set up for participants to acquire. The individual sur-
faces of the scene are feature-rich and straightforward to reconstruct
locally; however, the arrangement of the scene as a whole is geometri-
cally complex, with challenges such as a thin barrier bisecting the scene
that could result in reconstruction failure, or a need for the operator to
return to the scene to acquire more images, if views that transition from
one side of the scene to the other are insufficiently acquired.

Prior to acquisition, participants were given a short tutorial about
the principles of photogrammetry: how images are matched, and the
importance of consistent distance to the scene, image overlap, and
scene coverage. For each condition, participants were asked to acquire
imagery while keeping approximately 0.5m from the scene (camera-
to-scene distance) and with approximately 50% overlap. Additionally,
all participants were instructed to capture photos of all sides of the
scene, including regions that transitioned from one side to another.
Participants were not told the specific number of images they should
take to achieve a good coverage of the scene, as this would require
prior knowledge specific to the scene rather than general knowledge of
photogrammetric principles.

Conditions: Participants were randomly placed into one of two
groups in a within-group design using counterbalancing. All partici-
pants acquired the scene twice: one group acquired the scene first under
the Control condition and second under the Experimental condition;
the other group acquired imagery with the Experimental condition first
and then the Control condition.

For the Control condition, participants used a handheld camera rig
with a smartphone, but without wearing an AR HMD or having a fidu-
cial marker on the camera rig. A Bluetooth-connected shutter release
button on the rig allowed the user to take pictures manually. Partici-
pants were told to take pictures of the scene until they felt confident

that they had acquired enough for a good reconstruction. We choose
to use unguided acquisition as our Control condition as it remains an
extremely common method in the photogrammetric community; while
prior guidance methods exist (Sect. 2), no single interface has been
universally adopted.

For the Experimental condition, participants wore the AR HMD and
a short tutorial (5-10 minutes) was given in the functionality of the
AR HMD guidance system, during which participants were allowed
to practice placement of the camera rig given a test set of acquisition
poses to ensure they were comfortable with the automatic capture
functionality. Approximately 150 acquisition locations were visualized
by the system to the participant, and participants were asked to capture
every view.

Metrics: After each acquisition session (Control or Experimental)
was complete, participants filled out a questionnaire that included a
NASA Task Load Index (NASA-TLX) workload assessment [13]. The
NASA-TLX questionnaire contains 6 metrics on a 21-point scale: men-
tal demand, physical demand, temporal demand, performance, effort,
and frustration. Participants also answered an additional questionnaire,
which asked their level of agreement with a series of seven statements
on a 5-point Likert scale:

1. Using this approach was enjoyable
2. Using this approach was comfortable
3. I feel confident that the images I took will make a good 3D

reconstruction
4. The method helped me learn how to do 3D capture
5. After using this approach, I am interested in doing 3D capture
6. It was easy for me to know which areas I should capture
7. It was easy for me to remember which areas I had already captured

Additionally, the number of captured images in each session and the
scan session time were recorded.

The acquired images for each session were input into a conventional
photogrammetric reconstruction software (Agisoft Metashape [2]). In
the case of images acquired during the Experimental condition, the
estimated poses of the camera rig at each capture timestamp (according
to the AR HMD’s coordinate system) were input to initialize cameras
during SfM reconstruction. For all sets of images, reconstruction was
completed using identical settings in the software and without manual
cleanup of extraneous points in between stages.

To quantify the completeness of the participants’ models, we sepa-
rately acquired a ”ground truth” model of the scene reconstructed from
a highly dense set of 600 photos (over three times as many photos as
captured by any participant). Each reconstructed model was manually
aligned into the same coordinate system as the ground truth model.
10,000 sample points were uniformly selected from the surface of the
ground truth model, and the distance between each ground truth sample
point and the closest point on the reconstructed model was found. We
computed the percentage of points that were within 1cm, 3cm, and 5cm
of the ground truth model.

We also analyze whether or not there is a significantly different
amount of blurriness in the images acquired in the Control or in the
Experimental conditions. For each set of acquired images, we compute
the frequency domain based image quality metric of De and Masilamani
for each image [9].

7.3.1 User study results
All scan session results were considered to be in one of two popula-
tions, Control and Experimental; the independent variable was the use
of either a conventional smartphone for acquisition or our AR HMD
guidance system for acquisition. The dependent variables were ac-
quisition time, number of images captured, reconstruction quality as
measured by percent of ground truth points in reconstruction, and the
responses to our post-session questionnaires.

A normality test was conducted by inspecting the normal probability
plot for each metric and condition. All metrics, with the exception of
acquisition time, showed a normal distribution and a paired two-tailed
T-test was performed for those metrics. In the case of acquisition, a



Table 2. Summary of results for our user study.

Metric Control Experimental p

Images captured 91±59.5 162.6±15.5 0.0046
Time (sec) 358.5±178.4 1033.2±310.3 0.0051
Time per image (sec) 4.5±1.3 6.3±1.5 0.0022
% points within 1cm 33.7±20.3 64.6±7.2 0.0011
% points within 3cm 46.6±25.3 84.0±4.1 0.0009
% points within 5cm 60.1±26.4 95.9±2.0 0.0021

Fig. 7. Example scene reconstructions generated from datasets acquired
by study participants in both Control (left column) and Experimental (right
column) conditions. Each row corresponds to an individual participant.

bimodal distribution was revealed in the Control condition (we found
that the two peaks in this distribution were not explained by the order
in which participants completed the two conditions); for this metric a
two-tailed Wilcoxon Signed-Rank Test was performed.

Table 2 summarizes the results of our metrics for the user study.
Participants using our system captured significantly more images. How-
ever, the acquisition time for the Experimental condition was far longer
than for the Control condition, measured both in total time and in sec-
onds per image captured. One cause may be the automatic capture
feature of our system; several participants described issues in precisely
aligning the camera rig with the AR guidance in order to trigger an
automatic capture. In particular, the depth cues of aligning the camera
frame with a rectangle signifying the suggested view were not very
strong. While alignment in X and Y (left/right/up/down relative to the
operator) was straightforward, alignment in Z (towards or away from
the operator) was not clear, leading to participants holding out the cam-
era rig and waiting for automatic capture while still being out of range.
In future work we plan to investigate improved interfaces for intuitive
6-DOF alignment that address this ambiguity in the Z direction.

Examples of the models generated by participants can be seen in
Fig. 7. The reconstructions under the Experimental condition (Fig. 7,
right column) tend to be far more complete than those captured under
the Control condition (Fig. 7, left column). Fig. 8 shows, for each

Fig. 8. Result of comparison between reconstructed models generated
from images acquired by user study participants, using threshold distance
between ground truth model of scene and nearest point on participant’s
reconstruction. Dashed blue lines: Control condition. Solid orange lines:
Experimental condition.

Fig. 9. Box-and-whisker plot for each of the six NASA-TLX subscale
scores, for both Control and Experimental conditions. All scores are on a
21-point scale. A star (*) indicates that a statistically significant (p < 0.05)
difference was found between the two conditions.

reconstructed model, the results of our quantitative geometric analysis.
The Experimental condition showed a statistically significant improve-
ment in the percentage of the ground truth model that was reconstructed
to within 1cm, 3cm, and 5cm. While a few participants achieved a
complete reconstruction under the Control condition, it was much more
likely that participants without our AR HMD guidance would acquire
images that led to only a partial (or highly distorted) reconstruction.
Only 3 out of 10 reconstructed models from the Control condition
achieved over 50% of the ground truth scene reconstructed to within
1cm, while all 10 of the 10 reconstructed models in the Experimental
condition did. One cause of the difference is the wall divider that bi-
sects the scene; participants in the Control condition would adequately
capture each individual side but would neglect the transition from one
side to another, which is needed by the reconstruction software to au-
tomatically register the scene into a single frame of reference. The
Experimental condition’s ability to use the camera rig’s estimated posi-
tion as an initial guess in the reconstruction software also provides a
great advantage.

Participants’ responses to the post-session NASA-TLX question-
naire are detailed in Fig. 9. The Experimental condition was found to
significantly increase the amount of Physical Demand (TLX-2) on the



Fig. 10. Box-and-whisker plot for the seven questions in the post-session
questionnaire. All scores are on a 5-point Likert scale. A star (*) indicates
that a statistically significant (p < 0.05) difference was found between the
two conditions.

participant. We attribute this largely to the weight and discomfort of the
AR HMD and the fatigue from holding the camera rig to precisely align
with the suggested view. The NASA-TLX metric of Performance (TLX-
4), where a lower score indicates a higher self-appraisal of success in
accomplishing the task, showed significant improvement. No other
values in the NASA-TLX questionnaire (Mental Demand, Temporal
Demand, Effort, Frustration) were found to have statistically significant
differences.

Fig. 10 shows the results of our 5-point Likert scale post-session
questionnaire. While participants reported significantly greater dis-
comfort (Q2) using the Experimental approach, participants found the
Experimental approach significantly more enjoyable (Q1) than the Con-
trol approach. While the mere novelty of using new technology may
be a contributing factor, we hypothesize that our AR guidance acts
as an example of gamification for what would typically be a tedious
task for an operator. Participants using the Experimental approach also
reported significantly increased ease at knowing which areas should be
captured (Q6) and which areas had already been captured (Q7), sug-
gesting that our approach helps offload the cognitively demanding task
of maintaining a mental map of the scene. Our approach also seems to
help participants learn how to do 3D capture (Q4) significantly more
than the Control condition, making AR assistance useful for training
purposes. No statistically significant difference (p = 0.11) was found
between conditions in the level of interest of participants in doing 3D
capture.

For our analysis of the blurriness of acquired images in Control
and Experimental conditions, we computed a paired two-sided T-test,
comparing the mean image quality between the population of Control
sessions and the population of Experimental sessions. Using the afore-
mentioned image quality metric of De and Masilamani, we found no
statistically significant difference in image quality between Control
(0.001287±0.00017) and Experimental (0.001290±0.00012) condi-
tions (p = 0.95). We conclude that our feature of automatic image
capture was comparable to manual image capture in sufficiently avoid-
ing motion blur.

Learning effects: Our user study used a within-group design with
counterbalancing, in which participants acquired the same scene twice
in randomized order. To investigate whether a learning effect was
present between conditions, we conducted two additional analyses of
our study data, first considering only the first acquisition performed by
the participants, and second considering the separate subpopulations of
participants who completed the two conditions in a particular order. For
the sake of brevity, we describe only the notable differences in results

from our main analysis; all other trends (i.e., whether a particular
metric was significantly increased/decreased for a particular condition,
or whether there was no significance) were consistent with our within-
subjects study analysis.

First, as any within-subjects study can also be analyzed as a between-
subjects study by excluding the second condition performed, we an-
alyzed the first acquisition results for each participant and compared
Experimental and Control conditions absent any possible learning ef-
fect. We continue to find significant improvement in reconstruction
quality (percentage of points within 1/3/5cm) favoring the Experimental
condition (p = 0.0021,0.0048,0.0076). Additionally, in this analysis
Experimental participants reported significantly higher (p = 0.0103)
interest in doing 3D capture (Q5); it is possible that fatigue from com-
pleting two back-to-back acquisitions of the same scene dampened the
interest of participants in our within-subjects analysis. However, in
this between-subjects analysis, we do not find statistically significant
differences for the questionnaire responses regarding comfort (Q2) and
confidence in a good reconstruction (Q3), and for the metric of average
seconds per image taken; we hypothesize this comes from the reduced
statistical power of this analysis due to lower sample size.

Second, we also analyzed the ”Control-then-Experimental” and
”Experimental-then-Control” subpopulations separately to investigate if
any learning effects were present. Likely due to the reduced sample size,
a statistically significant difference could not be found in either subpop-
ulation for questionnaire responses regarding enjoyability (Q1) of the
approach or for confidence in a good reconstruction (Q3) or whether the
approach helped the participant learn how to do 3D capture (Q4). No-
tably, in the Experimental-then-Control subpopulation only, there was
no longer a statistically significant difference in the number of images
taken (p= 0.1154), though the average number of Control images taken
(116.5) was still less than the average number of Experimental images
taken (157.5). Likewise, in the Experimental-then-Control subpopula-
tion, the average improvement in reconstruction quality is still greater
for the Experimental condition (percentage of points within 1cm: 63%
vs 47%; within 3cm: 90% vs 68%; within 5cm: 96% vs 74%), but
results are statistically inconclusive (p = 0.1676,0.1505,0.1598). We
hypothesize that our approach does help operators learn to improve
their acquisition approach, mainly by helping anchor the operator’s
priors about the number of photos that are needed for a good recon-
struction. However, the lingering difference in reconstruction quality
suggests that our approach is useful for regular use and not simply as a
training tool. Regardless, additional research is needed to conclusively
determine whether any training benefits generalize to new scenes that
may require a larger or smaller absolute number of images to achieve a
high quality reconstruction.

Additional findings: Several participants mentioned that when using
the AR HMD based guidance, they did not pay any attention to the
camera view on the smartphone screen; instead, they only focused
on the AR overlay rendered by the headset. While further research
is needed, we believe that this suggests a decreased cognitive load,
as matching a pre-defined 6-DOF pose requires less mental analysis
than the higher-dimensional analysis of evaluating a detailed on-screen
image for overlap of salient features.

The AR HMD’s onboard camera has a wider FOV than the display,
so the fiducial marker does not need to be within the display’s FOV to
be tracked. However, we noted several participants attempt to keep the
entire camera rig within the display’s FOV, leading to stretching the
arm straight out and resulting in greater fatigue and slowness during
acquisition. Future AR HMDs with larger FOVs may mitigate this
issue; however, a more limited AR overlay that is local only to the
region immediately surrounding the rig’s camera may help avoid this
issue.

7.4 Limitations
Our approach relies on an environment in which the AR HMD can (1)
track itself relative to the environment, (2) generate a reasonable rough
geometric model of the scene, and (3) display content clearly to the
operator. Poorly-lit scenes, moving objects, or reflective materials can
disrupt the AR HMD’s tracking. However, our approach works robustly



in outdoor environments where the scene is in shadow or the weather is
overcast (see Fig. 5); the display of the AR HMD is faint but still usable.
Overcast weather is in fact preferred for outdoor photogrammetry as
the ambient light prevents strong shadows from being baked into the
model.

Our method of view generation is entirely geometry-based in that we
do not analyze image features at runtime, and implicitly assume that all
parts of the scene are equally feature-rich. Future work could analyze
frames from the AR HMD’s camera at runtime to identify feature-rich
or feature-poor areas and adapt the view generation by generating an
anisotropic mesh to wrap around the scene [24].

Our use of signed distance fields in view generation also can lead
to decreased acquisition of certain hard-to-reach or occluded areas of
a scene. If the surface of a scene contains many sharp concavities,
the offset surface on which our acquisition views lie may image those
regions only partially or from a greater camera-to-scene distance.

Our acquisition path between suggested views is computed by only
considering Euclidean 3D distance between views. However, not all
distances are equally efficient to a human operator: physically stepping
around the scene is more laborious than standing still while moving the
camera rig. A completely optimized acquisition path would need to
take into account all the human factors of motion, and we hypothesize
that such a human-factors-driven approach would reduce acquisition
time and fatigue. Similarly, adjusting the placement of acquisition
views to be explicitly horizontal/vertical to each other (as opposed to
diagonal) may be easier for human operators to follow intuitively, even
if the total Euclidean distance is increased.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel HMD-based approach for
AR guidance during 3D acquisition that helps ensure sufficient images
are acquired for reconstruction coverage and quality. We have demon-
strated several quality reconstructions generated with our approach, as
well as a user study that reveals that novice participants can achieve
more complete reconstructions using our method.

In future work we hope to compare against other existing approaches
to acquisition guidance, such as sphere approximation, to determine
which types of scenes most benefit from our geometry-based view
generation. We are also interested in the potential for expanding our
guided acquisition to a multi-user approach, where multiple operators
can simultaneously acquire a large environment in parallel [25]. By
sharing a common coordinate system and tracking the position of other
users, the workload of acquisition could be greatly parallelized.

Additionally, our work has revealed an important future research
direction of AR interfaces that guide users to precisely assume a hand-
held 6-DOF pose in open space, as opposed to the simpler problem of
annotating a surface location on a physical object. We hope our work
both justifies and encourages future research into such interface design.

Pairing the flexibility of a handheld acquisition device with the
world-aligned visualization and tracking of an AR HMD achieves high
quality results and has direct, practical application in the use case of
photogrammetric acquisition. As AR interfaces become integrated into
day-to-day life we anticipate that such multimodal combinations of
devices will become increasingly beneficial.
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[11] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
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