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ABSTRACT
See-through head-mounted display capability is becoming an important part of Virtual
Environment applications. In such applications, it may be desirable to model the physical
behavior of the virtual objects and their interaction with the real objects. This paper describes a
software system which integrates interactive collision detection, collision response and see-
through head-mounted displays. The system employs a static model of the real world
environment and allows for arbitrary convex virtual objects to be placed in the environment. The
user may control the positions and velocities of the virtual objects. An approximately constant
time collision detection algorithm and a Newtonian Mechanics based single point contact
collision response is used to model the apparent physical interaction of the virtual and real
objects for moderately complex environments.

Keywords: Virtual Reality, See-through Head-Mounted Displays, Collision Detection, Dynamics,
Parallel.

1. Introduction

1.1 Motivation
Among the original applications considered part of Virtual Environments are head-

mounted display (HMD) applications.  A typical HMD setup consists of a powerful graphics
engine, one or more tracking devices and a head-mounted display.  The user experiences the
illusion of being in a (synthetic) world where the images seen are generated by a computer
program.  By using optical lenses or video camera technology it is also possible to present the
user with images of the virtual environment and the real environment simultaneously.  A helmet
with such characteristics is called a see-through head-mounted display.
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See-through capability opens up an even larger number of potential applications.  A
historically early example of the merging of the virtual environment with the real environment is a
helicopter pilot's helmet where the pilot can see information about the helicopter's orientation,
speed and location as well as a cross-bar that could be tracking an enemy; all superimposed on the
pilot's view of the real environment.  Soon we could hope to see applications such as an
architectural design system.  Such a system could allow for an architect to make actual-size
modifications to an existing building or for a home-owner to decorate an empty house.  A similar
application, could allow children to design and build a virtual toy which could be used
simultaneously with real toys.

The real world, obviously, correctly models our physical environment, such as the effects
of gravity, friction and collisions.  In future applications of merged virtual and real environments,
it may become useful to model the laws of nature; otherwise, the interaction of the two worlds
may not be convincing at all.  A significant amount of work must be done for a virtual
environment to convincingly simulate such properties.  Consider an office environment where the
user has a virtual notepad.  It would not be convincing if when the notepad is placed on the table,
it apparently falls through the table.  Similarly, in the previous example of a home-owner
decorating an empty house, the home-owner might desire the addition of a sliding door or
venetian blinds.  These virtual additions should properly interact with the surrounding (real)
house.

1.2 Integrated System
In this paper, I demonstrate the design and implementation of an integrated system, which

uses computational power readily available today, for modeling interactive collision detection and
collision response for moderately complex environments containing both virtual (computer
generated) objects and real objects.

I will be referring to this system as Virtual and Real Object Collisions (or VROC).  It uses
a see-through head-mounted display together with a powerful graphics engine (also developed
here at UNC-Chapel Hill) to present to the user virtual objects superimposed on a real
environment.  The user provides a model of the static real environment which describes the
positions and sizes of the real objects.  The user then creates any number of virtual objects.  A
hand-held tracker is provided with which the user can grab and control the linear and angular
velocities of the virtual objects.  The system constantly performs collision detection and computes
a Newtonian Mechanics based collision response to model the interactions (i.e.  collisions)
between virtual and real objects, as well as the interactions among the virtual objects themselves.

2. Previous Work

Over the last decade, multiple approaches have been developed for collision detection and
collision response.  No one collision detection or collision response algorithm can be said to be
the optimal solution.  One must take into consideration the application being designed and
determine what information can be made available to the algorithms and what information will be
needed from the algorithms.
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Hahn [1988], Baraff [1989], Moore and Wilhelms [1988] assume (convex) polyhedral
objects for their collision detection and collision response systems of rigid bodies.  The general
approach is to consider all possible intersections of vertices, edges and faces of polyhedral
objects.  Canny [1986] suggested another collision detection method for polyhedra moving among
polyhedral obstacles.  Cameron [1990] explored the possibilities of 4-space intersection testing.
Hubbard [1993] introduced a fast and interruptible collision detection algorithm.

Many mathematical models exist that implement physical behaviors.  But, since even a
single aspect of physical behavior can be difficult to model, implementations usually only model a
small number of physical behaviors and perhaps crudely approximate a few others.  Wilhelms et
al. [1988] present the general idea behind the use of physical simulations.  Goldstein [1950]
describes most of the issues of Classical Mechanics, while Baraff [1992] provides a good general
overview of rigid body dynamics for 3D animations.  Li and Canny [1990] describe a model for
rigid bodies with rolling constraint.  Baraff [1993] gives a formulation for contact forces between
objects in resting contact.  Other methods allow for objects to deform upon impact.  For these
methods, a quite complex analytical approach is taken.  Pentland and Williams [1989] use
vibration-mode ("modal") dynamics, a method of breaking down non-rigid dynamics into the sum
of independent vibration modes.

Various integrated dynamics systems have been developed in the past decade: Interactive
Dynamics [Witkin90], ThingWorld [Pentland90], Bolio [Zeltzer89], Virtual Erector
[Schröder90]. Each approaches computational dynamics in a different way, specializing in
modeling certain behaviors. Few systems exist that have integrated virtual and real world imagery.
ARGOS [Drascic93] provides a virtual pointer into the real world; Bajura et al. [1992] have
experimented with superimposing ultrasound images of a fetus registered in place over a pregnant
women's womb.

3. Implementation

3.1 Collision Detection
In order to maintain the interactive performance of the system, selection of a fast collision

detection method is essential.  Lin and Canny [1991,1992] describe a method which integrates
well with a dynamics system.  A typical dynamics simulation advances through time by taking
small time steps.  The algorithm by Lin and Canny provides approximately constant time collision
detection between convex polyhedra from one frame to another by assuming that an object's
position and orientation will not drastically change from one frame to another.

I implemented a version of this algorithm. The essentials behind the algorithm are rather
simple.  Given a pair of convex polyhedra, determine the closest features of the objects.  For a 3D
polygonal object, the features are vertices, edges and faces.  Assuming a small enough time step,
from one frame to another the objects will perhaps have rotated a few degrees and closed the
distance between them.  Figure 1 depicts what the configuration of the closest features might be
during three contiguous frames.
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Figure 1: Closest features - three contiguous frames.

The angular velocity of the objects caused the closest features to change, but only to the
next adjacent feature; namely from a vertex to the face (or edge) adjacent to it.  Given larger
angular velocities, it might take a few more checks of the adjacent features.  In any case, the
algorithm provides approximately constant time distance checking.  When the distance between
the features is less than a tolerance value, the objects are considered to have collided.

3.2 Collision Response
Once two objects have collided, a response must be computed.  The VROC system

assumes that all objects are rigid and have nearly inelastic properties.  Furthermore, only single
point contact between a pair of objects is modeled (since all objects are convex, this is generally
the case).

I implemented a collision response based on Hahn [1988] and Moore & Wilhelms [1988]
work.  The collision response computation assumes that the point of contact, velocities at
collision time and an orthogonal collision frame are provided.  Based on the conservation of linear
and angular momentum, the new velocities can be obtained as in Eq. 1 (once R is computed).

m 1v 1 = m 1v 1 + R
m 2v 2 = m 2 v 2 − R

I1w1 = I1w 1 + p1 ×R
I 2 w 2 = I 2w 2 − p 2 × R

  Eq. 1

The variables m, I, v, w describe each object's mass, inertia tensor matrix, linear velocity
and angular velocity.  The p vector is the relative vector from each object's center of mass to the
point of contact.  R is the impulse transfer vector (computed by inverting a 15x15 matrix).  Each
object has its own elasticity coefficient.  In order to simulate (slightly) elastic collisions, the
computed R vector is scaled by the minimum of the 2 elasticity coefficients.

3.3 Time
The collision detection and collision response algorithms are combined to form a dynamics

simulation.  This implies that all the computations must be parametrized by time.  The user must
specify the time step to use to go from one frame to the next frame.  The main problem with key-
frame collision detection is that objects with large velocities might penetrate or pass through each
other in one frame transition.  Given the maximum linear velocity and a collision distance (largest
distance at which two objects are considering to have collided [Lin91]), it is possible to divide the
frame time step into internal time steps. The internal time step is small enough to guarantee that
no two objects will totally pass through each other. If at the end of an internal time step, the
object pair is already in collision (penetration has occurred), a binary search method through time
is used to find the time of collision to within a specified tolerance.
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3.4 Optimizations

3.4.1 Scheduling scheme
Since objects have continuous motion, it is possible to construct a sorted list of possible

collision times (a heap structure is used) [Lin92].  Given the distance between two objects, the
bounds on the maximum linear velocity and linear acceleration, it is possible to predict the earliest
time at which an object pair could collide. Since in addition objects have angular velocities, the
difference between the radius of the inscribed sphere and the radius of the circumscribing sphere
of each object must be subtracted from the inter-object distance for a safe prediction.

3.4.2 Static and Dynamic Objects
Since it is not known which objects will collide in an environment, it is necessary to

perform collision checking on all possible pairs.  This gives a maximum of O(n2) collision pairs,
where n is the number of objects.  Fortunately, in the environments that the VROC system tries to
simulate, many of the objects (virtual or real) are not expected to move (i.e.  tables, monitors,
etc.).  These objects are considered static and no collision checking is done between two static
objects.  For example, if an environment uses 100 static objects to construct a desktop and only
one moving (dynamic) object, then only 100 object pairs are checked as opposed to the more than
10,000 pairs that would have to be checked otherwise.

3.4.3. Contact
Real world objects are never perfectly inelastic.  In fact, most real objects will come to rest

on a surface relatively quickly.  The larger number of collisions that this will cause requires more
computation and will reduce performance.  Thus, it becomes necessary to model contact between
objects in a more efficient manner.

The VROC system implements a simple contact scheme.  When an object's linear and
angular displacement fall below a threshold, the object is put into a contact state. The object does
not get affected by gravity and simply rests on top of the surface it came into contact with.  This
model works well for many convex objects; but, other types of objects, which come to rest with
multiple contact points, may require more sophisticated contact models.  In many cases though, it
might suffice to use the convex hull of the objects to determine the contact.

3.5 Parallelization

3.5.1 MIMD Requirements
The VROC system can be parallelized using a MIMD architecture. Each processor of the

MIMD machine performs a portion of the collision detection and collision response computations.
Furthermore, the object database is distributed across the parallel machine, thus increasing the
potential number of objects. A message passing scheme is required to send object update
messages between the multiple processors.

The VROC system is implemented on Pixel-Planes 5 [Fuchs89], though the original
version was prototyped on a HP-750 TVRX-T4 workstation.  Pixel-Planes 5 is a high-
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performance, scalable multicomputer for 3D graphics.  Pixel-Planes 5 has a front-end of typically
10 to 40 processors (Intel's i860s).  These general-purpose processors can be programmed by the
user to perform application computations and interact with the fast rendering hardware.

3.5.2 Distribution
A portion of the VROC system runs on each processor. Recall that the collision detection

scheme potentially requires a check to be performed between all possible object pairs.  These
checks can easily be performed in parallel.  Furthermore, each processor will compute the
collision response for the object pairs it stores.

The set of object pairs that have to be checked for collisions is constructed based on the
static model of the real world and on the set of virtual objects that "co-exist" with the real objects.
Recall from Section 3.4.2, that the number of object pairs is typically significantly less than n2,
where n is the number of objects in the merged environment.  The object pairs are distributed in a
round-robin fashion among the multiple processors.  Each processor will construct a collision
heap for the object pairs it owns.  Consequently, each processor will only have to instantiate a
subset of the total number of objects.  An object may reside on multiple processors, but few
objects will exist on all processors.

If an object pair is determined to be in collision, the associated processor will compute the
collision response. Typically, each processor will only need to compute a single collision response.
If other processors encounter a collision, they will compute their own collision response.
Afterwards, processors that computed a collision response must broadcast the new velocities to
all processors that have a copy of the objects involved in the collision. Hence, on average, the
collision response computations for multiple simultaneous collisions across the system take the
same amount of time as one collision response (though some additional time is needed for the
update messages sent between processors).

3.6 See-through Head-Mounted Display
The see-through head-mounted display used by the VROC system was developed by the

head-mounted display research group at UNC-Chapel Hill Computer Science, in the spring of
1992. It is a prototype built (with off-the-shelf components) to gain experience for a wide field of
view model with custom optics and CRT.  It is an optical see-through HMD which uses a pair of
2-inch LCD displays that project the computer generated image onto a pair of half-silvered
mirrors (Figure 2, see Color Plates Section). The user's eyes then perceive a combined image of
the real world and the computer generated world. In the background of Figure 3 (see Color Plates
Section) is a monitor displaying the computer generated image which the user sees superimposed
on the real staircase.
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4. Examples

4.1 Virtual Environment Example
Arbitrary environments can be designed in the VROC system. The following sections

present various environments I have modelled. None of the animations shown in this section
required any special coding.  They are simply different input files given to the VROC system.
Figures 4 demonstrates an office environment consisting of a workstation, desk and bookshelf.
Initially a virtual cuboid object is resting on top of the bookcase.  A small heavy (yellow) ball
pushes a cuboid object so that it falls off the bookcase onto the tabletop knocking the tabletop
objects in multiple directions (frame rate: 15-18 stereo frames per second).

(a) (b)

(c) (d)
Figure 4(a-d): Virtual Environment Example, (a) box is about to hit the

tabletop, (b-d), objects disperse.
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4.2 Merged Environment Examples
First, the user must first provide a model of the static real world. In the optical see-

through HMD, the real objects are drawn in the background color (i.e. not drawn); for
demonstration purposes, the following figures have the real objects drawn in wireframe. The
virtual objects are then superimposed over the real objects. VROC will model the proper
interaction between the virtual and real objects.  The images in Figure 5 and 6 (see Color Plates
Section) were taken by placing a small camera behind the left half-silvered mirror of the see-
through HMD (frame rate: 18-21 stereo frames/second). Note the disparity between the real and
virtual hand; an example of the calibration problem (Section 5.1).

5. Observations

5.1 Technology Problems

5.1.1 Overview
The VROC system integrates collision detection, collision response and head-mounted

display technology to present to the user a merged world of virtual and real objects interacting.
Having implementing VROC, it is apparent that the following technology problems remain to be
solved in order to bring such Virtual Environment applications into the practical world.

5.1.2 Environment Complexity
In order to create a merged virtual and real world, the computer system must know where

the static real world objects lay.  As the environment complexity increases, the creation of the real
world model becomes an even more time-consuming task.  Creating a model of the real world
does not only include creating a correct polygonal representation, but also creating the
appropriate textures and coloring for the virtual objects.  The virtual objects that the user can
manipulate should also seem as real as their real world equivalent.

The Lin and Canny [1991,1992] collision detection algorithm can be expanded for
concave objects. Namely, decompose each concave object into a hierarchy of convex components
(storing at each level the convex hull of the current subtree). Given the trees of two objects, start
at the root and test for intersection using the convex hulls. Thus the same basic algorithm can be
used for general (concave or convex) objects allowing for more complex scenery.

5.1.3 Feedback
How real the interaction of the virtual and real worlds appears to the user is not totally

dependent on the visual cues from the head-mounted display.  Other sensory input is also needed.
Sound feedback is important [Astheimer93].  When two real world objects collide, a

specific sound is produced dependent on the objects involved.  Similarly, when a virtual and a real
object collide, a sound should be emitted.  Stereo or 3D sound would improve the realism of the
merged worlds.  Current audio technology is advanced enough to produce such effects reasonably
well.
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A more important (and difficult to implement) feedback is force feedback.  The user may
have a virtual object in his hand.  The object might be considerably larger than his hand.  It would
be helpful if the user could feel when the virtual object's surface has collided with a real object.
For example, an application which allows the user to place virtual furniture in an empty real room,
could give the user force feedback when a virtual sofa being placed hits a wall.

Force feedback is not only useful for virtual and real object interaction but also for user
and virtual object interaction.  The user may wish to touch and feel the contours of a virtual
object.  The illusion of realism would certainly be improved if the user could run his hand along
the stairs of the environment of Section 4.2 and feel the presence of the virtual balls.  Another
example is a sculpting environment.  Tactile feedback is essential in order to provide an effective
sculpting tool.

5.1.4 Static Calibration
Proper calibration of the static real objects and their computer generated counterparts

depends not only on a properly measured model but also on the compensation for the optical
distortion generated by the see-through head-mounted display and the approximate perspective
computations used for the virtual objects and computer models of real objects.

Solving the calibration problem would help to improve the apparent location of real
objects from within the head-mounted display thus enabling precise collision responses and other
feedbacks (sound, force, tactile, etc.).  Furthermore, virtual objects could be accurately obscured
(partially obscured or totally obscured) by the real objects in front of them.

5.1.5 Object Tracking
All of the above environments have assumed a static model of the real world.  This limits

the range of possible environments.  It is not clear how to go about removing that assumption.
Information about the movement of real objects could be obtained from a tracker placed in each
of the moving objects.  Although this is implementable in the very near future, it unfortunately still
does not allow total freedom of movement.  Another approach could be to use imaging
technology and reconstruct from a 2D camera view of the world, the 3D object's contained in it.
Each 3D object would be tracked by comparing the current frame to the previous frame
[Tomasi92].  In any case, this is certainly still a difficult problem.

5.1.6 Head-Mounted Display Technology
The head-mounted displays used with the VROC system have a Polhemus 3Space Tracker

(30Hz update rate) and a Polhemus 3Space Fastrak (up to 60Hz update rate).  Studies done here
at UNC Computer Science by Mine [1993], have measured the lag induced by these trackers to be
from 10 to 30 milliseconds.  If you add to this the refresh delay required for drawing a frame for
each eye and the lag induced by the graphics system pipeline, you can get delays of 60
milliseconds (Pixel-Planes 5) or more (dependent on the environment complexity).  This lag,
though it sounds like a small amount of time, is very noticeable especially with a see-through
head-mounted display.  It makes the illusion of virtual objects lying on real objects much less
convincing.
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For example, consider a user turning his head at a rate of 200 degrees/second [Bishop84]
(which is a perfectly comfortable speed; studies have shown that people regularly turn their head
at speeds above 300 degrees/second; in fact, fighter pilots turn their heads at speeds in excess of
2,000 degrees/second).  If the user turns his head for one second and the combined tracker and
graphics system introduces a lag of only 50 milliseconds, the generated image will be off by
approximately 10 degrees.  A typical head-mounted display has a field-of-view of 60 degrees.
Thus, the image will be shifted to one side by one sixth the display resolution!

Multiple methods to compensate for this lag are being developed.  A tracker with a high
update rate is beneficial.  Reducing the rendering pipeline latency would also reduce the lag.
Unfortunately, there will always be some delay that cannot be easily overcome.  Thus, prediction
methods are also being considered as viable solutions and in fact used in some systems, such as
flight simulators.

The limited field-of-view (FOV) of most head-mounted displays (the optical see-through
HMD used has a FOV of only 30 degrees) makes it easy for the user to get lost in the
environment. I observed that rapidly moving objects and complex scenery often confused the user
when only a small FOV was available; thus the complexity of the environments used was not
limited by VROC's performance, but by the FOV of the see-through HMD used.

5.2 Parallelism Problems

5.2.1 Object Pair Distribution
VROC distributes the object pairs of the simulated environment across the multiple

processors.  Each processor only needs to instantiate a subset of the total number of objects.  This
reduces the number of update messages sent between objects when a collision occurs as well as
the memory requirement per processor.

Rather than using a round-robin distribution method, a more complex method could be
used.  This method would distribute the object pairs among the processors in such a fashion as to
minimize the number of processors where an object is instantiated.

5.2.2 Simultaneous Collisions vs. Non-simultaneous collisions
VROC distributes the collision detection and collision response computations among the

processors.  Recall from Section 3.5.2 that, on average, a different processor is used to compute
each collision response for a set of simultaneous collisions.

If a large number of non-simultaneous collision responses need to be computed over a
short period of time, performance is degraded since the potential parallelism offered by the
multiple processors is not fully exploited.  For example, assume that collision detection is trivial
and during the next 100 subframes, 100 non-simultaneous collision responses need to be
computed.  It will take the same amount of time to compute the collision responses no matter
how many processors are present (in fact, when more processors are present, more update
messages need to be sent); a single Pixel-Planes 5 front-end processor can compute approximately
98 collision responses per second (while still performing collision detection and message passing).
In order to efficiently handle environments where a large number of non-simultaneous collision



11

responses are needed, it might be appropriate to distribute a single collision response computation
among the multiple processors rather than employing only one processor to compute a single
collision response.

6. Conclusions

To summarize, the intent of VROC was to create an integrated system to model the
interaction of virtual and real objects in a see-through head-mounted display system. With this
system, the problems that still need to be solved for such systems have been exposed. Hopefully
the observations made and problems presented (more complex real world models, calibration,
larger field-of-view see-through head-mounted displays, reduced lag, efficient modeling of
additional physical behaviors) will benefit further research of such systems.
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Figure 2: Optical See-through HMD Figure 3: Optical See-through HMD in use

(a) (b)
Figure 5(a-b): (a) the user grabs a virtual object, (b) and throws it against the staircase.

(a) (b)
Figure 6(a-b): (a) user places larger ball over a chair, (b) drops ball towards chair.


